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Summary. - -  It is shown that in systems like large aggregates of biological 
molecules, population inversion of charge carriers, for example as produced by 
photoexcitation processes, may have competitive advantage beyond critical levels of 
excitation to produce ordered spatial structures (morphological transitions). In our 
analysis electromagnetic radiation transfers electrons from bonding states into a 
continuum of itinerant antibonding states in a p-type doped sample. In this system, 
in which energy is pumped continuously by an ex~rnal source, the interplay of 
collective and dissipative processes can be responsible for the condensation of a 
self-organized spatially ordered structure. The study we present here is carried out 
resorting to the powerful nonequilibrium statistical operator method, thus showing 
that it can be provide a mechano-statistical formalism at the microscopic level for 
the treatment of Prigogine's synergetic dissipative structures. 

PACS 87.10 - General, theoretical and mathematical biophysics (including logic of 
biosystems, quantum biology, and relevant aspects of thermodynamics, information 
theory, cybernetics, and bionics). 
PACS 05.70.Ln - Nonequilibrium thermodynamics, irreversible processes. 

1. - Introduction. 

Spatial pat tern formation is a subject of increasing interest in fields like 
chemical-physics, hydrodynamics, and biology, e.g., the area of embryology. Recent 
extensive review articles are due to Meinhardt[1] and Cross and Hohenberg[2]. In 
these cases one is dealing with open systems in far-from-equilibrium conditions which 
are susceptible to develop spontaneous symmetry  breaking and self-organization. 
This is a particular case of the so-called, after Prigogine, dissipative structures [3-5], 
examples of which are the different kind of flow patterns in hydrodynamics, like 
B~nard cells in thermal convection, and Taylor vortices between rotating cilinders [6]. 

(*) The authors of this paper have agreed to not receive the proofs for correction. 
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Additional examples are the formation and maintenance of seif-organization 
in physico-chemical systems sustaining chemical or biochemical reaction chains [5-8], 
as well as morphological transitions that may develop as a result of diffusion 
instability of the kind already suggested in Turing's pioneering paper [9]. 

Dissipative structures in chemical networks, arising out of the different 
possibilities of nonlinearities, may appear in a very large number of circumstances 
and they are of special interest for modern biology. Thus, the analysis and 
understanding of dissipative structures in physical and physico-chemical systems is 
of importance for modelling biological systems. Such models are worth exploring as 
much as possible, if only to set their valid general characteristics and limitations. 

The large diversity of dissipative structures that may appear in open non- 
equilibrium dissipative macroscopic physico-chemical and biological systems have a com- 
mon phenomenological description under generalized irreversible thermodynamics[4]. 
This discipline brings into evidence the common features and origin of these 
phenomena, whose main characteristic is that they are expected to occur in a large 
class of open macroscopic dynamical systems governed by nonlinear laws of 
evolution, where structural transitions may arise in far-from-equilibrium conditions. 
In this nonlinear regime, the dissipative structure is stabilized beyond a critical point 
where the open macroscopic system is driven by external sources. The emerging 
self-organized structure may assume the form of[5] i) multiple steady states (e.g., 
lasers; semiconductors with negative differential conductivity; optically bistable 
semiconductors), or ii) temporal order (e.g., chemical and biological clocks, like 
Belousov-Zhabotinskii autocatalytic chemical reactions), and iii) spatial ordering 
(e.g., chemical waves; Liesegang rings in sedimentary rocks). 

As already remarked Turing's model belongs to category iii). Turing conjectured 
that the development of structure in biology (morphogenesis) may find a physical 
basis in the instability of certain reacting systems with respect to 
symmetry-breaking perturbations. These need be open systems under the action of 
external sources pumping energy on them, for example the case of photoexcitation 
through illumination with electromagnetic radiation of different wavelength, say, 
visible, ultraviolet, microwaves, etc. Microwaves, in particular, are strongly 
absorbed in water, which represents a most important constituent of biological 
systems. Coupling of photoprocesses with electronic excitation and transport may 
allow for the possible emergence of dissipative spatial structures mantained by 
ambient illumination, and thus to have an important role in biomorphogenesis. 

We address here a question of this kind for the case of the model described in 
sect. 3. For dealing with this type of problems, besides the phenomenological 
foundations provided by generalized irreversible thermodynamics, kinetic and 
stochastic theories are available[5,8]. Here we proposed a mechano-statistical 
treatment, possible for the case of many-body systems with a Hamiltonian dynamics, 
based on the Nonequllibrium Statistical Operator Method (NSOM). Robertson[10] 
and Zubarev [11] have provided elegant, and already classic, versions of the NSOM, 
and, more recently, we have shown that the different approaches can be put under a 
unifying description using Jaynes' maximum entropy formalism (Maxent) with at/hoc 
hypothesis [12], as briefly reviewed in next section. 

The Maxent-NSOM provides mechano-statistical foundations for generalized 
irreversible thermodynamics[12], and even beyond, encompassing extended 
irreversible thermodynamics [13], removing the restriction of local equilibrium and 
linear flux-force relationships [14]. As is discussed in ref. [12] and[15], this statistical 
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formalism appears to be encompassed in Jaynes' Predictive Statistical Mechanics 
(PSM)[16], which is based on Bayesian inference[17]. The thermodynamic theory 
derived from this Maxent-NSOM is referred to as informational statistical 
thermodynamics [18]. Furthermore, the Maxent-NSOM leads to the construction of a 
quantum nonlinear transport theory of large scope [12,19]. It provides the nonlinear 
equations of evolution of the macroscopic state of the system and, therefore, the 
possibility to evidence and describe dissipative structures. This is in fact the case in 
the analysis presented in next sections, where we use the Maxent-NSOM in 
Zubarev's approach adapted for the treatment of open systems[ll]. 

In our model electrons are photoexcited from bonding molecular orbitals into 
itinerant antibonding states, producing a double plasma of electrons (in antibonding 
states) and holes (the unoccupied bonding orbitals) in the ionic background. After a 
transient time a nonequilibrium steady state is established corresponding to a 
stationary concentration, n, of photoinjected carriers (mobile electrons and holes) 
which depends on the source power. This is a homogeneous state of the plasma, which 
is the so-called thermodynamic branch of solutions, ~e. the one that develops 
continuously from the point of equilibrium along with the increasing power of the 
source of radiation. It  is, according to Prigogine's theorem of minimum entropy 
production [4, 5] a stable solution in the strictly linear regime around equilibrium, but 
it may become unstable when the system is driven sufficiently far from equilibrium, 
leading towards a bifurcation point with the emergence of a new branch of solutions 
corresponding to the formation of a dissipative structure. 

To test the stability of the homogeneous solution we increase the original set of 
nonlinear generalized transport equations, with those for an inhomogeneous spatial 
distribution of carriers characterized by the corresponding Fourier components of 
wave vector, Q, with Q running over the reciprocal space. We perform linear stability 
analysis which shows that for the case of p-type doped samples (i.e. extrinsic-type 
materials with the presence of mobile holes) under certain conditions it may appear a 
point of instability (bifurcation point) of the uniform solution against the formation of 
a fluctuation in the carrier density with a Fourier amplitude n(Q). 

An electronic stationary charge density wave emerges at the critical point. 
Moreover, it is quite plausible that the background of positive ions (kept rigid in our 
model) will follow the electronic wave, thus producing a conformational transition. 
We are in the presence of a nonthermal transition in the sense that the energy 
pumped on the system by the external source is applied by the system to the 
production of an ordered structure instead of increasing thermal agitation. The 
ordered structure, as shown by the analysis described in next sections, is a result of a 
self-organizing outcome, which is the result of the interplay of collective effects 
among the photoexcited carriers together with dissipative effects produced by 
recombination processes, while the system is under the action of the pumping effects 
of external illumination. 

2. - T h e o r e t i c a l  b a c k g r o u n d .  

For the sake of completeness, we briefly review in this section the Nonequilibrium 
Statistical Operator Method (NSOM) used in the study presented in next section. The 
Maxent-NSOM appears to be a very powerful formalism for the theoretical study, 
starting at the microscopic level, of Prigogine's synergetic dissipative structures. 
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This section may be skipped by the reader directly interested in the explicit results 
presented in next sections. There, application of the method allows to show how the 
presence of excited mobile charge carriers may lead to morphological order in 
biosystems, and to characterize the microscopic mechanisms associated to the 
phenomenon. 

The Maxent-NSOM, among the different mechano-statistical methods devised to 
deal with irreversible processes, has, by far, an appealing structure and appears to 
provide very effective and practical ways for the treatment of nonlinear transport 
processes. This formalism has its sources in Boltzmann and Gibbs ideas, and 
particular approaches to it are based on either general arguments on projection 
operator techniques (for details see ref. [12] and [15]). 

The first step, and a fundamental one, in NSOM is the choice of the basic set of 
variables deemed appropriate for the characterization of the macroscopic state of the 
system. This involves a contracted description in terms of, say, the dynamical 
quantities P1, P2, ..., Pn. The NSOM statistical operator (NSO) is a superoperator 
depending on these quantities to be indicated by Q(t). The macroscopic (or 
mesoscopic) state is characterized by a point in Gibbs space (or space of 
thermodynamic states) composed at time t of the set of macrovariables Qj(t), 
j = 1, 2, ..., n, which are the average values of the Pj, namely 

(1) Qj(t) =Tr{Pje ( t ) } ,  

where Tr stands as usual for the trace operation. The choice of the basic variables 
depends on each case to be considered, but it is assisted by Bogoliubov's procedure of 
contraction of description based on a hierarchy of relaxation times [20], and, to it 
related, the ideas set forward by, among others, Mori[21], Zubarev[ll] and 
Peletminskii [22]. They consist in introducing a separation of the total Hamiltonian 
into two parts, namely 

(2) H = H o + H ' ,  

where Ho is the so-called ,,relevant~, (or secular) part composed of the kinetic energies 
of the free subsystems and some of the interactions, namely those strong enough to 
have associated--in the spirit of Bogoliubov's principle--very short relaxation times 
(meaning those much smaller than the characteristic time scale of the experiment 
being considered), and possessing certain symmetry properties. The other therm, 
H ' ,  contains the interactions related to long-time relaxation mechanisms. The 
symmetry characteristics of the strong interactions depend on the problem under 
consideration: The required symmetry--to be called Zubarev-Peletminskii symmetry 
condition--is that 

(3) [Pj, Ho ] = ~ ajkP~, 
k = l  

with j = 1, 2, ..., n, where [P, Ho] = PHo - HoP is the commutator of quantities P 
and Ho, and a3.k are, in an appropriate representation, c-numbers determined by Ho. 
It ought to be noticed that quantities Pj can be dependent on the space variable, i.e. 
they may be local densities, and then the coefficients a can also be differential 
operators or depend on the space variable. Moreover, eq. (3) also admits coefficients a 
which are null, corresponding to the case of quantities P which are conserved under 
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the dynamics generated by Ho; accordingly they are acceptable basic variables, and 
so is/-/0 itself, which falls under this condition. 

Equation (3) provides a closure condition for the choice of the basic set of variables 
in a step-by-step procedure: First, the secular part H0 in eq. (1) is adequately chosen 
in each particular problem under consideration. Second, one introduces a few 
dynamical variables P deemed relevant for the case and next the commutators of 
them with H0 are calculated. The dynamical variables--different from those already 
introduced--which appear in the linear combination on the right of eq. (3) are 
incorporated to the basic set. The procedure is repeated sequentially until a closure is 
attained. In ref. [14] we relate this procedure to the question of the choice of the basic 
macrovariables in phenomenological it-reversible thermodynamics, and an example in 
semiconductor physics is discussed. Since the closure may not follow in a finite 
number of steps (e.g., see second of ref. [14]), practical application of the formalism 
requires the introduction of an appropriate truncation along the chain in the 
procedure just  described, hence introducing approximations that need be evaluated 
in each case. 

Once the basic set {Pj } has been chosen, the NSO is built within the context of 
PSM resorting to the Maxent formalism, with memory and ad hoc hypotheses to 
ensure irreversibility from the outset [12,15]. In short, Gibbs' statistical entropy 

(4) SG(t) = -- Wr {Q(t) In ~)(t)}, 

with r defined in the interval (to, t), where to is the initial time of preparation of the 
system and t the time when a measurement is performed, is maximized subjected to 
the constraints that  is normalized at all times, i.e. 

(5) Tr  { e(t ' )} = 1 

and that 

(6) Qj(t') = Wr{PjQ(t')} ( j  = 1, 2 . . . .  , n ) ,  

for to ~< t '  ~< t. Resorting to the standard procedure of using Lagrange method, but 
introducing particular ad hoc hypotheses on the form of the Lagrange multipliers, we 
obtain that [12,15] 

[J ] (7) ow(t) = exp dt' w(t, t ') In ~(t ' ,  t ' -  t) , 

where it has been introduced the auxiliary coarse-grained NSO ~, which plays an 
important role in the formalism, given by 

(8) ~(tl' t2) = exp[ -~b(tl) - j=l ~ Fj(tl)Pj(t2)]. 

In this equation (8), tl indicates the time dependence of the quantities (arising out of 
the Lagrange multipliers) ~b and Fj, and t2 indicates the dependence on time of the 
quantities P3 whose evolution is governed by Heisenberg equations of motion. In 
eq. (7) w(t, t ')  is a weight function with well-defined properties [12,15] which allows 
1) to introduce the set of variables Fj(t) that have the role of intensive variables 
thermodynamically conjugated to variables Qi(t) in order to generate a complete 
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connection with irreversible thermodynamics, and 2) to fix an initial condition from 
which proceeds the irreversible evolution of the macrostate of the system. A further 
condition is imposed, namely the coarse-graining condition that 

(9) Qj(t) = Tr{Pjow(t) } = Tr{Pj-~(t, 0)}, 

for any one of the variables of the basic set, which ensures the normalization of ~ once 
0~ is normalized, i.e. 

(10) ~(t) = In Tr exp - ~ Fj (t 
j 1 

and completes the objectives of items 1) and 2) above. 
Furthermore, it can be shown that the NSO can be split into two parts, 

namely 

(11) e~( t )  = ~(t, 0) + o~(t), 

that is, the NSO is composed of an instantaneous (,<frozen>> or coarse-grained) part 
~(t, 0), which also defines the instantaneous average values of the basic variables as 
shown by eq. (9), plus another contribution 0~ that is shown to account for the 
microscopic processes that produce dissipative effects in the system. The 
Maxent-NSOM statistical operator thus obtained satisfies a Liouville equation with a 
so-caUed Boltzmann-Prigogine symmetry, namely, the presence of an infinitesimal 
source that breaks its otherwise time-reversal symmetry. This is done by the 
presence of the weight function w, which ensures the irreversible evolution of the 
macroscopic state of the system from an initial condition, that is ow(to)= 
= : ( to ,  t) [12,15] .  

The connection of the Maxent-NSOM with phenomenological irreversible 
thermodynamics is discussed elsewhere [14,18]. Finally, to close the formalism and to 
perform calculations of thermodynamic functions [14] and response functions [12,23], 
it is necessary to obtain and solve the equations of evolution for the basic 
macrovariables Qi(t). This is done by proceeding to the differentiation in time of 
eqs. (9) to obtain 

0 -~Qj( t )  = JJ~ + J~i)( t )  + ~ j  ( t ) ,  

J~~ = Tr { ~[PjHo]~(t)} , 

(13b) J~l)(t) = Tr { ~[PjH' ]-~(t)} , 

(13c) Jj(t) = Tr {-~[Pj, H' ]-~(t)}. 

The quantity of eq. (13c) is a collision operator which is of fundamental relevance to 
the characterization of the dissipative processes that develop in the media. It  is 

(12) 

where 

(13a) 
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extremely difficult to handle, but it can be shown that it can be expressed in terms of 
an infinite series of partial-collision operators, which are instantaneous in time and 
organized in increasing order n in the strengths of the interactions contained in 
H '  [19]. The lowest order of approximation consists in retaining only the term with 
n = 2. This is a local-in-time (memoryless) approximation, sometimes referred to as 
the quasi-linear theory of relaxation [24], but which we have called second-order 
approximation in relaxation theory, SOART for short[19]. In SOART the collision 
operator~- is approximated by the second-order partial-collision operator j.(,) given by 

t 

0 

(14) t ' )  Tr {[H'  (t'), [H',  Pj ]] ~(t)} + 

i t H '  , 
1 dt '  ~ ' ( t ,  t ' ) ~  (t) T r{ [P  k, ]~(t)} 

5J~ 1) 

+i-h k 5Qk (t) 

where we have defined w(t, t ') = dC~'(t, t ')/dt' and 5 indicates functional derivative. 
This generalized nonlinear quantum transport theory is at the core of the 

treatment to deal with self-organizating dissipative structures, as is the case in 
following section. 

3. - The photoact ivated  morpholog ica l  transi t ion.  

Let us consider a large array of atoms forming a long chain of macromolecules in a 
biopolymer. According to quantum mechanics electrons bound to atoms can be found 
only at certain energy levels, which in large aggregates of atoms group themselves 
into allowed energy bands. Our model will consist of electrons in localized bonding 
states in a fully or partially (p-type material) occupied narrow band, which we 
describe approximately by a parabolic band of free electrons with a very large 
effective mass. (The equivalent of the valence band in crystaline solids.) The itinerant 
higher-energy antibonding states in a nonoccupied wide band are described by a 
parabolic band of free electrons with a small effective mass. (The equivalent of the 
conduction band in crystalline solids.) The system is subjected to illumination by 
radiation with a large spectrum of frequencies. As a result, in photon absorption 
processes electrons are transferred from the bonding to the antibonding band states, 
thus creating electron-hole pairs, that is, an electron in the upper band and a hole, i.e. 
the remaining unoccupied state, in the lower band. The photoinjected excess energy 
received by these carriers (electrons and holes) is dissipated in recombination 
processes and relaxation to the vibrational modes of the system. 

Under continuous illumination a steady state sets in (the transient time will 
depend on the intensity of the radiation). In this state there is a concentration n of 
photoinjected pairs (each pair consisting of an electron and a hole produced by the 
absorption of a single photon). The system is taken to be in thermal contact with a 
reservoir at temperature To which is kept constant by an effective homeostatic 
process, and we assume that the whole carrier system is in near thermal equilibrium 
with it, as is suggested by results obtained in the study of photoexcited 
semiconductors [25]. Hence, in this way the electron system is brought to a stationary 
and homogeneous state. This is the thermodynamic branch of solutions which, 
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according to Prigogine's minimum-entropy-production theorem [4,5], is a stable one 
in the linear regime around equilibrium. We consider next the situation when the 
carrier system is driven far from equilibrium, and we perform linear stability 
analysis[5] encompassing inhomogeneous situations. This is done considering the 
case of a space-dependent fluctuation in the carrier density. As expressed in the 
Introduction we resort to the use of the Maxent-NSOM, whose general formulation 
has been briefly described in last section, and Zubarev's approach to the 
Maxent-NSOM [11] is chosen when performing calculations. As noted, the use of the 
Maxent-NSOM requires to specify the system Hamiltonian and to choose a basic set 
of variables deemed appropriate for the description of the macroscopic state of the 
system. We take as basic macrovariables the carrier concentration, the temperature 
To (which is simply a constant parameter since it was assumed thermalization with 
the reservoir) and, to introduce spatial inhomogeneity in the problem, we include the 
nondiagonal elements of the single-particle distribution matrix, namely 

(15a) n~Q (t) = Tr { C~ + Q Ck Q~ (t)}, 

(15b) n ~  (t) = Tr { h - k  - Q h*-k ~ (t)}, 

with C* (C) and h* (h) representing creation (annhilation) operators of electrons and of 
holes in quantum-mechanical states I k), respectively; ~ (t) is Zubarev's NSO for this 
case; indices e and h stand for electrons and holes, respectively; and k and Q run over 
the whole reciprocal space. The Q-wave-vector Fourier amplitude of the charge 
density is given, in units of the electronic charge, by 

(16) n(Q, t) = ZinCs(t) + n~(t)] .  
k 

Zubarev's NSO ~)~(t) is given by the expression of eq. (7) with the corresponding 
choice of the weight function, namely, w( t ,  t ' )  = sexp[e(t - t')], that is to say 

where the change ~ = t ' - t  has been introduced, and e is a positive infinitesimal 
(which ensures irreversible evolution from the initial macrostate of the system) which 
goes to zero after the calculation of averages. The auxiliary coarse-grained statistical 
operator ~ is in this case given by 

(18/ ~(tl, t21 = exp [ - e( t l )  - BHo(~) + B ~ ( t l ) N e ( ~ )  + r  - 

- Z F ( k ~ ( t l ) C ~ + Q ( t e ) C k ( t 2 )  - Z F ( k g ) ( t l ) h - k - Q ( t 2 ) h * - k ( t 2 ) ] ,  kQ kQ ] 
where ~b ensures the normalization of ~ (cf. eq. 00)), fl = 1/kB To is the reciprocal of 
the temperature of the system in equilibrium with the reservoir, kB being Boltzmann 
constant, /~e and Ph are the quasi-chemical potentials of electrons and of holes, 
respectively, and F (e)(h) a r e  the Lagrange multipliers the method introduces which 
are those associated to the dynamical quantities whose average values are given by 
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eqs. (15). Ne and Nh are the number operators for the carriers, and Ho is the 
Hamiltonian of the carriers given by eq. (20a) below. 

The total Hamiltonian is 

(19) H = Ho + H ' ,  

where 

(20a) Ho = ~f,(E~ + e~)C~Q, + ~e~h~kh_k  + V(Coulomb), 
k k 

(20b) H'  = ~, Gr(k, q)fq~C~+qht_k + h. c. 
kq~, 

In eq. (20a) EG is the energy gap, i.e. the separation between the upper energy 
level in the bonding states (taken as the origin of the axis of energy) and the lower 
energy level in the antibonding states. Further, as previously indicated, the energy 
dispersion in both bands is taken in a parabolic band approximation, namely 

(21a) e~ h) = hek 2/2me(h) �9 

V(Coulomb) is Coulomb interaction between carriers, and in H ' f ( f )  are annihilation 
(creation) operators of photons in states of wave vector q and polarization y, and G 
is 

(21b) Gr(k, q) = (1/moc)A(wq){k + q, e] exp [/q-r] "~r'Pl ~r 'Pl  k, h}, 

v/z. the matrix element between electron and hole states of the carrier-photon 
interaction. In eq. (21b) m0 is the rest electron mass, c the velocity of light, A the 
amplitude of the vector potential of the radiation field at the photon frequency W q, p 
the linear momentum operator of the electrons, and ~" a unit polarization vector. The 
vector potential A encompasses both fields, i.e. the one associated to the external 
light source and the one associated to the recombination (luminescent) field. 

The system Hamiltonian of eq. (19) is composed of H0, namely, the energy 
operators for the carriers, which will be treated in Landau's quasi-particle approach 
with Coulomb interaction dealt with in the random phase approximation (RPA)[26], 
and of H '  that contains the interactions of the carriers with the external radiation and 
recombination fields of photons. The interaction of the carriers with the vibrational 
motion is neglected since it is only relevant to the exchanges of energy that have 
already led the electron system quasi-temperature to near-coincide with that of the 
reservoir [25] and, thus, the vibrational degrees of freedom do not play any relevant 
part in the study that follows. 

In continuation we obtain the equations of evolution of the basic set of 
macrovariables resorting to the nonlinear quantum transport theory that is derived 
from the Maxent-NSOM [11,12] briefly described in sect. 2, and in the SOART 
approximation, as given by eqs. (12) together with (13a), (13b) and (14). SOART, we 
recall, consists in approximating the transport equations in an instantaneous 
(memoryless) approach, where we retain the contributions to the scattering 
operators only up to second order in the interactions [11,12, 24], i.e. as noted it 
consists in taking the three contributions given by eqs. (13a), (13b) and (14). 

Applying the method to derive the equation of evolution for the concentration n, 
we find in stationary conditions the equation that connects the concentration n with 



578 A.S.  ESPERIDIA0, .~. R. VASCONCELLOS and R. LUZZI 

the intensity of the radiation source, namely 

(22) ( dco~ a(co~)[1 - f 3  - fh] I (co~) /h  = 
g~/~ 

2z  IG r (k, q)12f~f~ d(EI + EG - ho)q~), 
h 

where G~ is the matrix element of the recombination process (see eq. (21b)), el = 
= h~k2/2m~, with m~ -~ = m j  ~ + m f  ~ being the so-called excitonic mass, ~oq is the 
frequency of the photons produced in recombination processes given by cq/e ~2 (s ~ is 
the high-frequency dielectric constant of the system); 

(23) f Ch) = [1 + exp 

is the Fermi-Dirac distribution functions of electrons (holes); feb) are of the form of 
eq. (23) but taken with energies (m~(h)/m~)(tw~- EG) instead of e~);  a(~o~) is the 
one-photon absorption coefficient at frequency ~o~; and I(~o~) is the spectral 
distribution of the intensity of the external source of radiation. Equation (22) simply 
reflects the balance condition in the stationary state between the number of carriers 
produced by illumination, the left-hand side, and the number that disappears in 
luminescent recombination, the right-hand side. Further, the quasi-chemical 
potentials ~te(h) are related to the reciprocal temperature fl and the concentrations ne 
of electrons and nh of holes, by the expressions [27] 

(24a) 

(24b) 

where 

(24c) 

n e  = n ~ F1/2  [~(/~e - E G ) ] ,  

nh = n~ F1/2 (firth), 

o = 2[2~meCh)/h2fl] 3/2 Tie(h) 

and F1/2 are Fermi functions of index one-half. 
The equations of motion for the quantities of eqs. (15), calculated using eqs. (12) in 

SOART, after laborious calculations whose details we omit for the sake of brevity, 
and resorting, as noted, to the RPA, are given by 

(25a) zh-~Tn~o(t)" = AEkQe nkoe _ 2V(Q) Af~Qn(Q) + zBkQnkQ" e h _ zBkonk h e q_ j~ f~O,  
OF 

(25b) i h ~ n ~ q ( t )  

where 

h h = - A E , q n k o  + 2V(Q)Af~Qn(Q) + iB~on ~ - " e h zBkQnko + . /r  , 

(26a) 

(26b) 

(26c) 

re(h) _ E h) 
C k + Q  

A f ~ )  = f~h+)q _ f~r , 

V( Q) = 4ze2 / Cl soQ 2 , 



ON THE FORMATION OF DISSIPATIVE SPATIAL PATTERNS ETC. 579 

with e0 being the static dielectric constant of the medium and r the volume of the 
system. In eq. (26c), V(Q) is the Fourier Q-component of Coulomb potential 
interaction between carriers. 

The first two terms of eqs. (25) have their origin in collision operators j(o) and j(1) 
of eqs. (13a) and (13b) and are related to the changes in kinetic and potential 
(Coulomb) energies associated to the creation of this particular inhomogeneity. The 
third and fourth terms have their origin in the collision operator j(2) of eq. (14) and 
are related to the absorption of photons and recombination processes, with 
coefficients B given by 

(27) B ~  h) = AL ~(w L ) + AR (e~ + EG )f~(h) + same term with k ~ k + Q, 

where 

(28a) A L = (2z2he2EG/e~ (e~ + EG)2cmx)Io,  

(28b) AR = e2 EG /e | hc3 m~ . 

We have introduced a source of radiation characterized by a spectrum I(wr), that  is 
the intensity at frequency ~or for which we wrote I(~o~)= Ios w h e r e ~  is the 
(normalized) spectral distribution function of the radiation intensity having total 
intensity Io. Moreover, in eq. (27), h~o L = EG + e~ as a result of energy conservation 
in the process of pair production by absorption of one photon with frequency W L. 

Finally, the terms ./(,~h) contain nonlinear contributions in the quantities of eqs. 
(15), treated in RPA, and associated with Coulomb interaction, and light absorption 
and recombination effects. We do not explicitly write down their lengthy expressions 
since they are not going to be explicitly used in the following linear analysis. (They 
are of relevance a posteriori for the determination of the dissipative structure whose 
emergence is evidenced by the linear analysis.) I t  suffices to say that these nonlinear 
terms are null for n ~  a) = 0, i.e. in the homogeneous state. 

A steady-state solution (the so-called fixed point or singular point) of eqs. (25) 
corresponds to n ~  h) = 0, i.e. the homogeneous state, which, as noted, is stable in the 
linear regime around equilibrium (weak external fields). To look for its instability in 
far-from-equilibrium conditions we analyse the eigenvalue spectrum of the set of 
linearized equations (25) [5, 28], that is taking in them Jtfke~h) = 0 and for the carrier 
distributions f~(h) their values in the homogeneous state. In particular we consider the 
case of null eigenvalue corresponding to the onset of an instability against a static 
inhomogeneity. 

We solve the linearized equations (25) for the case of null eigenvalue to obtain 

(29) n ~  h) = 2V(Q) N ~  h) DI[~ n( Q ) , 

where 

(30a) N ~  h) = - A f ~  h) A E ~  e) + i[AfSa - A f ~  ] B ~  h) , 

(30b) Dka = - (AE~Q - iB~Q)(AEhQ + iBm, Q) + B~,QBhQ. 

Adding up both expressions in eqs. (29), the e- and h-contributions, and summing 
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over k we find that 

[ k J 

which besides n(Q) = O, the thermodynamic branch of solutions (homogeneous state), 
admits a nonvanishing value for n(Q) (inhomogeneous solution) if the expression 
within the square bracket is null. It  is worth noticing that the expression in the 
square bracket of eq. (31) is the wave-vector-dependent static dielectric function of 
the nonequilibrium carrier system, and, accordingly, we indicate it by e(Q). Since it is 
a complex quantity to put it equal to zero requires that both the real and the 
imaginary part be null. The imaginary part vanishes identically as it should, because 
it is the zero frequency value of the imaginary part of the dynamic dielectric function 
which is an odd function of the frequency[29]. The zero of the real part of ~, in the 
limit of small Q, meaning Q2 smaller than the average value of the squared carrier 
quasi-momentum <k2), is given by 

(32) Ree(Q) = 1 - 2V(Q) ~ [a(k, Q) + b(k, Q)]c-l(k, Q) = O, 
k 

where 

(33a) ,h a(k, Q) = (f~k" Q/me)2 (h2k "Q/mh)8 (f~e + fk  ) ,  

\ mh me mh me 

(33c) 
mh 

(33d) j~e(h) _-- (~ f~ . (h ) /aE .~ (b )  , 

Resorting to the usual treatment of transforming the summation over k into 
an integral in polar coordinates, and introducing the new variable E = h2k2/2m~, 
eq. (32) becomes 

(34) ] Re~(Q) = 1 zeoQ2 [ ~ ~2 II(Q) + h-~I2(Q) = O, 

where 

(35a) 
co 

11 (Q) = I dE "E1/2[fe (E) +f~ (E)][1 - C -1 (E, Q) arctg C(E, Q)], 
o 

(35b) I2 (Q) = I dE[me jg (E) - mh ]" ][Be (E) + Bh (E)] arctg C(E, Q), 
0 

with 

(36a) Be(h) (E) = AL $'(E + E6) + AR (E + EG )fe(h) (E), 
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(36b) C(E, Q) = hQ 2V~~xE/[mhBe (E) - meBh (E)], 

(36c) I'(,,,(E) : E'/,/ 
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o o  

(39) Ree(Q) = 1 + fl dED(E)[Be(E) 
z ~  e o o  ~ 

where D(E) is the density of states 

me fh (E) - mh fe (E) 
+ Bh (E)] 

meBh (E) - mh Be (E) 

(40) D(E) = - ~ -  (2m~:E) 1/2 , 

and the factor 2 accounts for spin degeneracy. 
Taking into account that quantities B (cf. eq. (36a)) are composed of two parts, one 

resulting from illumination, BeL(h)(E)=AL~(E +EG), and the other associated to 
recombination effects, Beth) (E) = AR (E + EG)f~(h) (E), we consider two limiting cases 
that lead to simple and immediate results. First take the case when B L gives a much 
smaller contribution than B R, for example illumination with a very short spectral 
distribution (a laser would be the extreme case of a monochromatic radiation). Then 
eq. (39) takes the simple form 

(41) Ree(Q)-~ 1 + (1/ADHQ) 2 , 

where 

(42) A~ 2 = 4Jr(ne + nh)e2/EokB T 

is the Debye-Htickel screening length [30], then clearly no zero of eq. (41) is possible 
and the homogeneous state is stable. On the other hand, if B L predominates over  B R, 
for example in the case of intense illumination (large Io) with a large spectrum of 

[ [( )1] -1 (36d) fer (E) = 1 + exp /7 m~ E -/~er �9 
me(h) 

At room temperature (To = 300 K) and not too high densities of photoinjected 
carriers we can consider them as a nondegenerate gas consisting in the replacement 
in eqs. (36) of the Fermi-Dirac functions of eq. (36d) by Maxwell-Boltzmann 
distributions of the form 

(37) fe(h)(E)=ne(h)[2Z•h2/me(h)]3/2exp[_fl me(h)m~ E1 ' j  

n~h) being the concentration of electrons (holes). This greatly simplifies the treatment 
of eq. (34), allowing for a general analytical study without resorting to specific 
computational calculations. In the nondegenerate regime and in the limit of small Q 
we can write 

(38) arctgC(E, Q) = C(E, Q), 

and further using that  f~(h)(E)= -flfe(h)(E), eq. (34) becomes 
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frequencies and, particularly, for the cases of small values of Ec and f~ (cf. eq. (27)), 
we find that eq. (39) takes the form 

(43) Ree(Q) = 1 + 8ze2 B m h n e  - - m e n h  

eo Q2 r mh me 

If n e = nh = n ,  i.e. an intrinsic-type (undoped) material with only photoinjected 
electron-hole pairs, we recover the result of eq. (41). But, since mh > me a zero of 
eq. (43) can be obtained if nh > he, i.e. in the case of an extrinsic-type p-doped 
material. In this case, for given Q and me nh > m~ne ,  a zero of eq. (43) follows 
for 

(44) Q 2 ~_ [ 83~e 2 • / e  o (mh -- m e ) ] ( m e  nh -- mh h e )  

and this implies that, writing nh = no + n and n e = n, where no is the extrinsic 
concentration of holes, the critical concentration n* of photoinjected carriers at which 
there follows the instability of the homogeneous state against the formation of an 
inhomogeneous state is given by 

(45) n *  --  m e  - A 0  Q e no, 
mh - me 

where Ao = (mh - m e ) A ~  with A~ = e0kB T/Szte2no,  and we recall that n and Io, i.e. 
the concentration of photoinjected carriers and the intensity of the pumping 
radiation, are connected by eq. (22). 

This is the idealized case when recombination effects are negligible as compared 
with those produced by illumination. In realistic cases both effects are present and, as 
we have just seen, competing one in favor of the other against the formation of the 
ordered pattern. Thus, eq. (39) needs be analyzed taking the full expression for 
functions B, what requires the use of numerical (computational) methods together 
with the specifications of the system. It ought to be noticed that our treatment 
implies that no is high enough so as to produce a fluid of itinerant holes in the bonding 
band, that is to say, a concentration of carriers is required that may lead to generate 
screening effects enough to allow for the presence of mobile holes. This seems to be 
the case in proteins[31], where the concentration no is of the order of 
1018 cm -3" 

Summarizing, for given no there exists a critical intensity I~' of the pumping 
source (which fixes n*) which determines a branching point of solutions with the 
emergence of a steady state with spatial ordering. The latter is characterized by the 
set of values of Q (or wavelengths 2 z / Q )  that make contributions to the Fourier 
analysis of the charge density for each Io above I0*. 

This result suggests then the possibility of a morphological transition from the 
homogeneous spatial distribution of carriers to a patterned structure, consisting of a 
superposition of steady-state charge density waves of electrons and of holes, clamped 
together through the effect of Coulomb interaction. It should be noticed that in the 
isotropic model and unbounded conditions we used in the calculations, there is no 
restriction on the modulus and direction of Q. Since this is a longitudinal static plasma 
wave, it is conjecturable that Q is parallel to the electric field of the pumping 
electromagnetic source. Internal symmetries and boundary conditions impose 
limitations fixing permitted values for Q. 
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4. - C o n c l u d i n g  r e m a r k s .  

Order and functioning of biosystems is a problem with a long history of interest 
attached to it, being a puzzling question in physico-chemistry. During last decades, 
mainly due to the work of Ilya Prigogine and collaborators, the formation and 
maintenance of self-organizing systems are shown to be compatible with physical 
laws of essentially nonlinear character [4, 5, 7,32]. These are Prigogine's dissipative 
structures, in which self-organization processes on a macroscopic scale follow in 
far-from-equilibrium conditions. The thermodynamic branch of solutions, that 
continually emerges from equilibrium with progressive increase of the intensity of 
external sources that pump energy and matter in the open system, may become at a 
given threshold of excitation--unstable against the formation of a new ordered 
structure. This is a point of bifurcation of the solutions of the nonlinear equations of 
evolution that indicates a situation in which properties of one description do not imply 
corresponding properties of the other description. In other words, a bifurcation 
reflects a situation in which the incompleteness of a given mode of a system 
description becomes manifest requiring to be extended (as in our analysis in sect. 3) 
or replaced by another[33]. This question of the mode of description of natural 
systems is a fundamental problem of macrophysics [14]. 

The study presented in previous sections deals with these kinds of question. On 
the one hand, we have discussed the existence of a very powerful method, namely the 
Maxent-NSOM, that provides mechano-statistical foundations to generalized 
irreversible thermodynamics--a relevant discipline in the study of open biological 
and physico-chemical systems. This is possible whenever the system dynamics can be 
described (or modelled) on a microscopic level by a Hamiltonian approach. Then one 
can construct a nonlinear transport theory that provides the equations of evolution 
for the basic set of variables that are used to describe the macroscopic state of the 
system. These nonlinear transport equations are the generalization of the 
phenomenological kinetic laws of generalized irreversible thermodynamics, in the 
sense that, in principle, they contain all orders of nonlinearity and give explicit 
expressions at the microscopic level for the transport coefficients, in terms of the 
actual nonequilibrium state of the system. Points of bifurcation of solutions (and 
formation of dissipative structures) can then be determined and any state along any 
branch of solutions can be characterized and studied in detail. 

We applied the method to study the possibility that a quite simplified model of an 
open biosystem may show a transition to a dissipative structure, in the form of a 
spatially ordered macrostate, when under the action of external illumination. We 
have shown that in the case of a p-doped sample, as it seems to be the case with 
certain proteins[31], a bifurcation point follows at a threshold of intensity of the 
source of radiation, when the homogeneous electronic steady state becomes unstable 
against the formation of a stationary charge density wave (SCDW). In the treatment 
of the problem we performed we kept fixed the positive background of ionic charges. 
It is quite plausible that the attractive interaction of the latter with the electrons will 
tend to allow the ions to follow the electronic SCDW, thus producing an ordered 
pattern in the whole system (a conformational-like transition). 

As discussed in sect. 3 there exists a competition between illumination and 
recombination effects and, as a result, the transition from the homogeneous to the 
patterned distribution follows after the control parameter, consisting of the intensity 
of the source of radiation, has reached a critical value. The homogeneous distribution 
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is no longer stable and a SCDW is formed, which develops an increasing amplitude 
with increasing pump intensity. It ought to be noticed that formation of the SCDW 
depends on the external influence, but the pattern itself is determined by the internal 
characteristics of the system ,,codified,> in its Hamfltonian. Therefore, reproducible 
pattern formation is guaranteed, although the pattern may have been initiated in 
different ways. 

Summarizing, we have shown--through the use of a quite simple model--how 
biological pattern formation may follow as a result of nonlinear kinetic effects that 
describe production and decay rates involving autocatalytic effects. We are in the 
presence of an example of the emerging theory of complexity, when nonlinear terms 
involving strong positive feedback processes lead to unexpected, and, in a sense, 
counterintuitive phenomena. Finally, we would like to once again emphasize the 
usefulness of the very powerful theoretical tool that is the concise and practical 
NSOM for providing a rigorous and suitable framework, based on first principles, for 
dealing with dissipative many-body systems in far-from-equilibrium conditions. It 
provides at the microscopic mechano-statistical level means for the rigorous 
characterization and study of dissipative structures in complex systems. In the 
present paper we have emphasized the possible influence of electrons in such type of 
biological phenomena. In this context our results seem to be related to 
Szent-GySrgyi's view that hole mobility in the extended ground states of protein 
molecules may lead to the building of higher structures and to control all 
differentiation, namely that electronic properties may be responsible for the activity 
and subtlety of many biological functions [34]. As a final word we stress that we have 
explicitly used photoexcitation of electrons from the bonding to the antibonding 
energy levels, but the final result is depending only on the existence of the resulting 
population inversion, and therefore, the phenomenon may also be expected for any 
other type of excitation process capable of producing such population inversion. 
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