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Abstract. We consider the jacobian module of a set f := {f1, . . . , fm} ∈
R := k[X1, . . . ,Xn] of squarefree monomials of degree 2 corresponding to the
edges of a connected bipartite graph G. We show that for such a graph G
the number of its primitive cycles (i.e., cycles whose chords are not edges of
G) is the second Betti number in a minimal resolution of the corresponding
jacobian module. A byproduct is a graph theoretic criterion for the subalgebra
k[G] := k[f ] to be a complete intersection.

Introduction

Let f = {f1, . . . , fm} ⊂ R = k[X] = k[X1, . . . , Xn] be a set of polynomials,
where k is a field. The jacobian module J(f) of f is the cokernel of the map
Rm → Rn defined by the transposed jacobian matrix tΘ(f) = tΘ(f1, . . . , fm) of
the polynomials f .

If f is a set of linearly independent homogeneous polynomials of the same de-
gree, then J(f) does not depend on the choice of a minimal set of homogeneous
generators. The underlying theme of this work is the understanding of how com-
binatorial properties of an ideal (or k-subalgebra) of R minimally generated by
quadrics f = {f1, . . . , fm} translate to the numerical invariants of the minimal
homogeneous free resolution of J(f).

One finds that these considerations have a degree of success in the case where
f = {f1, . . . , fm} correspond to the edges of a simple connected graph G, generat-
ing the so-called edge-ideal I(G) (cf. [3], [4]). In this setup, the simpler notation
J(G) := J(f), tΘ(G) := tΘ(f) will be used. It is shown that if G is a connected
bipartite graph then the second module of syzygies of J(G) is generated by the so-
called polar syzygies (to be defined below). As a consequence, one also obtains that
the second Betti number in the minimal free resolution of J(G) over the polynomial
ring R coincides with the number of primitive (i.e., chordless) cycles of G, and that
J(G) has homological dimension at most 2 if and only if the number of primitive
cycles of G coincides with the usual rank of G in the sense of graph theory. In par-
ticular, one obtains a way of translating the computation of the number of primitive
cycles of a connected bipartite graph into the computation of the number of min-
imal generating relations of a matrix whose entries are indeterminates. Moreover,
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990 ARON SIMIS

from each such generating relation one can read off the order of the corresponding
primitive cycle.

A byproduct is a criterion for the subalgebra k[G] to be a complete intersection.
This relates to [2], where the authors consider the case of bipartite planar graphs
by entirely different methods.

An earlier version of this work underwent important criticism by someone who
wishes to remain anonymous; the present version reflects partially this criticism,
for which I am indebted.

1. Preliminaries

We collect a few facts concerning the jacobian matrix of a set of monomials for
which a suitable reference in the literature has not been found. Let X = X1, . . . , Xn

be indeterminants over a field k. By a monomial in k[X] we mean a power product
Xa = Xa1

1 · · ·Xan
n , with ai ∈ N.

The following result is quite particular about the jacobian matrix of a set of
monomials.

Lemma 1.1. Let f = {f1, . . . , fm} be a set of monomials in k[X]. Then every
minor of the jacobian matrix of f is of the form αXa, where α belongs to the prime
ring of k.

Proof. One endows the ring k[X] with the Nn-gradation in which k[X]a = kXa.
A homogeneous element in this gradation will be called multihomogeneous. Now,
we claim that the jacobian matrix is also multihomogeneous, i.e., that any 2 × 2
minor is a multihomogeneous element of k[X]. This will imply that any minor is
multihomogeneous, hence must be of the form αXa, for some a ∈ Nn and some
α ∈ k. To conclude, the definition of derivatives easily implies that α actually
belongs to the prime ring of k. Thus, let, say, the 2 × 2 minor be that of columns
1, 2 and rows 1, 2. Letting f1 = Xa and f2 = Xb, the minor is a binomial with
terms of multidegrees (a1−1+ b1, a2 + b2−1, . . . ) and (a1 + b1−1, a2−1+ b2, . . . ),
respectively. Since the latter are equal, the minor is multihomogeneous.

Consider the map L that associates to a monomial Xa its exponent vector a ∈
Nn. Given a finite set f = Xa1 , . . . ,Xam of monomials, one can look at the integer
matrix L(f) = (a1, . . . , am). One may call L(f) the log-matrix of f . Note that if
G is a simple graph then the log-matrix of the generators of k[G] is precisely the
incidence matrix of G.

A consequence is as follows.

Proposition 1.2 (char k = 0). Let f be a set of monomials. Then the jacobian
matrix of f and the log-matrix of f have the same rank.

Proof. Identify Z with a subring of k. Then tΘ(f) has entries in Z and the canonical
homomorphism Z[X] → Z implies that rank(L(f)) ≤ rank(tΘ(f)). Conversely, let
r = rank tΘ(f) and let ∆ be a nonzero r× r minor of tΘ(f). Then ∆ is of the form
αXa, with α ∈ Z \ {0} by Lemma 1.1. Therefore, ε(∆) = α 6= 0. But ε(∆) is an
r × r minor of L(f).

Note that the proposition fails in positive characteristic on taking

f = {X1X2, X1X3, X2X3}.
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The previous results allow for the following alternative characterization of a
connected bipartite graph.

Proposition 1.3 (char k = 0). Let G be a connected graph. The following condi-
tions are equivalent:

(i) G is bipartite.
(ii) J(G) has rank one.
(iii) J(G) has positive rank.

Proof. It is well-known that, for a connected graph G on n vertices, its incidence
matrix has rank at least n− 1, and that it has exactly rank n− 1 if and only if G is
bipartite. Therefore, the result is a straightforward consequence of Proposition 1.2.

2. The syzygies of the jacobian module

The following result gives a graph-theoretic characterization of a connected graph
whose jacobian module has the smallest possible homological dimension.

Proposition 2.1 (char k = 0). Let G be a connected graph. The following condi-
tions are equivalent:

(i) J(G) has homological dimension one.
(ii) G has at most one cycle, and this cycle is odd.

Proof. (i) ⇒ (ii). Let n be the number of vertices of G. Since G is connected, the
number m of edges is at least n− 1. If this number is n− 1 then G is a tree. So,
assume that m ≥ n. The homological dimension being 1, we must have m = n.
But in this case it is well-known or clear that G admits at most one cycle. By
Proposition 1.3, this cycle must be odd.

(ii) ⇒ (i). The case of a tree G is easy, directly. Indeed, induction on the number
of vertices, passing to a subtree G\{Xi} with Xi a vertex of degree one, shows that
in fact any individual (n − 1)× (n − 1) minor of tΘ(G) is nonzero. Thus, assume
that G contains a unique cycle and that cycle is odd. In this case the jacobian
matrix of I(G) is a square matrix. By Proposition 1.3, the determinant of tΘ(G)
is nonzero; hence J(G) has homological dimension one.

Remark 2.2. By [4], condition (ii) above characterizes a connected graph G for
which the edge-ideal I(G) is of linear type, i.e., for which the symmetric algebra of
I(G) is a torsion-free R-algebra. Thus, Proposition 2.1 shows that this condition is
also equivalent to saying that the jacobian module J(G) has homological dimension
one.

2.1. Polar syzygies. Now, quite generally for the sake of definition, let f =
{f1, . . . , fm} be a set of polynomials in R = k[X] such that fj(0) = 0, ∀j. Let
D(I) := Im(tΘ(f)) ⊂∑n

i=1 RdXi stand for the submodule generated by the differ-
entials of f . One is interested in finding a structured set of generators of its first
syzygy module Z := Z1(D(I)) ⊂ Rm =

∑
j RTj.

For that purpose, one considers the k-linear map λ : k[T] = S(Rm) → Rm given
by λ(F ) :=

∑
j

∂F
∂Tj

(f1, . . . , fm)Tj ∈ Rm. Moreover, let J ⊂ k[T] denote the ideal

of polynomial relations of f . By the usual rules of composite derivatives, if F ∈ J
then

∑m
j=1

∂F
∂Tj

(f1, . . . , fm) dfj = 0. This means that restriction induces a map

J → Z. Any element in the image of J will be called a polar syzygy.
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Finally, we claim that the latter map still induces a quotient map

λ̄ : J/(T)J → Z/(X)Z.(1)

To see this, let F ∈ (T)J , say, F =
∑

k GkFk, with Gk ∈ (T) and Fk ∈ J for every
k. Then, by the derivative rules and the vanishing Fk(f) = 0,

λ(F ) =
∑
j

∂F

∂Tj
(f)Tj =

∑
k

∑
j

∂Fk
∂Tj

(f)Tj

Gk(f)

=
∑
k

Gk(f)λ(Fk) ∈ (X)λ(J) ⊂ (X)Z.

The map (1) will be called the polar map (associated to f). If f are homogeneous
polynomials of the same degree, one says that J(f) is polarizable if the polar map
is an isomorphism. When f are homogeneous of the same degree, J (resp. Z) is a
homogeneous ideal of k[T] (resp. a graded submodule of

∑
j RTj). When needed,

one denotes by Jq and Zq the respective qth graded pieces.
The central question in this regard asks when the polar map is an isomorphism.

That it may fail to be so in general is shown by the edge-ideal of the non-bipartite
graph below:
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An easy calculation shows here that µ(J) = 3 and µ(Z) = 2; hence the polar
map fails to be an isomorphism. Here, the “extra” minimal generator of J coming
from the even walk (not a cycle!) with vertices X1, X2, X3, X4, X2 , X6 maps to a
deep combination of the 2 minimal generators of the module Z. Of these, one is of
degree 3, hence cannot be a polar syzygy. Thus, the polar map is neither injective
nor surjective.

In view of this example, the following result seems to be of interest.

Theorem 2.3. If G is a connected bipartite graph, then J(G) is polarizable.

In order to prove this result, one first needs a good grip on a set of generators
of the ideal J ⊂ k[T] of relations. For bipartite graphs, the peculiar form of the
generators of J as obtained in [5] allows for a substantial reduction of the number
of generators in terms of the so-called primitive cycles (a cycle C of a graph G is a
primitive cycle of G if no chord of C is an edge of G). Recall that the order of a
cycle C of G is the number of edges of G belonging to C.

Here is the precise statement.

Lemma 2.4. Let G be a connected bipartite graph. Then the residue classes of the
(binomial) relations corresponding to the primitive cycles of G of order 2q form a
vector basis of (J/(T)J)q = Jq/

∑
j Tj Jq−j . In particular, J is minimally generated

by the relations corresponding to the primitive cycles.
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Proof. By [5, Proposition 3.1] and since G is bipartite, one knows that J is gener-
ated by the binomial relations coming from the cycles of G. Now, if C2q is not a

primitive cycle, then it is subdivided into two other cycles C
′
2q′ , C

′′
2q′′ (necessarily

even) with 2q = 2q′ + 2q′′ − 2, the two sharing a common edge which is a chord
of C2q. In this situation, one can see that the relation coming from C2q is in the
ideal generated by those coming from the two smaller cycles. This shows that the
relations coming from the primitive cycles generate the ideal J ; hence the (images
of) these relations corresponding to the-primitive cycles of order 2q span the vec-
tor space Jq/

∑
j Tj Jq−j . It remains to see that they are linearly independent.

Now, an even primitive cycle is determined by a complete set of its alternate edges,
i.e., two primitive cycles in a bipartite graph sharing a common 1-factor are equal.
Therefore, for any two primitive cycles of order 2q, the corresponding binomial
relations are such that their constituent monomials are all pairwise distinct (i.e.,
have different supports). Thus, a k-linear combination of such distinct binomials is
also one of distinct monomials. Now, by induction on q, one may assume that the
primitive cycles of any order 2p < 2q already form a k-basis of Jp/

∑
j Tj Jp−j . Let

it be given that

s∑
l=1

νlFl =
∑
k1

Gk1Fk1 + . . . +
∑
kq−2

Gkq−2Fkq−2 ,(2)

where Fl (resp. Fku) is the relation yielded by a primitive cycle of order 2q (resp.
2(u + 1)) and νl ∈ k. Moreover, one may assume that the left-hand side has the
smallest number s of nonzero coefficients νl for which a relation (2) holds. In
particular, νl 6= 0 for every l. Let F1 = M1 − N1, with M1, N1 monomials such
that gcd(M1, N1) = 1. Then there exist Fku = Mku −Nku , Fkv = Mkv −Nkv such
that M1 = LkuMku , N1 = −LkvNkv , for suitable monomials Lku , Lkv . Clearly,
LkuFku + LkvFkv ∈ Jq, and since

LkuFku + LkvFkv = F1 − (LkuNku − LkvMkv ),(3)

one has LkuNku − LkvMkv ∈ Jq. If this binomial actually belongs to
∑

j Tj Jq−1,

then by cancelling ν1F1 on both sides of (2), one would get a relation of the same
form as (2) only with the left-hand side having fewer terms. Therefore, it must
be the case that F := LkuNku − LkvMkv ∈ Jq \

∑
j Tj Jq−1. But then (3) gives a

relation such as (2) whose left-hand side is ν1F1 + νF , for suitable ν ∈ k. So, the
number s of terms in the left-hand side of (2) is at most 2, and one may assume
the relation is of the form

ν1F1 + ν2F2 = LkuFku + LkvFkv ,

with Fku and Fkv corresponding as before to smaller cycles. Since no further can-
celling is possible in the right-hand side alone as the monomials in the left-hand
side are all distinct, it follows that the smaller cycles could only be produced by
chords of the cycles corresponding to the binomials F1, F2. This is a contradiction,
as they are primitive cycles by hypothesis.

Proof of the theorem. Since we are dealing with a bipartite graph, the two sets of
variables giving the appropriate bipartition will be object of emphasis. Thus, X
will be replaced by X,Y. The transposed jacobian matrix of I(G) can then be
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written in the following form:

Yu1 Yu2 . . . Yud1 0 0 . . . 0 . . . 0 0 . . . 0

0 0 . . . 0 Yv1 Yv2 . . . Yvd2 . . . 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0 . . . Yw1 Yw2 . . . Ywdn

X1 X2 . . . Xn


,

where di is the degree of the vertex Xi and Xi denotes a matrix with only Xi

or 0 as entries. The polynomial ring R = k[X,Y] is Nr × Ns-graded, by setting
bideg(f) := (degX(f), degY(f)) (here deg stands for multidegree). The ∂/∂Xi-row
(resp. ∂/∂Yj-row ) will be called the Xi-row (resp. Yj-row). Then Z admits a set
of generating syzygies whose coordinates are monomials and have constant bidegree
in X,Y (see the proof of Lemma 1.1).

One first shows that the polar map (1) is surjective. The argument will use
induction on the number of edges of the graph, noting there is nothing to be
proved if G has less than 4 edges, since then it must be a tree (cf. Propo-
sition 2.1 and Remark 2.2). Thus, assume that G has at least 4 edges. Let
z = (g1,u1 , . . . , g1,ud1

; . . . ; gn,w1 , . . . , gn,wdn ) ∈ Z be a monomial syzygy—note
that, as will be the case in the argument below, one may often have ul = vl′ ,
etc.

First, one can assume that no coordinate of z vanishes. For, otherwise, z would
be either a (monomial) syzygy of some (connected) proper subgraph or else the sum
of two such; in any case we would be done by induction on the number of edges
of G. This assumption implies, in particular, that all vertices of G have degree at
least 2 and that any two edges adjacent to the same vertex belong to a cycle.

The proof will consist of various steps with loop-like alternatives.

Step 1. Due to the above form of the transposed jacobian matrix, there exists

a relation
∑d1

j=1 g1,ujYuj = 0. By looking at one such relation that effectively
involves Yu1 and has smallest number of nonzero summands, one sees that there
exists at least one j 6= 1 such that Yuj |g1,u1 . Moreover, the monomials g1,u1/Yuj
and g1,uj/Yu1 share the same X-part. On the other hand, since Yuj is a vertex of
degree at least 2, then, by the same token, there exists an entry Xi1 in the Yu1 -row
such that Xi1 | g1,u1 . Therefore, Xi1Yuj | g1,u1 and Xi1Yu1 ∈ I(G).

Alternative 1.1. Xi1Yuj ∈ I(G).
Then G contains the 4-cycle X1Yu1 , Xi1Yu1 , Xi1Yuj , X1Yuj . Letting F ∈ k[T] de-

note the corresponding binomial (relation), one considers the syzygy z−f1,u1λ(F ) ∈
Z, where g1,u1 = f1,u1Xi1Yuj . Clearly, the first coordinate of this new syzygy van-
ishes; hence we are through by the above proviso and the inductive assumption.

Alternative 1.2. There are no 4-cycles of the form X1Yu1 , Xi1Yu1 , Xi1Yuj , X1Yuj
such that Xi1Yuj divides g1,u1 .

Thus, let Yuj be such that X1Yuj ∈ I(G) and let Xi1 be such that Xi1Yuj | g1,u1 ,
but Xi1Yuj 6∈ I(G). We then loop back to the first step:

Step 2. Apply Step 1 to the Xi1 -block and gi1,u1 as pivotal coordinate. Then,
there exists an entry Yvj1 in the Xi1-row, with vj1 6= u1, such that Yvj1 |gi1,u1 . Since
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Xi1Yvj1 ∈ I(G), then vj1 6= uj as well, by our present assumption. Since we already

had Xi1Yuj |g1,u1 , we now have in fact that Xi1YujYvj1 |g1,u1 .
In this situation, the claim is that there exists an entry Xi2 appearing in the

Yuj -row, but not in the Yu1 -row, such that Xi2 |g1,u1 . For that, one resorts to the
Yuj -row and coordinate g1,uj as pivot. Since there are no 4-cycles as just stated,
then no X-entry in this row, other than X1, can appear simultaneously in the
Yu1 -row. Therefore, there exists indeed Xi2 such that i2 6= 1, i2 6= i1 and such
that Xi2 |g1,uj . On the other hand, in Step 1, as remarked before, the monomials
g1,u1/Yuj and g1,uj/Yu1 share the same X-part. Hence, Xi2 |g1,u1 , as claimed.

Thus, summing up, one has so far obtained that Xi1Yvj1Xi2Yuj divides g1,u1 .
Now it is time to loop back to Alternative 1.1, namely:

Alternative 2.1. Xi2Yvj1 ∈ I(G).
In this case, there is a 6-cycle in G, namely, the one with edges

X1Yu1 , Xi1Yu1 , Xi1Yvj1 , Xi2Yvj1 , Xi2Yuj , X1Yuj .

One then considers the syzygy z− f1,u1λ(F ), where F ∈ k[T] denotes the bino-
mial (of degree 3) corresponding to the above 6-cycle and

g1,u1 = f1,u1Xi1Yvj1Xi2Yujg1,u1 .

As before, we are done by the inductive hypothesis.

Alternative 2.2. There are no 6-cycles involving the path X1Yuj , X1Yu1 , Xi1Yu1 ,
Xi1Yvj1 for which an edge of the 1-factor of the cycle containing X1Yu1 (other than
X1Yu1) divides the coordinate g1,u1 .

We may, therefore, assume that we have a path X1Yu1 , Xi1Yu1 , Xi1Yvj1 , Xi2Yuj ,

X1Yuj , but Xi2Yvj1 6∈ I(G). We then loop back to the first step, namely:

Step 3. Apply Step 1 to the Xi2 -block with gi1,vj1 as pivotal coordinate. By a
similar token, one finds new variables Xi3 , Ywj2 such that Xi3Ywj2Xi1Yvj1Xi2Yuj
divides g1,u1 (In particular, one has that if deg(g1,u1) ≤ 5 in Step 2, then Alternative
2.1 would necessarily take place for some Xi2Yvj1 ). Next, one searches for an 8-cycle
for which the edges

X1Yu1 , Xi1Yvj1 , Xi2Ywj2 , Xi3Yuj

form a 1-factor and their product divides g1,u1 .

The procedure comes to a halt since, if the total degree (in k[X]) of the coordinate
g1,u1 is s, one can scan all cycles containing any (even, non-closed) path, whose order
is at most s+ 2. The parenthetical observation in Step 3 just above illustrates why
eventually one loops back to Step 1.

This proves the surjectivity of the polar map λ̄, showing that Z is generated by
the polar syzygies.

One now proceeds to show that this map is injective.
For that, first note that, as a consequence of the surjectivity just proved and

Lemma 2.4, Z is generated by the polar syzygies coming from primitive cycles.
Therefore we wish to show that, for each q ≥ 2, the polar syzygies of degree 2(q−1)
are k-linearly independent modulo (X,Y)2Z2(q−2). Thus, let z =

∑
s ηszs, where

zs ∈ Z2(q−1) are polar syzygies coming from distinct primitive cycles (of order
2q), with ηs ∈ k, be such that z ∈ (X,Y)2Z2(q−2). We induct on q. For q = 2,
we are given that

∑
s ηszs = 0. Since we are dealing with squares, corresponding
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coordinates of distinct zs, zs′ are relatively prime. Therefore, no cancellation is
possible; hence ηs = 0 for every s.

Thus, assume that the assertion is true for polar syzygies coming from cycles of
order less than 2q. Suppose one can write∑

s

ηszs =
∑
k1

Gk1zk1 + . . . +
∑
kq−2

Gkq−2zkq−2(4)

where Gkt ∈ (X,Y)2t and zkt ∈ Z2(q−t−1) are also polar syzygies coming from
primitive cycles, for 1 ≤ t ≤ q − 3.

Now, a primitive cycle is determined by any one of its 1-factors. Moreover,
any nonzero (i, i′)-coordinate of a polar syzygy corresponding to a cycle C of G is
obtained by multiplying out all the “edges”, other than the (i, i′)th edge, of the
unique 1-factor of C containing the (i, i′)th edge. It follows that distinct cycles
zs, zs′ have distinct monomial parts on corresponding coordinates. Therefore, no
cancellation of corresponding nonzero coordinates is possible on the left-hand side of
(4); hence any nonzero coordinate on the left-hand side, say, η1, has to be cancelled
against some nonzero coordinate of the same name on the right-hand side of (4).
The latter is of the form GktFkt , where Fkt is the product of all edges (but one)
of the 1-factor of a smaller primitive cycle. Since we are looking at corresponding
coordinates, this is impossible unless the smaller cycle is obtained from z1 by means
of a chord of the cycle corresponding to z1. This gives a contradiction, since the
latter is chordless by hypothesis.

2.2. Second Betti number and complete intersections. Given a connected
graph G, let

0 → Rbr → · · · → Rb2 → Rb1 → Rb0 → J(G) → 0

be a minimal free resolution of its jacobian module over the polynomial ring R =
k[X]. The number bj = bj(J(G)) is known as the jth Betti number of the module
J(G). Clearly, b0 = n and b1 are the vertex number and the edge number of G,
respectively.

The number of primitive cycles of G will be denoted by f rank(G). Note that
f rank(G) ≥ rank(G), where rank(G) stands for the usual graph theoretic rank of
G (cf. [1]).

These numbers have a natural meaning in terms of the homology of J(G) if
G is bipartite. Let k[G] ⊂ R = k[X] denote the k-subalgebra generated by the
generators of the edge-ideal I(G). As previously, let J ⊂ k[T] denote the ideal of
polynomial relations of k[G].

The main result is the following.

Theorem 2.5. Let G be a connected bipartite graph and let

0 → Rbr Θr→ · · · → Rb2 Θ2→ Rb1 Θ1→ Rn → J(G) → 0

be a minimal free resolution of its jacobian module over the polynomial ring R =
k[X], with Θ1 = tΘ(G). Then:

(i) b2 = f rank(G).
(ii) The following conditions are equivalent:

(a) J(G) has homological dimension at most 2
(b) f rank(G) = rank(G)
(c) k[G] is a complete intersection.
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Proof. (i) By Theorem 2.3, one has µ(J) = µ(Z), and by Lemma 2.4, µ(J) =
f rank(G). Therefore, b2 (= µ(Z)) = f rank(G), as required.

(ii) (a) ⇒ (b) If J(G) has homological dimension at most 2 then, by Schanuel’s
lemma applied to the above resolution, kerΘ1 is a free homogeneous submodule of
Rb1 of rank b1− rank(Θ1) = b1−n+1 = rank(G) by Theorem 1.3 and [1]. By part
(i), it follows that b2 = rank(G).

(b) ⇒ (c) One has f rank(G) = b2 by (i). Therefore, it suffices to show that
rank(Θ2) = htJ (the codimension of the ideal J of polynomial relations of k[G]).
But since G is bipartite, one has dim k[G] = rankΦ(G) = n−1. Therefore, n−1 =
#T− htJ = b1 − htJ ; hence htJ = b1 − n+ 1 = rank(Θ2).

(c) ⇒ (a) The assumption means that µ(J) = ht(J). From part (i) (and its
proof), one knows that b2 = µ(J) and rank(Θ2) = htJ . It follows that b2 =
rank(Θ2); hence Θ2 yields an injective map.
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