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Abstract We study the Galilean Dirac oscillator in a non-commutative situation, with
space-space and momentum-momentum non-commutativity. The wave equation is obtained
via a ‘Galilean covariant’ approach, which consists in projecting the covariant equations
from a (4,1)-dimensional manifold with light-cone coordinates, to a (3,1)-dimensional
Galilean space-time. We obtain the exact wave functions and their energy levels for the
plane and discuss the effects of non-commutativity.
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1 Introduction

The purpose of this paper is to apply ‘Galilean covariance’ (a formulation of non-relativistic
theory exploiting covariant equations in higher dimension) to study the non-relativistic Dirac
oscillator in a non-commutative space. This paper is the direct continuation of our previous
study of the Galilean covariant Duffin-Kemmer-Petiau (DKP) spin-zero oscillator in a non-
commutative space [1]. The DKP equation is a first-order wave equation which describes
spin-zero and spin-one particles (see Refs. [2–6]). An advantage of the DKP formalism is
that it facilitates the systematic introduction of non-minimal couplings in quantum theories
[7, 8]. Hereafter we consider an analogous non-minimal coupling on a non-commutative
space for non-relativistic spin-half particles by using a Galilean version of the Dirac equation
[9–11]. We describe non-commutative spaces along the lines of Snyder’s early paper on
discrete space-time [12]. Our main motivation stems from the connection between non-
commutative coordinates and discrete space-time, with a view to applying Galilean invariant
lattice models to condensed matter physics.

Even though Galilean kinematics is only an approximation of the relativistic kinemat-
ics, the structure of Galilean kinematics is more intricate than relativistic kinematics. For
instance, the Galilean algebra admits a non-trivial central extension and projective repre-
sentations, whereas the Poincaré algebra does not [13–16]. As mentioned in Ref. [17], we
can construct representations of the Galilei algebra with three possible methods: (1) di-
rectly from the Galilei algebra, (2) from contractions of the Poincaré algebra with the same
space-time dimension, or (3) from the Poincaré algebra in a space-time with one additional
dimension. In this paper, we follow the third approach, which we refer to as ‘Galilean covari-
ance’ because the equations are Lorentz covariant in the extended manifold. These equations
become Galilean invariant after projection to the lower dimension. Our motivation is that
this covariant approach provides one more unifying feature of field theory models. Indeed,
particle physics (with Poincaré kinematics) and condensed matter physics (with Galilean
kinematics) share many tools of quantum field theory (e.g. gauge invariance, spontaneous
symmetry breaking, Goldstone bosons), but the Galilean kinematics does not admit a metric
structure [18]. However, since the Galilean Lie algebra is a subalgebra of the Poincaré Lie
algebra if one more space-like dimension is added, we can achieve ‘Galilean covariance’
with a metric in an extended manifold; that makes non-relativistic models look similar to
Lorentz-covariant relativistic models.

Galilean covariance therefore consists in enforcing Lorentz-like covariance in a (4,1)

space-time and then projecting the equations on a (3,1) space-time, in such a way that the
resulting theory is Galilean invariant [19–21]. We refer to the initial extended space-time as
a Galilean manifold, which consists in the space of five-vectors

xμ = (
x1, x2, x3, x4, x5

) = (r, t, s),

whose coordinates transform under Galilean boosts as

r′ = r − vt,

t ′ = t,

s ′ = s − r · v + 1

2
v2t.

This transformation leaves invariant the scalar product

(r, t, s) · (r′, t ′, s ′) ≡ r · r′ − ts ′ − t ′s,
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defined by the following metric,

gμν =

⎛

⎜
⎜⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

⎞

⎟
⎟⎟
⎟
⎠

. (1)

We shall refer to Eq. (1) as the Galilean metric, although it is in fact nothing but the
Lorentz metric in (4,1) space-time. The term “Galilean” indicates that an appropriate pro-
jection down to a (3,1) space-time leads to a Galilean theory. Note that the extra parameter
s transforms like the phase of the quantum wave function that renders the Schrödinger equa-
tion invariant under Galilean transformations [19–21].

In this paper, we shall consider states Ψ which satisfy

i�∂4Ψ = EΨ, i�∂5Ψ = mΨ,

so that the five-momentum is

pμ = −i�∂μ = (p,−E,−m). (2)

In short, the mass is p4 = −p5 = m, and the energy is p5 = −p4 = E. This provides us with
an approach to non-relativistic theories that is rather systematical and similar to the rela-
tivistic Lorentz approach. Perhaps the best practical argument in favour of studying Galilean
kinematics is the fact that there exist not one, but two Galilean limits of electromagnetism.
This fact can be easily overlooked if one performs a hasty low-velocity approximation of
relativistic equations [22].

This paper treats the non-relativistic counterpart of the relativistic Dirac potential, de-
scribed in Ref. [23] for commutative and non-commutative spaces. The literature on non-
commutative geometry is enormous and here we shall just cite a few papers investigating
Galilei-invariant systems with non-commutative geometry in Refs. [24–29]. In order to com-
pare our results with Ref. [23], we use a similar approach. Firstly, we modify the usual
position and momentum operators,

[ri, rj ] = 0, [pi,pj ] = 0, [ri,pj ] = i�δij , (3)

by applying a generalized ‘Bopp shift’ [30],

r̂i = ri − Θij

2�
pj = ri + (� × p)i

2�
, (4)

p̂i = pi + Ωij

2�
rj = pi − (� × r)i

2�
. (5)

Then the new operators r̂i and p̂i satisfy the following commutation relations:

[r̂i , r̂j ] = iΘij , [p̂i , p̂j ] = iΩij , [r̂i , p̂j ] = i�Δij , (6)

where the matrix Δij is given by

Δij =
(

1 + � · �
4�2

)
δij − ΩiΘj

4�2
,

with Θij = εijkΘk , Ωij = εijkΩk (where Θi and Ωi (i = 1,2,3) are real parameters).
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2 Galilean Dirac Oscillator in Commutative Space

The Galilean version of the Dirac equation with gauge fields was first discussed by Lévy-
Leblond in Ref. [31]; therefore it is sometimes called the “Lévy-Leblond equation”. It can
be obtained from the Galilean covariant formalism (see [32, 33] and Omote et al. [19–21])
by considering the Dirac-like equation,

γ μ∂μΨ = 0, μ = 1, . . . ,5. (7)

Although it looks like the massless Dirac equation, we mentioned in Eq. (2) that in our
formalism, the mass of the particle is not zero and introduced via the extra x5 coordinate.
The mass will also appear in the non-minimal coupling (Eq. (11), below).

The gamma-matrices satisfy
{
γ μ, γ ν

} = γ μγ ν + γ νγ μ = 2gμν,

with the Galilean metric gμν given in Eq. (1). A four-dimensional representation is obtained
when the Galilean Dirac matrices are taken to be

γ i =
(

σ i 0
0 −σ i

)
, γ 4 =

(
0 0

−√
2 0

)
, γ 5 =

(
0

√
2

0 0

)
,

where each element is a two-by-two matrix, and with the Pauli spin matrices:

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
.

The adjoint spinor is given by

Ψ = Ψ †ζ, (8)

with

ζ = − i√
2

(
γ 4 + γ 5

) =
(

0 −i
i 0

)
. (9)

(This matrix satisfies the relation ζγ μ†ζ = −γ μ, and we observe that the bilinear expression
Ψ γ μ1γ μ2 · · ·γ μN Ψ is a rank-N tensor under Galilean transformations.)

Thus Eqs. (2) and (7) lead to

γ μpμΨ = 0, (10)

and the Galilean Dirac oscillator is described by inserting the following non-minimal cou-
pling (in a manner analogous to the Dirac oscillator described in Ref. [34, 35]):

p → p − imωηr. (11)

We can choose the four-by-four matrix η as

η = η−η+ =
(+12×2 02×2

02×2 −12×2

)
, (12)

where

η± = i√
2

(
γ 5 ± γ 4

)
.

(Note that the matrix η is not the same as in Ref. [36].) By substituting Eq. (11) into Eq. (10),
the latter takes the form

[
γ · (p − imωηr) + γ 4p4 + γ 5p5

]
Ψ (x) = 0. (13)
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If we express the four-spinor Ψ in terms of two-spinors as follows,

Ψ =
(

ϕ

χ

)
, (14)

then Eq. (13) leads to

(σ · p − imωσ · r)ϕ + √
2p5χ = 0, (15)

(σ · p + imωσ · r)χ + √
2p4ϕ = 0. (16)

If we multiply Eq. (15) by (σ · p + imωσ · r), and utilize

(σ · p)(σ · p) = p2, (σ · r)(σ · r) = r2,

(σ · r)(σ · p) − (σ · p)(σ · r) = 3i� + 2iσ · (r × p),

we find
(
p2 − 3m�ω − 2mωσ · L + m2ω2r2

)
ϕ = −(σ · p + imωσ · r)

√
2p5χ.

The right-hand side of this equation is similar to the first term of Eq. (16), so we multiply
the previous equation by

√
2p4 and obtain

(
p2 − 3m�ω − 2mωσ · L + m2ω2r2

)
ϕ = 2p4p5ϕ.

If we replace p4 = −E and p5 = −m, as in Eq. (2), and utilize S ≡ �

2 σ , we obtain

Eϕ =
(

p2

2m
+ 1

2
mω2r2 − 3

2
�ω − 2

�
ωL · S

)
ϕ. (17)

We proceed similarly with the other spinor component, χ . First, we multiply Eq. (16) by
(σ · p − imωσ · r), and obtain

(
p2 + 3m�ω + 2mωσ · L + m2ω2r2

)
χ = −(σ · p + imωσ · r)

√
2p4ϕ.

The right-hand side of this equation is similar to the first term of Eq. (15); thus if we multiply
the previous equation by

√
2p5, we find

Eχ =
(

p2

2m
+ 1

2
mω2r2 + 3

2
�ω + 2

�
ωL · S

)
χ. (18)

Eqs. (17) and (18) are similar, except for the signs in their last two terms. Therefore, we
shall hereafter combine them into a single equation as follows:

Eψs =
(

p2

2m
+ 1

2
mω2r2 + s

3

2
�ω + s

2

�
ωL · S

)
ψs, (19)

where s = −1 corresponds to ψs=−1 = ϕ and s = +1 corresponds to ψs=+1 = χ .

3 Dirac Equation with Non-minimal Coupling in Non-commutative Phase Space

In this section, we obtain the three-dimensional equation of motion and then we solve the
two-dimensional equation. In Sect. 3.1, we develop the energy equation in three dimensions
and consider general non-commutativity parameters � and �. Then, in Sect. 3.2, we restrict
ourselves to the two-dimensional space and solve the energy equation.
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3.1 General Non-commutativity Parameters in Three Dimensions

If we substitute Eqs. (4), (5) into Eq. (11) and then use Eq. (10), we find

Eϕ = 1

2m
(σ · p̂ + imωσ · r̂)(σ · p̂ − imωσ · r̂)ϕ. (20)

Eχ = 1

2m
(σ · p̂ − imωσ · r̂)(σ · p̂ + imωσ · r̂)χ. (21)

These equations can be simplified by observing that (see details in appendix)

(σ · p̂)(σ · p̂) = − 2

�
S · � + p2 − 1

�
� · L + 1

4�2
(� × r)2, (22)

(σ · r̂)(σ · r̂) = − 2

�
S · Θ + r2 − 1

�
Θ · L + 1

4�2
(Θ × p)2, (23)

as well as (see Appendix for the proof)

(σ · r̂)(σ · p̂) − (σ · p̂)(σ · r̂) = 4i

�
S · L + 3i� − 2i

�2
(S × r) · (� × r)

+ 2i

�2
(S × p) · (� × p) + i

�3

[
(S · �)(� · L)

+ [
� · (p × �)

]
(S · r)

]

+ i
iσ · (� × �) + 2� · �

4�
, (24)

so that we find that the energy equation takes the form

Eψs =
[

p2

2m
+ 1

2
mω2r2 + 1

8m�2

(
(r × �)2 + m2ω2(p × �)2

)

− 1

2m�

(
� + m2ω2�

) · (L + 2S)

+ sω

(
2

�
L · S + 3

2
� − 2

�2
(S × r) · (� × r) + 2

�2
(S × p) · (� × p)

+ 1

2�3

[
(S · �)(� · L) + [

� · (p × �)
]
(S · r)

]

+ iσ · (� × �) + 2� · �
8�

)]
ψs. (25)

If we denote by αrΩ (resp. αpΘ ) the angle between r and � (resp. p and �), we see that
Eq. (25) can be rewritten as

Eψs =
[

1

2m

(
1 + m2ω2�2 sin2 αpΘ

4�2

)
p2 + 1

2
mω2

(
1 + �2 sin2 αrΩ

4m2ω2�2

)
r2 + s

3

2
�ω

+ s
2

�
ωL · S − 1

2m�

(
� + m2ω2�

) · L + 1

2�3
(S · �)(� · L)

− 1

m�

(
� + m2ω2�

) · S + sω

(
2

�2
(S × p) · (� × p) − 2

�2
(S × r) · (� × r)

+ 1

2�3
� · (p × �)(S · r) + iσ · (� × �) + 2� · �

8�

)]
ψs. (26)
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We can express it in a slightly more compact form by defining

M̃ = m

(
1 + m2ω2�2 sin2 αpΘ

4�2

)−1

, M̃Ξ̃ 2 = mω2

(
1 + �2 sin2 αrΩ

4m2ω2�2

)
, (27)

D(�,�,m,ω, s) = s
2

�
ωS − 1

2m�

(
� + m2ω2�

) + 1

2�3
(S · �)�. (28)

Then we can rewrite Eq. (26) as

Eψs =
[

1

2M̃
p2 + 1

2
M̃Ξ̃ 2r2 + D · L + s

3

2
�ω

− 1

m�

(
� + m2ω2�

) · S + sω

(
2

�2
(S × p) · (� × p) − 2

�2
(S × r) · (� × r)

+ 1

2�3
� · (p × �)(S · r) + iσ · (� × �) + 2� · �

8�

)]
ψs. (29)

In the next section, we shall find the energy eigenvalues for the two-dimensional version
of this equation. Thus many terms will become constant, thereby rendering the calculations
more manageable.

3.2 Energy Spectrum in Two Dimensions

Hereafter, we confine ourselves to planar systems in order to compare with the analogous
relativistic investigation of Ref. [23]. Therefore the space is described by coordinates (x, y)

with the corresponding momentum components (px,py). If we choose these components as
non-commuting in Eq. (6), this amounts to taking the following parameters:

� = (0,0,Θ), � = (0,0,Ω), S = (0,0, Sz). (30)

Then Eq. (29) becomes

Eψs =
[

1

2M̃

(
p2

x + p2
y

) + 1

2
M̃Ξ̃ 2

(
x2 + y2

) + DzLz + s
3

2
�ω − 1

m�

(
Ω + m2ω2Θ

)
Sz +

+ sω

(
2SzΘ

�2

(
p2

x + p2
y

) − 2SzΩ

�2

(
x2 + y2

) + ΘΩ

4�

)]
ψs,

or

Eψs =
[(

1

2M̃
+ 2sωSzΘ

�2

)(
p2

x + p2
y

) +
(

1

2
M̃Ξ̃ 2 − 2sωSzΩ

�2

)(
x2 + y2

) + DzLz

+ sω

(
3

2
� + ΘΩ

4�

)
− 1

m�

(
Ω + m2ω2Θ

)
Sz

]
ψs, (31)

If we take ψs as an eigenvector of Sz, and use the matrix representation for σ 3 we find

ψs =
(

ψ+
s

ψ−
s

)
→ Szψs = �

2

(
ψ+

s

−ψ−
s

)
.

Henceforth we will use the notation ψs → ψ
sz
s so that Szψs = �

2 szψs, sz = ±1. It follows

Eψsz
s =

[(
1

2M̃
+ sszωΘ

�

)(
p2

x + p2
y

) +
(

1

2
M̃Ξ̃ 2 − sszωΩ

�

)(
x2 + y2

) + dzLz

+ sω

(
3

2
� + ΘΩ

4�

)
− 1

2m

(
Ω + m2ω2Θ

)
sz

]
ψs,
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where

dz = sszω − 1

2m�

(
Ω + m2ω2Θ

) + 1

4�2
szΩΘ. (32)

If we absorb the energy into

E (s,ω) = E − sω

(
3

2
� + ΘΩ

4�

)
+ 1

2m

(
Ω + m2ω2Θ

)
sz, (33)

and define the following

1

2M
= 1

2M̃
+ sszωΘ

�
,

1

2
MΞ 2 = 1

2
M̃Ξ̃ 2 − sszωΩ

�
, (34)

then Eq. (31) takes the simpler form

E ψsz
s =

[
1

2M

(
p2

x + p2
y

) + 1

2
MΞ 2

(
x2 + y2

) + dzLz

]
ψsz

s . (35)

Notice that depending on the values of s, sz, Θ and Ω , the parameters M and Ξ 2 can be
singular so that there may be a region on the parameters space where the equation will not
be valid.

From this point on, let us work with polar coordinates (r, θ), so that Eq. (35) becomes

E ψsz
s =

[
− �

2

2M

(
1

r

∂

∂r
+ ∂2

∂r2
+ 1

r2

∂2

∂θ2

)
+ 1

2
MΞ 2r2 + dz

(
−i�

∂

∂θ

)]
ψsz

s . (36)

Note also, for later use, that M̃ and Ξ̃ in Eq. (27) reduce to

M̃ = m

(
1 + m2ω2Θ2

4�2

)−1

, Ξ̃ 2 = ω2

(
1 + Ω2

4m2ω2�2

)(
1 + m2ω2Θ2

4�2

)
, (37)

and that

M̃Ξ̃ 2 = mω2

(
1 + Ω2

4m2ω2�2

)
. (38)

In order to solve Eq. (36), we separate the variables as follows,

ψsz
s (r, θ) = χsz

s (r) exp(imθθ), mθ = 0,±1,±2, . . . (39)

so that Eq. (36) leads to
[

�
2

2M

(
1

r

d

dr
+ d2

dr2
− m2

θ

r2

)
− 1

2
MΞ 2r2 + E

]
χsz

s (r) = 0, (40)

where we have defined

E = E − �mθdz. (41)

We determine the energy spectrum by solving Eq. (40). If we divide each term of Eq. (40)
by �Ξ , then the operator becomes dimensionless:

[
�

2MΞ

(
1

r

d

dr
+ d2

dr2
− m2

θ

r2

)
− 1

2

MΞ

�
r2 + E

�Ξ

]
χsz

s = 0.

If we replace the variable r by

y ≡ 1

2

MΞ

�
r2, (42)
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then we obtain the linear homogeneous second-order differential equation:

y
d2u(y)

dy2
+ du(y)

dy
+

(
E

�Ξ
− y − m2

θ

4y

)
u(y) = 0. (43)

This has the same form as Eq. (32) of our previous article on the spin-zero DKP oscillator
[1]. Accordingly, let us introduce the function f (y), related to u(y) through

u(y) = exp(−y)y |mθ |/2f (y), (44)

so that, when substituted into Eq. (43), it leads to

y
d2f (y)

dy2
+ (|mθ | + 1 − 2y

)df (y)

dy
+

(
E

�Ξ
− |mθ | − 1

)
f (y) = 0. (45)

If we define

w ≡ 2y, γ ≡ |mθ | + 1, 2α ≡ |mθ | + 1 − E
�Ξ

,

then we obtain the Kummer’s differential equation,

w
d2f (w)

dw2
+ (γ − w)

df (w)

dw
− αf (w) = 0.

As the spinless DKP oscillator [1], its solution is the confluent hypergeometric function (see
Sect. 13.1.1 of Ref. [37]),

f (w) = A
[

1
F1(α;γ ;w)

]
, (46)

(A is a normalization constant) where

1F1(α;γ ;w) = 1 + αw

γ
+ (α)2w

2

(γ )22! + · · · + (α)nw
n

(γ )nn! + · · · ,
with the Pocchammer symbol (· · ·)n:

(a)n ≡ a(a + 1)(a + 2) · · · (a + n − 1), (a)0 ≡ 1.

The solution can also be expressed in terms of associated Laguerre polynomials.
In order to express the general solutions of the wave function in terms of the initial polar

variables, r and θ , we utilize Eqs. (39), (42), (44), (45), and (46) and find

ψsz
s (r, θ) = Nsz

s exp

(
−MΞr2

2�
+ imθθ

)
r |mθ |

×1 F1

(
1

2

(
|mθ | + 1 − E − �mθdz

�Ξ

)
; |mθ | + 1; MΞ

�
r2

)
. (47)

The constant A in Eq. (46) has been absorbed within the normalization constant spinor N
sz
s ,

along with other constants. Note that s, which labels the two-spinors, appears in dz via
Eq. (28). Let us also remind that the variable Ξ is in Eq. (37), E is in Eq. (33), and MΞ is
given in Eq. (38).

From the boundary condition w → ∞ (or r → ∞), at which f (w) → 0 (so that ψs → 0),
we find

α = 1

2

(
|mθ | + 1 − E

�Ξ

)
= −n, n = 0,1,2, . . . . (48)

From Eqs. (41) and (48), we find

E = (
2n + |mθ | + 1

)
�Ξ + mθ�dz. (49)
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Therefore, the energy eigenvalue, En,mθ ,s,sz , of the two-dimensional DKP oscillator is
obtained from Eq. (33) in which we substitute Eq. (49). This gives

En,mθ ,s,sz = (
2n + |mθ | + 1

)
�Ξ + �mθdz + sω

(
3

2
� + ΘΩ

4�

)
− 1

2m
sz

(
Ω + m2ω2Θ

)

where dz is given in Eq. (32), and Ξ is obtained from Eqs. (34) and (37). If we multiply
together the two terms in Eq. (34), they give

1

4
Ξ 2 =

(
1

2
M̃Ξ̃ 2 − 2sωSzΩ

�2

)(
1

2M̃
+ 2sωSzΘ

�2

)
.

Then we substitute M̃ and Ξ̃ from Eqs. (37) and (38), and obtain

Ξ 2 = 4

[
1

2
mω2

(
1 + Ω2

4m2ω2�2

)
− sszωΩ

�

][
1

2m

(
1 + m2ω2Θ2

4�2

)
+ sszωΘ

�

]
.

To summarize, the energy eigenvalues are

En,mθ ,s,sz = 2
(
2n + |mθ | + 1

)
�

√
1

2
mω2

(
1 + Ω2

4m2ω2�2

)
− sszωΩ

�

×
√

1

2m

(
1 + m2ω2Θ2

4�2

)
+ sszωΘ

�

+ �mθ

(
sszω − 1

2m�

(
Ω + m2ω2Θ

) + szΩΘ

4�2

)

+ sω

(
3

2
� + ΘΩ

4�

)
− sz

2m

(
Ω + m2ω2Θ

)
. (50)

In the commutative limit, Ω = 0, Θ = 0, Eq. (50) reduces to

En,mθ ,s,sz = (
2n + |mθ | + 1

)
�ω + sszmθ�ω + 3

2
s�ω. (51)

4 Conserved Currents and Normalization of the Wave Function

The purpose of this section is to determine the normalization constant of the wave func-
tion in the previous section. First, we determine the conserved current in the commutative
space, with and without non-minimal coupling. Then, we repeat the calculation in the non-
commutative space, and thereby determine the constant.

4.1 Conserved Current in Commutative Space

First let us consider a commutative space, for which the non-coupled field equations are

γ μ∂μΨ = 0, Ψ γ μ←−
∂μ = 0.

When the first equation is contracted with Ψ (defined in Eqs. (8) and (9)) from the left, and
the second with Ψ from the right, the sum of the two equations give

Ψ γ μ∂μΨ + ∂μΨ γ μΨ = ∂μ

(
Ψ γ μΨ

) = 0,

showing that

Jμ ≡ ψγ μψ (52)
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is a conserved current.
Next, consider the Dirac-like equation in a commutative space, with the non-minimal

coupling from Eq. (11). In the coordinate space, Eq. (13) takes the form
(
�γ μ∂μ + mωγ μδi

μηri

)
Ψ = 0,

with η defined in Eq. (12). The complex conjugate transpose of this equation leads to

0 = [(
�γ μ∂μ + mωγ μδi

μηri

)
Ψ

]†

= Ψ †
(
�γ †μ←−

∂μ + mωδi
μη†γ †μri

)

= Ψ ζ
(
�γ †μ←−

∂μ + mωδi
μη†γ †μri

)

= Ψ
(
�γ μζ

←−
∂μ + mωδi

μζη†γ †μri

)
.

And by using Eqs. (9) and (12), we find

ζη† =
(

0 −i
i 0

)(
12×2 0

0 −12×2

)
=

(
0 i
i 0

)

= −
(

12×2 0
0 −12×2

)(
0 −i
i 0

)
= −ηζ,

so that

ζη†γ †μ = −ηζγ †μ = ηγ μζ,

and we obtain

0 = Ψ
(
�γ μζ

←−
∂μ + mωδi

μηγ μζ ri

)
.

If we multiply this expression by ζ from the right, we obtain 0 = Ψ (�γ μ←−
∂μ +mωδi

μηγ μri).

And by taking into account that ηγ μ = −γ μη, we find Ψ (�γ μ←−
∂μ − mωδi

μγ μηri) = 0.

To sum up, we have the following two equations:
(
�γ μ∂μ + mωγ μδi

μηri

)
Ψ = 0,

Ψ
(
�γ μ←−

∂μ − mωδi
μγ μηri

) = 0.

As we did in the free case, we multiply the first equation by Ψ from the left, and the second
with Ψ from the right. The sum of the resulting equations gives

�Ψ γ μ∂μΨ + �∂μΨ γ μΨ = �∂μ

(
Ψ γ μΨ

) = 0.

This shows that, in the commutative space, the conserved current is given by Eq. (52) with
and without minimal coupling.

4.2 Conserved Current with Non-minimal Coupling in Non-commutative Space

In the non-commutative space the field equation with non-minimal coupling becomes
(
�γ μ∂̂μ + mωγ μδi

μηr̂i

)
Ψ = 0.

Where we use Eqs. (4) and (5). Note that Eq. (5) leads to

�∂̂i = �∂i − i(� × r)i

2�
,
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so that the previous equation becomes
(

�γ μ∂μ − iγ μδi
μ

(� × r)i

2�
+ mωγ μδi

μηri + mωγ μδi
μη

(� × p)i

2�

)
Ψ = 0.

The adjoint equation then reads

0 =
[(

�γ μ∂μ + iγ μδi
μ

(� × r)i

2�
+ mωγ μδi

μηri + mωγ μδi
μη

(� × p)i

2�

)
Ψ

]†

ζ

= Ψ †

(
�γ μζ

←−
∂μ + iγ μζδi

μ

(� × r)i

2�
+ mωδi

μηγ μζ ri + mωζη†γ μ†δi
μ

(−i�� × ←−∇ )i

2�

)
ζ

= Ψ

(
�γ μ←−

∂μ + iγ μδi
μ

(� × r)i

2�
− mωδi

μγ μηri + mωγ μηδi
μ

(� × ←−p )i

2�

)

where we utilized the following result:

[
mωγ μδi

μη
(� × p)i

2�
Ψ

]†

= mωψ†η†γ †μδi
μ

←−−−−−−−−[
(� × p)i

2�

]†

= mωψ†η†γ †μδi
μ

←−−−−−−−−−[
(� × i∇)i

2�

]†

= mωψ†η†γ †μδi
μ

[
(−i� × ←−∇ )i

2�

]
.

If we proceed as for the commutative case, that is, by taking the direct and adjoint equa-
tions properly contracted with Ψ and Ψ , leads to

Ψ

(
�γ μ←−

∂μ + iγ μδi
μ

(� × r)i

2�
− mωδi

μγ μηri + mωγ μηδi
μ

(� × ←−p )i

2�

)
Ψ = 0,

Ψ

(
�γ μ∂μ − iγ μδi

μ

(� × r)i

2�
+ mωγ μδi

μηri + mωγ μδi
μη

(� × p)i

2�

)
Ψ = 0,

and the sum of these terms is equal to

�(∂μΨ )γ μΨ + �Ψ γ μ∂μΨ + mωΨ γ μδi
μη

(� × p)i

2�
Ψ + mωΨ

(� × ←−p )i

2�
γ μηδi

μΨ = 0.

We can express it as follows,

0 = �∂μ

(
Ψ γ μΨ

) + mω
(� × p)i

2�

(
Ψ γ iηΨ

)

= �∂μ

(
Ψ γ μΨ

) + mω
−i�

2�
ε

jk

i Θj∂k

(
Ψ γ iηΨ

)

= �∂μ

(
Ψ γ μΨ

) − i∂k

(
mω

1

2
ε

jk

i ΘjΨ γ iηΨ

)

= �∂μ

(
Ψ γ μΨ

) − i∂μ

(
δ

μ

k mω
1

2
ε

jk

i ΘjΨ γ iηΨ

)

= ∂μ

(
�Ψ γ μΨ − iδμ

k mω
1

2
ε

jk

i ΘjΨ γ iηΨ

)
.

The conserved current now reads

J
μ

NC ≡ �Ψ γ μΨ − iδμ

k mω
1

2
ε

jk

i ΘjΨ γ iηΨ. (53)



Int J Theor Phys (2013) 52:441–457 453

From this current, we can normalize the wave function, with the fourth component J 4
NC

understood as the probability density. Since the second term in Eq. (53) vanishes when
μ �= 1,2,3, we take

∫
d3x(−i)�Ψ (x)γ 4Ψ (x) = 1,

that is to say,

1 =
∫

d3x(−i)�
(
ψ

†
1 ψ

†
2

)
(

0 −i
i 0

)(
0 0

−√
2 0

)(
ψ1

ψ2

)

=
∫

d3x(−i)�
(
ψ

†
1 ψ

†
2

)(
i
√

2 0
0 0

)(
ψ1

ψ2

)

=
∫

d3x
√

2ψ
†
1 ψ1.

We choose

Nsz
s = N

⎛

⎜⎜
⎜
⎝

(
v+
v−

)

(
v+
v−

)

⎞

⎟⎟
⎟
⎠

,

(N is a constant) such that

Ψ = N

⎛

⎜
⎜⎜
⎝

(
v+χ+

1 (r)

v−χ−
1 (r)

)

(
v+χ+

2 (r)

v−χ−
2 (r)

)

⎞

⎟
⎟⎟
⎠

eimθ θ ,

with

χ±
s (r) = e− 1

2
MΞ
�

r2
r |mθ |

1F1

(
α,γ,

MΞ

�
r2

)
.

Since α = −n, the confluent hypergeometric function can be identified with the associated
Laguerre function,

L(|mθ |)
n

(
MΞ

�
r2

)
=

(
n + |mθ |

n

)

1F1

(
−n, |mθ | + 1,

MΞ

�
r2

)
,

that is normalized as
∫

dye−yy |mθ |L(|mθ |)
n (y)L(|mθ |)

n (y) = Γ (n + |mθ | + 1)

n! .

Therefore, it follows that

1 =
∫

d3x
√

2ψ
†
1 ψ1 =

∫
dr rdθ

∫
dzδ(z)

√
2ψ

†
1 ψ1

= |N |2√2 2π

∫
dr r

((
v+)∗

v+ξ+
1 (r)ξ+

1 (r) + (
v−)∗

v−ξ−
1 (r)ξ−

1 (r)
)

= |N |2√2 2π

∫
dr re− MΞ

�
r2

r2|mθ |

× 1
(

n + |mθ |
n

)2

((
v+)∗

v+ + (
v−)∗

v−)[
L(|mθ |)

n

(
MΞ

�
r2

)]2

.
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Changing the variables

y = MΞ

�
r2 ⇒ dy = 2

MΞ

�
rdr

1 = |N |2√2π

(
�

MΞ

)|mθ |+1 1
(

n + |mθ |
n

)2

((
v+)∗

v+ + (
v−)∗

v−)

×
∫

dye−yy |mθ |[L(|mθ |)
n (y)

]2

= |N |2√2π

(
�

MΞ

)|mθ |+1 1
(

n + |mθ |
n

)2

((
v+)∗

v+ + (
v−)∗

v−)

× Γ (n + |mθ | + 1)

n!
This way, we find that the constant N

sz
s in Eq. (47) is given by

|N |2 = 1√
2π( �

MΞ
)|mθ |+1((v+)∗v+ + (v−)∗v−)Γ (n + |mθ | + 1)

n!
(

n + |mθ |
n

)2

5 Concluding Remarks

We examined the Galilean, or non-relativistic, version of the Dirac oscillator for spin-half
fields in a non-commutative space. We employed the Galilean covariant approach (with
equations projected from a (4,1) space-time with light-cone coordinates to a (3,1) Galilean
space-time) to obtain the wave equation. We found the wave functions and their energy
levels in the plane.

The energy spectrum is described by Eq. (50), with its commutative limit given in Eq.
(51). If we take the limit Ω → 0, that is, only the momentum-momentum commutators
vanish, then Eq. (50) reduces to

En,mθ ,s,sz = 2
(
2n + |mθ | + 1

)
�

√
ω2

4

(
1 + m2ω2Θ2

4�2

)
+ sszωΘ

�

+ �mθ

(
sszω − mω2Θ

2�

)
+ 3

2
�sω − mszω

2Θ

2
,

which depends on the space-space non-commutativity parameter Θ . An example of space-
space non-commutativity is the study of the hydrogen atom with the Dirac equation in Ref.
[38].

As a continuation of this work and Ref. [1], we are currently working on the non-
commutative Galilean DKP oscillator for spin-one particles with external magnetic fields.
Since there exist two Galilean limits of electromagnetism [22], the relation between non-
commutativity and magnetic fields [39, 40] should take a different guise in the Galilean
context than in the relativistic context. Relativistic spin-one DKP theory in the presence of
external electromagnetic fields has been studied in Ref. [41]. Spin-one DKP equation with
non-commutative geometry has been investigated in Refs. [42–44].
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Appendix

Proof of Eq. (22)

(σ · p̂)(σ · p̂) = 1

2
(σiσj p̂i p̂j − σiσj p̂j p̂i + 2δij p̂j p̂i)

= 1

4
[σi, σj ](p̂i p̂j − p̂j p̂i) + p̂ · p̂

= −εijkεij lSkΩl + p2 − 1

�
� · (r × p) + 1

4�2
(� × r)2

= − 2

�
S · � + p2 − 1

�
� · L + 1

4�2
(� × r)2. �

We obtain Eq. (23) in the same way.

Proof of Eq. (24)

(σ · r̂)(σ · p̂) − (σ · p̂)(σ · r̂)

= σiσj r̂i p̂j + σiσj p̂j r̂i − 2δij p̂j r̂i

= 2σiσj r̂i p̂j − i�σiσjΔij − 2p̂ · r̂

= 2σiσj r̂i p̂j − i�σiσj

[(
1 + � · �

4�2

)
δij − ΩiΘj

4�2

]
− 2p̂ · r̂

= 2σiσj r̂i p̂j − i�δij

(
1 + � · �

4�2

)
δij + i�

(σ · �)(σ · �)

4�2
− 2p̂ · r̂

= 2
∑

i �=j

σiσj r̂i p̂j − 3i� + i�
(σ · �)(σ · �) − 3� · �

4�2
+ 2(r̂ · p̂ − p̂ · r̂)

= 2
[σi, σj ]

2
r̂i p̂j − 3i� + i

iσ · (� × �) − 2� · �
4�

+ 2i�Δii

= 4i

�
εijkSkr̂i p̂j − 3i� + i

iσ · (� × �) − 2� · �
4�

+ 2i�

[
3

(
1 + � · �

4�2

)
− � · �

4�2

]

= 4i

�
S · (r̂ × p̂) + 3i� + i

iσ · (� × �) + 2� · �
4�

= 4iS · (r × p) + 2i

�2
S · [r × (� × r)

] + 2i

�2
S · [(� × p) × p

]

− i

�3
S · [(� × p) × (� × r)

] + 3i� + i
iσ · (� × �) + 2� · �

4�

= 4i

�
S · L − 2i

�2
(S × r) · (� × r) + 2i

�2
(S × p) · (� × p)

− i

�3
S · [(� × p) × (� × r)

] + 3i� + i
iσ · (� × �) + 2� · �

4�
.
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The last line contains the following term,

(� × p) × (� × r) = −�(� · L) − [
� · (p × �)

]
r,

so that we obtain

(σ · r̂)(σ · p̂) − (σ · p̂)(σ · r̂) = 4i

�
S · L − 2i

�2
(S × r) · (� × r) + 2i

�2
(S × p) · (� × p)

+ i

�3

[
(S · �)(� · L) + [

� · (p × �)
]
(S · r)

] + 3i�

+ i
iσ · (� × �) + 2� · �

4�
. �
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