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SOME EXTENSIONS OF THE LANCZOS-ORTIZ THEORY OF

CANONICAL POLYNOMIALS IN THE TAU METHOD

M. E. FROES BUNCHAFT

Abstract. Lanczos and Ortiz placed the canonical polynomials (c.p.’s) in a
central position in the Tau Method. In addition, Ortiz devised a recursive
process for determining c.p.’s consisting of a generating formula and a com-
plementary algorithm coupled to the formula. In this paper

a) We extend the theory so as to include in the formalism also the ordinary
linear differential operators with polynomial coefficients D with negative height

h = max
n∈N
{mn − n} < 0,

where mn denotes the degree of Dxn.
b) We establish a basic classification of the c.p.’s Qm(x) and their orders

m ∈ M , as primary or derived , depending, respectively, on whether ∃n ∈
N : mn = m or such n does not exist; and we state a classification of the
indices n ∈N, as generic (mn = n+h), singular (mn < n+h), and indefinite
(Dxn ≡ 0). Then a formula which gives the set of primary orders is proved.

c) In the rather frequent case in which all c.p.’s are primary, we establish,

for differential operators D with any height h, a recurrency formula which
generates bases of the polynomial space and their multiple c.p.’s arising from
distinct xn, n ∈ N , so that no complementary algorithmic construction is
needed; the (primary) c.p.’s so produced are classified as generic or singular ,
depending on the index n.

d) We establish the general properties of the multiplicity relations of the
primary c.p.’s and of their associated indices.

It becomes clear that Ortiz’s formula generates, for h ≥ 0, the generic c.p.’s
in terms of the singular and derived c.p.’s, while singular and derived c.p.’s
and the multiples of distinct indices are constructed by the algorithm.

1. Introduction

Lanczos and Ortiz’s Tau Method ([1]–[5]) is founded on the determination of
numerical solutions of linear ordinary differential equations with polynomial coeffi-
cients p(x)

Dy(x) =
v∑
i=0

pi(x)
di

dxi
y(x) = 0,

subjected to given supplementary (initial value, boundary value) conditions.
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c©1997 American Mathematical Society

609

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



610 M. E. FROES BUNCHAFT

The essential idea that makes the method notable is the fact that, instead of
looking for a polynomial approximate solution truncating an infinite power series
expansion, it searches for an exact polynomial solution y∗n(x) of a perturbed equa-
tion of the given equation.

This exact polynomial solution is constructed by adding to the second member
of the given equation a polynomial term Hn(x) of degree n, which is a perturbative
term (and thus contains an n-th order approximant to the zero polynomial):

Dy∗n(x) = Hn(x).

This way the exact solution of the system thus perturbed will be a polynomial,
which should also exactly satisfy the same supplementary conditions of the given
problem. Consequently y∗n(x) is an n-th order polynomial approximant to the exact
solution y(x) of the given problem.

Starting from this elementary basis and this central characteristic idea, the
method diversifies and widens its comprehensiveness far beyond this initial for-
mulation: the differential operator may have as coefficients any smooth functions
approximated with arbitrary precision by rational functions, possibly by the Tau
Method itself; the differential equations may be nonhomogeneous, nonlinear, func-
tional, or partial-derivation equations, or even a system of differential equations
([6]–[15]).

The comprehensiveness of the method results largely from the varied forms that
the perturbative polynomial Hn(x) may assume, and also from the fact that the
method allows a diversified choice of the basis V = {Vn(x), n ∈ N} (where N is
the set of natural integers) of the vector space P (x) of univariate polynomials, with
respect to which the polynomials Hn(x) and y∗n(x) will be expressed.

Incidentally, Lanczos and Ortiz have shown that, in addition to the canonical
basis and other well-known general polynomial bases V (Chebychev, Legendre,
Hermite, etc.), it is possible to define in P (x) a type of specific polynomial basis
Q = {Qm(x),m ∈ M ⊆ N}, with M properly defined, determined by each linear
differential operator D relative to V , which plays a central role in the Tau Method.
Thus Ortiz developed a recursive approach for the determination of c.p.’s that can
be employed in all the widely different applications of the method.

This recursive approach has the following characteristics:
a) the basic theory is not developed for differential operators D whose action

reduces the degree of the polynomials in P (x) (that is, for D with height h < 0);
b) the generating formula gives certain c.p.’s Qm(x) as a linear combination

of some xn (being n = m − h) and the c.p.’s Qr(x), r < m (these c.p.’s will be
herein identified as primary-generic in our classification stated below); the remain-
ing c.p.’s are determined only in an algorithmic-constructive way, which breaks the
recurrency of the formula.

In this paper we attempt to reanalyze and extend Lanczos and Ortiz’s basic
ideas concerning c.p.’s of the Tau Method:

a) We include in the entire theory the differential operators D with negative
height, that is, which reduce the degree of the polynomials in P (x);

b) We establish a classification of the c.p.’s Qm(x) (and their orders m) as
primary and derived and a classification of the indices n ∈ N as generic, singular
and indefinite (see Definitions 1, 2, and 5); furthermore we prove a formula which
gives the set of primary orders;
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c) We introduce the concept of index-multiplicity structure of D (see Definition
4);

d) In the very frequent case in which all the c.p.’s are primary we prove a formula
which, for differential operatorsD with any height, generates an entire basis of c.p.’s
Qmn(x) and also all their multiples of distinct indices n, in a formal-recurrent way,
with no need for a complementary algorithmic construction; the (primary) c.p.’s
Qmn(x) defined by this generating formula are then subclassified as generic and
singular , depending on the c.p.’s index n;

e) We establish the general properties of the index-multiplicity structure and its
general relations with the multiplicity of c.p.’s and with the possibility of existence
of derived (i.e., nonprimary) c.p.’s;

The classification of c.p.’s and their orders, and the classification of the indices
play a guiding role in the entire analysis.

The theoretical results here obtained also give support to the construction and
control of algorithms for computer implementation.

A brief recall on the essential features of the Lanczos-Ortiz theory on c.p.’s is
given in §2 below. In §3 we begin to introduce our new theoretical constructions,
that is a), b) indicated above. In §4 is given c), in §5 follows d). The proof of the
recurrent generating formula is given in the Appendix, and in §6 is stated e). Some
examples, worked on by our software GPC, are outlined in §7 and some further
remarks, in §8, conclude the article.

2. Revisiting Lanczos and Ortiz’s canonical polynomials

Ortiz and Llorente ([3], [4], [5]) have shown that an ordinary linear differential
operator D of finite order, with polynomial coefficients, acting in the vector space
of univariate polynomials

D : P (x)→ P (x),

produces an image DP (x) of finite co-dimension having as upper bound v + h,
where h, called the height of D, is

h =

[
max
n∈N

(mn − n)

]
∈N,

where
mn – is the degree of the generating polynomial Dxn;
N – is the set of the natural integers;
The finiteness of the co-dimension ofDP (x) in P (x) is equivalent to the following:

Lemma. There is a finite subset S ⊂ N of N such that P (x), in the codomain,
decomposes into a direct sum

P (x) = DP (x)⊕R(x),

where
a) R(x) is generated by the elements of the subset {xs, s ∈ S} of the canonical

basis;
b) for every m ∈ M = N − S, there is in DP (x) a polynomial pm(x) = xm +

Rm(x), Rm(x) ∈ R(x), with degree smaller than m, and P = {pm(x),m ∈M} is a
basis of DP (x);
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612 M. E. FROES BUNCHAFT

(This proposition is simply a restatement of Ortiz-Llorente’s main result in [3].)
Ortiz has called R(x) the space of residuals. Moreover the inverse image

by D of each pm(x) ∈ DP (x) is a polynomial Qm(x) ∈ P (x) called canonical
polynomial of order m, or, more generally, is an infinite multiplicity (an equiva-
lence class) of canonical polynomials Qm(x) + UD(x) where UD(x) is an arbitrary
polynomial in the polynomial kernel UD of D in P (x); clearly such polynomials,
called multiple polynomials, differ themselves by a polynomial UD(x) ∈ UD.

Any infinite sequence Q = {Qm(x),m ∈ M} of c.p.’s of distinct orders consti-
tutes a basis Q of P (x) called a basis of canonical polynomials of D relative
to the canonical basis X : a basis Q of P (x) modulo UD is the inverse image by D
of the basis P of DP (x).

The class D of linear differential operatorsD with polynomial coefficients and the
class L of the sets L of the multiple canonical polynomials {{Qm(x) +UD(x)},m ∈
M,UD(x) ∈ UD} are in one-to-one correspondence.

Lanczos and Ortiz’s c.p.’s play an essential role in the recursive approach of the
Tau Method. For this very reason, improvements in the theory of c.p.’s may have
significant implications for the wide range of applications of the method.

3. Determination of the set M∗ ⊆M of primary orders

Let us now consider in the theory the linear differential operators D with h ∈ Z
(Z being the set of all integers): it is clear that the previous lemma remains entirely
valid, since for h < 0, the co-dimension of DP (x) in P (x) has as upper bound ν and
the finiteness of this co-dimension is equivalent to the statement of the previous
lemma.

The linear differential operator D is uniquely determined by its action on a basis
of P (x), in particular on the canonical basis X – that is, by the set {Dxn, n ∈ N}
of generating polynomials of D.

Then the action of D in X induces the application “degree of Dx˙” denoted by
m:

m : N∗ →M : n 7→ mn

(when the context allows no ambiguity, we may, by an abuse of language, denote
also by m the degree of any polynomial in DP (x), particularly the degree mn).

Let us then introduce the following definitions:

Definition 1.
F = {n : mn = n+ h, n ∈N, n ≥ −h} – the set of D-generic indices,
Gd = {n = mn 6= n+ h, n ∈N, n > −h} – the set of D-singular indices,
Gin = {n : Dxn ≡ 0, n ∈ N} – the set of D-indefinite indices,
G = Gd ∪Gin, N∗ = F ∪Gd.

(Note that, by the definition of h given previously, we are explicitly including
the possibility that h < 0.)

Then it immediately follows that

Proposition 1. The set N can be partitioned as

N = F ∪G = F ∪Gd ∪Gin
where cardG ≤ ν, cardF =∞.
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EXTENSIONS OF THE LANCZOS THEORY OF CANONICAL POLYNOMIALS 613

Proof. Considering Dxn as a function of x and n, we may immediately conclude
that

a) G is precisely the subset of the indices that are the natural integer roots of the
coefficient of the leading term of Dxn, which is a polynomial function in n, whose
degree has as upper bound ν;

b) Gin ⊆ G is the subset of elements of G that are common roots to all coefficients
(polynomials in n) of Dxn; equivalently, n ∈ Gin if and only if 6 ∃mn;

c) {n : n ∈N, n < −h} ⊂ Gin.

Corollary 1. Gd = {n : mn < n+ h, n ∈ N,n ≥ −h}.

Definiton 2. The degrees m of the polynomials in DP (x) will be called primary
if they are of the form mn; if not, they will be called derived . The c.p.’s will be
called primary or derived , respectively, depending on whether their orders m are
primary or derived (since m is the degree of DQm(x)). (Primary c.p.’s, as given by
a suitable generating formula, will be classified below as generic or singular .)

The determination of the set M∗ of primary orders is clearly equivalent to the
determination of the set S∗ = N−M∗, S∗ ⊇ S of the degrees not produced by the
action of D on the canonical basis X .

Let us now introduce the following definitions:

Definition 3.

gmax = max
g∈G

g,

Nmax = {n : n ≤ gmax, n ∈N},

Nmax = {n : n < gmax, n ∈ F} = Nmax −G,

Z = {n : n ≤ gmax + h, n ∈ N},

Zh = {0, 1, . . . , h− 1} ∩N,

ZG = {g1 + h, . . . , gmax + h, g ∈ G} ∩N,

Zn+h = {n+ h, n ∈ Nmax} ∩N,

Z0 = Zh ∪ ZG, Z = Z0 ∪ Zn+h,

mG = {mn, n ∈ G},

mNmax
= {mn, n ∈ Nmax} = Zn+h,

mNmax = {mn, n ∈ Nmax} = mG ∪mNmax
.

Proposition 2. If G = φ, then S∗ = Zh. Thus, in particular, if h = 0, then
S∗ = φ, so S = φ.

Proof. If G = φ, it follows (Proposition 1) that N = F ; therefore the application
m is defined in N, producing M∗ = {mn = n + h, n ∈ N}. But for ∀n, it will be
n+ h ≥ h and by definition, M∗ = N− S∗.

(The analogous result for S is already present in Ortiz ([4]).)
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614 M. E. FROES BUNCHAFT

Proposition 3. If G = Gin 6= φ, then S∗ = Z0. Thus, in particular, if h = 0, it
will be S∗ = Gin; if h < 0 and gmax < −h, it will be S∗ = φ, so S = φ.

Proof. If G = Gin, it follows (Proposition 1) that N = F ∪ Gin, thus the action
m is defined only in F , that is, M∗ = {mn : mn = n + h, n ∈ F}. Following the
same reasoning as in the previous proposition, Zh ⊂ S∗ and for g ∈ Gin, it will be
(g + h) /∈M∗, and thus also ZG ⊆ S∗.

Theorem 1. If G 6= φ, then the set S∗ of the degrees not produced by D acting on
the canonical basis satisfies the relation S∗ = Z −mNmax.

Proof. a) If gmax + h ≥ 0, let us consider N− Z = {`, ` > gmax + h, ` ∈N}. Then,
for ` ∈ N−Z, we can always define n = `−h > gmax, that is, n ∈ (N−Nmax) ⊂ F
such that mn = n + h = `. So mgmax+1 = gmax + h + 1. That is, (N − Z) is
generated by the action m in (N − Nmax). Thus, α) M∗ = N − S∗ ⊇ N − Z,
so S∗ ⊆ Z; β) if (Z − S∗) 6= φ, it is produced by the action m in Nmax. Thus
S∗ = {n ∈ Z : n /∈ mNmax}, therefore the proposition is valid.

b) If gmax + h < 0, then necessarily h < 0 (note that in the previous case h ≥
<

0)

and therefore Z = φ. Thus, for ` ∈N, it will be ` > gmax + h, and then, repeating
the previous reasoning, it follows that N is produced by the action m in (N−Nmax),
and consequently: α) S∗ = φ; β) mNmax = φ. Thus the proposition is also valid.

Corollary 2. If G 6= φ, then the set S∗ satisfies the relation

S∗ = Z0 − [mG − (mG ∩ Zn+h)].

Proof. By definition Z = Z0 ∪ Zn+h. On the other hand, mNmax = mG ∪ Zn+h.
Thus S∗ = Z −mNmax = Z0 − [mG − (mG ∩ Zn+h)].

Note that Proposition 3 may be immediately (re)-obtained from Theorem 1;
Theorem 1 accounts not only for S∗ but also for the multiplicity structure of the
primary c.p.’s, as will be seen later.

Proposition 4. Given g ∈ G, if the degree (g + h) ∈ Z is produced by the action
m, that is, g + h = m ∈M∗, then it will have been produced from a singular index
g′ ∈ Gd with g′ > g.

Proof. By hypothesis, let n ∈ N such that mn = n + h. If n ∈ F it would be
mn = n + h = g + h, thus n ∈ G, a contradiction; so n = g′ ∈ Gd, therefore
g + h = mg′ < g′ + h.

Corollary 3. If G 6= φ and gmax ≥ −h, then S∗ 6= 0, since at least (gmax+h) ∈ S∗.
An analogous result for h ≥ 0 and S, is contained in Ortiz ([4]).

Corollary 4. If g′ ∈ Gin, with g′ ≥ −h and g′ > g′′, any g′′ ∈ Gd, then (g′+ h) ∈
S∗.

4. The index-multiplicity structure of the differential

operator D relative to the canonical basis X

As has been mentioned before, Ortiz has shown that
a) multiplicity in the set of c.p.’s of the linear differential operator D, relative

to a basis V , is an equivalence relation in this set;
b) the quotient set L is uniquely determined by D, relative to V , and conversely.
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EXTENSIONS OF THE LANCZOS THEORY OF CANONICAL POLYNOMIALS 615

Definition 4. We will refer to L as the multiplicity structure of the c.p.’s of D,
relative to V , and, in particular, to the set L∗ ⊆ L of the classes of equivalence of
multiple primary c.p.’s, as the primary multiplicity structure of D, relative to V .

Now let us consider, in the indices set N∗, the equivalence relation µ associated
with the application m : N∗ 7→M∗, that is n′µn′′ if and only if mn′ = mn′′ . Then
N∗ is partitioned in m-classes of equivalence

MU(m) = {n : mn = m, n ∈ N∗, m ∈M∗}
whose elements n will be called multiple indices of the degree m. The quotient set
MUD = N∗/µ = {MU(m),m ∈M∗} will be called the index-multiplicity structure
of the differential operator D, relative to the canonical basis X . It will further be
seen that index-multiplicity is closely related to primary multiplicity L∗.

When MU(m) has a single element, the index-multiplicity will be said to be
trivial; otherwise it will be called effective. We will frequently refer to multiplicity
(without qualification) in the strict sense of effective multiplicity.

5. The recurrency generating formula for the primary

canonical polynomials (S∗ = S)

Let us establish the following

Theorem 2. Given the linear differential operator D, let S∗ be the set of degrees
not produced by D acting on the canonical basis X (or, equivalently, M∗ = N−S∗,
the set of primary degrees of D), and let MUD = {MU(m),m ∈M∗} be the index-
multiplicity structure determined by D.

Then, if S∗ = S (or, equivalently, M∗ = M), the elements Qm(x) of a basis
of (primary) canonical polynomials Q = {Qm(x), m ∈ M∗} of D, relative to the
canonical basis X = {xn, n ∈ N}, and their multiples with distinct indices, satisfy
the recurrency relation

Qm(x) =
1

a
(m)
m

[
xn −

∑
r∈Am

a(m)
r Qr(x)

]
,

where each c.p. is defined modulo an arbitrary element UD(x) of the algebraic

kernel UD of D, n ∈ MU(m) = {n : mn = m, n ∈ N∗}, Dxn =
∑m
r=0 a

(m)
r xr and

Am = {r ∈M : r < m}.

Proof. The demonstration is formally analogous to the proof of Ortiz’s formula for
generating the primary generic c.p.’s. For the conceptual differences between them,
we refer the reader to [4] and to the Appendix at the end of this article.

Definition 5. When convenient, we will identify a primary c.p., given by the gen-
erating formula, by Qmn(x), it being understood that n ∈MU(m); then n is called
index of the primary c.p. Qmn(x) of order m.

Therefore the recurrence formula may assume the form

Qmn(x) =
1

a
(mn)
m

[
xn −

∑
r∈Am

a(mn)
r Qrt(x)

]
, t ∈MU(r),

which makes more explicit the fact that, for S∗ = S, the formula generates, in a
recurrent way, not only a basis of primary c.p.’s but also all the primary c.p.’s that
are their multiples of distinct indices.
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Definition 6. The primary c.p.’s Qmn(x) so constructed will be said to be generic
or singular , depending on whether the index n is generic or singular.

Corollary 5. Multiple indices of degree m determine primary c.p.’s, multiples of
distinct indices, of order m, ∀m ∈M∗.

The corollary is contained in the statement of the theorem itself.
As we have already pointed out, the generating formula of primary c.p.’s is exact

only under the condition S∗ = S.
In any case, the validity of the condition S∗ = S can be verified by observing

whether all the differences between all multiple polynomials (generated by the for-
mula) are exact solutions of D; if not, then S∗ 6= S (that is, there exist not only
primary c.p.’s but also derived c.p.’s).

We shall see below that the relation between S∗ and S is closely associated
with the index-multiplicity structure MUD of D, and that, in particular, if this
multiplicity is trivial (that is, there are no multiple primary c.p.’s with distinct
indices), then the validity of the condition S∗ = S may be assured a priori.

6. The general properties of the primary multiplicity

structures of D

It is clear that the primary multiplicity structures MUD and L∗ play a central
role in the determination of the c.p.’s, which leads us to search for their general
properties.

Proposition 5. No class of index-multiplicity has more than one generic index.

Proof. Let us consider, for ∀m ∈ M∗, n′, n′′ ∈ MU(m) with n′, n′′ ∈ F . Then
mn′ = mn′′ = n′ + h = n′′ + h, therefore n′ = n′′.

Corollary 6. Primary generic c.p.’s with distinct indices are never multiple.

Corollary 7. If a pair of primary c.p.’s with distinct indices are multiple, at least
one of them is singular.

Corollary 8. Among multiple primary c.p.’s, the generic one, when it exists at
all, is the one with minimal index.

Corollary 9. Given Qmg, where g = 0, if there is a multiple c.p. Qmn, then
n = g′, g′ ∈ Gd.

Thus the determination of the multiple primary c.p.’s with distinct indices re-
duces to the determination of the primary c.p.’s which are multiples of the singular
c.p.’s, that is, the primary c.p.’s with index n = g ∈ Gd; in other words, the mul-
tiplicity structures of D relative to V are ultimately determined by the (singular)
multiplicity structure MUSD ⊂MUD of the singular indices n ∈ Gd.

Corollary 10. If MUSD is trivial, then MUD is also trivial, thus S∗ = S. In
particular, this is the case if Gd = φ (thus if G = φ).

The reciprocal to this corollary is not necessarily true, that is, it may be the case
that S∗ = S and MUSD is not trivial (see, for example, exs. 2, 3), so the case of
D, the c.p.’s of which are all primary, is very common.

Besides, let us observe that, in particular, this corollary extends Prop. 2 to
S = S∗ = Zh and Prop. 3 to S = S∗ = Z0.
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The general situation of the multiplicity of primary c.p.’s is defined by the fol-
lowing.

Theorem 3. Given g ∈ Gd and the primary c.p. Qmg(x), then if there are multiple
primary c.p.’s with distinct indices Qmn(x), they will be of the form Qmn : gmax ≥
n ≥ mg − h and

a) if (mg − h) < 0, g has no generic multiple;
b) if (mg − h) is generic, then it will be the generic multiple of g; in addition, it

will be n = (mg − h);
c) if (mg − h) is nongeneric (singular or indefinite), then

c1) (mg − h) = g′ ∈ G is not a multiple of g;
c2) g has no generic multiple.

Proof. If there is n ∈N such that mn = mg, it will be mn = mg ≤ n+h; therefore
a) let us assume, by hypothesis, that ∃n ∈ N: mn = n+h = mg; then n+h < h,

a contradiction;
b) if (mg − h) ∈ F , it will be mmg−h = (mg − h) + h = mg;
c1) if (mg − h) /∈ F , that is (mg − h) ∈ G, then either (mg − h) is indefinite or,

if it is definite, mmg−h < (mg − h) + h; that is, mmg−h 6= mg;
c2) If there is n ∈ F such that n is a generic multiple of g, then mn = n+h = mg;

therefore n = mg − h, a contradiction, since, by hypothesis, (mg − h) /∈ F .
Finally, if an index n, a multiple of g, is such that n ∈ G, then it will be n ≤ gmax

and mn = mg < n + h, thus n > mg − h; if n ∈ F , then n = mg − h and from
mn = n+ h = mg < g + h, it follows that n < g ≤ gmax. Thus the initial assertion
stated by the theorem is immediate.

Corollary 11. Multiple primary c.p.’s have necessarily order m ≤ gmax + h − 1
and index n ≤ gmax.

Corollary 12. The action m induces, by restriction, the action

mNmax : Nmax → Z

which defines the singular index-multiplicity structure, thus the multiplicity struc-
ture of the primary c.p.’s.

As it has been seen, this is why we prefer to operate with the formula S∗ =
Z−mNmax instead of S∗ = Z0− [mG− (mG∩Zn+h)]; the former accounts not only
for S∗, but also for the singular multiplicity structure of D.

Let us now see some particular properties of the primary multiplicity of D.

Proposition 6. If a primary c.p. is of the form Q(g+h)g, with g ∈ G, g′ ∈ Gd,
then it will be g′ > g.

Proof. mg′ = g + h < g′ + h.

Proposition 7. Given a primary c.p. Qmg, g ∈ Gd, m ≥ h, if, for ∀g′ ∈ Gd,
(with g′ < g) it is (g′ + h) ∈ S∗, then there is a generic c.p. Qmn(x), n ∈ F , that
is, a multiple of Qmg(x).

Proof. Since m ≥ h, it will be m = n+ h, n ∈ N. Let us assume that n = g′ ∈ G.
Then m = g′ + h, thus (Proposition 6) g′ < g, therefore m = (g′ + h) ∈ S∗, a
contradiction. Thus n ∈ F , therefore (Theorem 3) Qmn(x) is generic.
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618 M. E. FROES BUNCHAFT

Corollary 13. Let Qmg, m ≥ h and g ∈ Gd, be the minimal element of G. Thus
there is a generic c.p. Qm(m−h)(x), that is, a multiple of Qmg(x).

Proof. Since m ≥ h, then (m−h) = n ∈ N, that is, m = n+h < g+h; thus n < g
and therefore n ∈ F , so mn = m.

Corollary 14. Let Qmg(x), g ∈ Gd, be the minimal element of G and h = 0. Then
Qmm(x) is generic.

7. Examples

The following examples illustrate the new theoretical developments; they have
been solved by using the software GPC ([16], [17]), which implements the new
extensions of the Lanczos-Ortiz theory. In particular, applied to Ortiz’s examples
(h ≥ 0) given in ([4]), his results have been reobtained.

Ex. 1: (Ortiz, [4]): Dy(x) = x3y′(x)− 2y(x) = 0
Dxn = nxn+2 − 2xn

h = 2; G = {0}; Gd = {0}; Gin = φ; F = N− {0}
gmax = 0; gmax + h = 2; Z = {0, 1, 2}; Nmax = {0}; mNmax = {0}
S∗ = {0, 1, 2} − {0} = {1, 2}

Nmax contains a single element, thus (Cor. 12) MUSD and so also MUD is
trivial. Then (Cor. 10) S∗ = S and UD = φ.

Verification: m0 = 0; m0−h = −2 < 0, thus g = 0 has no generic multiple, thus
has no multiple at all, that is, MUSD is trivial.

The generating formula, without any complementary algorithm, gives all the
primary c.p.’s:

Q0(x) = −1

2
; Q3(x) = x; Q4(x) =

1

2
x2; Q5(x) =

1

3
(x3 + 2x); . . .

Ex. 2: (Ortiz, (4)): Dy(x) = (x2 + 1)y′′(x)− 6y(x) = 0
Dxn = (n+ 2)(n− 3)xn + n(n− 1)xn−2

h = 0; G = {3}; Gd = {3}; Gin = φ; F = N− {3}
gmax = 3; gmax + h = 3; Z = {0, 1, 2, 3}; Nmax = {0, 1, 2, 3}; mNmax = {0, 1, 2}
S∗ = {0, 1, 2, 3}− {0, 1, 2} = {3}
m3 = 1 = m1; MU(1) = {3, 1}, 1 ∈ F

Verification: m3 − h = 1 ∈ F , thus (Theor. 3) 1 is the generic multiple of 3.
MUSD is not trivial
The generating formula, without any complementary algorithm, gives
Q00(x) = − 1

6 ; Q11(x) = − 1
6x; Q22(x) = − 1

12 (3x2 + 1); Q13(x) = 1
6x

3;

Q44(x) = 1
6 (x4 + 3x2 + 1); . . .

D[Q11(x) −Q13(x)] = 0, thus S∗ = S
C(x + x3) ∈ UD

Ex. 3: Dy(x) = yIV (x) + xyIII(x)− 3yII(x) = 0
Dxn = n(n− 1)(n− 2)(n− 3)xn−4 + n(n− 1)(n− 5)xn−2

h = −2; G = {0, 1, 5}; Gd = {5}; Gin = {0, 1}; F = N− {0, 1, 5}
gmax = 5; gmax + h = 3; Z = {0, 1, 2, 3}; Nmax = {0, 1, 2, 3, 4, 5};
mNmax = {0, 1, 2}
S∗ = {0, 1, 2, 3}− {0, 1, 2} = {3}
m5 = 1 = m3; MU(1) = {5, 3}; 3 ∈ F
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Verification: m5 − h = 3 ∈ F , thus 3 is the generic multiple of 5. MUSD is not
trivial.

The generating formula gives directly
Q02(x) = − 1

6x
2; Q13(x) = − 1

12x
3; Q24(x) = − 1

12x
4; Q15(x) = 1

120x
5; . . .

D[Q13(x) −Q15(x)] = 0, thus S∗ = S
[C1(10x3 + x5) + C2x+ C3] ∈ UD

8. Concluding remarks

The inclusion of the differential operators D with negative height extends the
Lanczos-Ortiz theory of c.p.’s, Ortiz’s recursive process and the theoretical develop-
ment here presented, to all linear operators D which act on the space of polynomials
producing an image with finite co-dimension.

The classification of c.p.’s and of the associated indices, respectively, has allowed
us to characterize and focus the case of D the c.p.’s of which are all primary, a very
comprehensive case and, at the same time, a case treated with great simplicity by
the theoretical construction here elaborated and its computational counterpart, the
GPC program; this is well illustrated by the examples that are solved here.

It will be shown elsewhere that the present theoretical scheme and its software
can be entirely incorporated, as a first stage, to the theoretical and computational
solution of the general case, where D also has derived c.p.’s.

The entire theoretical construction elaborated on here has represented the action
of D relative to the canonical basis, but it is clear from Ortiz’s works that the entire
scheme can be rewritten for any complete polynomial basis.

Appendix

Proof of the generating formula for the primary

canonical polynomials

Let M∗ = N−S∗ be the set of the primary orders m ∈M∗, S∗ having previously
been determined on the basis of Theorem 1, and let us assume that M∗ = M (or
S∗ = S), so that all the c.p.’s are primary. Then, for ∀m ∈M , ∃n ∈ N∗ such that
Dxn = m, therefore MU(m) 6= 0, and n ∈ MU(m), that is, n is any one of the
multiple indices of degree m and

Dxn =
m∑
r=0

a(mn)
r xr , n ∈MU(m).

(Note that the consideration of Dxn with n ∈MU(m) implies at once that a
(mn)
m 6=

0.)
Now, let there be a polynomial defined by

Tmn(x) =
1

a
(mn)
m

[
xn −

∑
r∈Am

a(mn)
r Qrt(x)

]
,

where

Am = {r ∈M, r < m}, t ∈MU(r).

Hence

DTmn(x) = xm +
1

a
(mn)
m

[
m−1∑
r=0

a(mn)
r xr −

∑
r∈Am

a(mn)
r (xr +Rrt(x))

]
,
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where Rrt(x) ∈ R(x). Then, naming Sm = {r ∈ S, r < m}, it will be

DTmn(x) = xm +
1

a
(mn)
m

[ ∑
r∈Sm

a(mn)
r xr −

∑
r∈Am

a(mn)
r Rrt(x)

]
= xm +Rmn(x),

where Rmn(x) ∈ R(x).
Thus Tmn(x) is a primary c.p. Qmn(x) ≡ Tmn(x), either generic or singular,

depending on the index n, and the above formula in fact generates, in a recurrent
way, bases of primary c.p.’s and also all their multiple c.p.’s (with distinct indices).
Clearly, any Tmn(x) + UD(x), with UD(x) ∈ UD, will be a (primary) c.p. multiple
of Tmn(x).
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