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ABSTRACT: Small amounts of additives sufficiently change the structure of the
parent lattice. Boron forms dilute interstitial solid solutions in the tungsten host. In the
framework of liner density functional theory, we study the conditions of the formation of

Ž .W—B solid solutions. On the basis of the coherent potential approximation CPA , we
consider ordering tendencies, study the electronic structure, and provide total energy
calculations. Results of nonempirical calculations predict the anomalous behavior of the
coefficient of concentration dilatation of the lattice and a nonmonotonic behavior of
electron density of states at the Fermi energy with the concentration dilution. Q 1999
John Wiley & Sons, Inc. Int J Quant Chem 75: 917]926, 1999
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Introduction

n the case of many metals and alloys, smallI boron additions modify their ambient tempera-

Correspondence to: V. Liubich.
*On sabbatical stay in The Institute of Physics, Federal

University of Bahia, Salvador, Brazil.
Contract grant sponsor: Israel Science Foundation.
Contract grant number: 380r97-11.7.

Ž w x.ture properties see, e.g., 1 . In both Fe and W,
impurities such as N, O, P, S, and Si weaken the
intergranular cohesion, resulting in ‘‘loosening’’ of

Ž .the grain boundary GB . The presence of B and C,
on the contrary, enhances the interatomic interac-
tion across the GB. Boron plays a dual role in both
Fe and W; not only does its presence at GBs
enhance the integranular cohesion, but it also ac-

Ž .complishes ‘‘site competition cleaning’’ SCC by
displacing the other impurity atoms off the GB.
Microalloying with 10]50 ppm B may be an effec-
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tive way of improving the ductibility of both Fe-
w xbase alloys and W 2 . Some intermetallic alloys,

which present an intrinsic intergranular brittleness
in their undoped state, change their fracture mode
when boron-doped. In some cases—as in the B-
doped hypostoichiometric Ni Al alloys—the frac-3
ture becomes ductile. In other cases, as in FeAl
Ž .B2 alloys, even in the B-doped alloys, a brittle
fracture is observed, but it takes place in a trans-

w xgranular manner by cleavage 3, 4 .
The boron effects in metals and alloys are typi-

cally attributed to its intergranular segregation.
This hypothesis is a conclusion of experimental
measurements of some integranular boron enrich-
ment, mainly in Ni Al alloys, by Auger electron3

Ž . w xspectroscopy AES 5 . For the case of tungsten-
based solid solutions, the nonempirical calcula-
tions were used to study the influence of alloying

w xon the ductile]brittle phase transformation 2, 6 .
On the basis of these simulations, a statement was
formulated that the cohesion of a GB is believed to
be the controlling factor limiting the ductility of
high-strength metallic alloys, and particularly those
containing W. Intergranular embrittlement is usu-
ally associated with segregation of impurities at
the GBs. SCC should play an important role affect-
ing impurity distribution in W GBs. Among the
impurities analyzed, B in the GB has the lowest
energy and thus would tend to displace other
impurity atoms from the GB. Microalloying with
10]50 ppm B may be an effective way of improv-
ing tungsten’s ductility. These results are impor-
tant for understanding the fundamental physics of
intergranular embrittlement. As a result, a number
of articles were devoted to the modeling of tung-

Ž w xsten GBs in different approaches see, e.g., 7 and
.references therein . However, as far as we know,

no systematic study of the tungsten-based solid
solutions in its thermodynamic aspects is available
in the existence literature.

The purpose of our work was an extensive study
of tungsten-based solid solutions, with the empha-
sis put on the modeling of the electronic structure,
ordering tendencies, and total energy studies. The
importance of the boron presence for the bulk
properties of the interstitial solid solution is also
shown.

LDA Model

The essential requisite for such research is to
have a reliable and efficient electronic-structure

method for the calculation of the total energies and
electronic structures of the interstitial solid solu-
tions of tungsten. Within the framework of the
Hohenberg]Kohn]Sham density functional theory
Ž .DFT , the electronic structure can be efficiently
handled using a first-principles self-consistent the-
ory. DFT has wide applications to molecules and

w xsolids 8 . Even the crudest approximation, the
Ž .local density approximation LDA , to the density

functional theory has been successfully applied to
predict structural and dynamical properties of a
large variety of materials. Equilibrium volumes,
elastic constants, phonon frequencies, surface re-
construction, and magnetism are just some exam-
ples of properties which could be successfully cal-
culated for systems without particularly strong
electron correlations within the LDA. The LDA

Žusually leads to some overbidding in solids equi-
librium volumes are typically 1]3% underesti-

.mated . Considerably larger errors are found in
cases where the LDA is not sufficiently accurate;
the ionic compounds like MgO serve as examples
when the simple LDA fails.

The electronic structure of crystalline solids
could be efficiently calculated using the linear
band-structure methods. The linear muffin-tin or-

Ž .bitals LMTO method is particularly fast and effi-
cient for handling complex and large unit cells
because of the ease with which the structure-de-
pendent part and the potential-dependent part are

w xseparated out in the secular equation 9 . An im-
portant milestone in the application of the LMTO
was understanding that the original infinite-ranged
LMTO basis set can be limited only by few orbital
functions. With this advantage, the LMTO method
has the computational simplicity of the empirical
tight-binding schemes, as well as on accuracy
characteristic for a first-principles method.

LMTO in the atomic sphere approximation
Ž .ASA approach is a well-established technique to
study metals, alloys, and also perovskites and dif-
ferent phases with nontrivial and sometimes very

w xcomplicated structures 10]13 . For close-packed
metallic structures, in particular, this method con-
sistently predicts reliable and accurate results
comparable to those obtained from other sophisti-
cated LDA-based methods like the linearized aug-

Ž . w xmented plane wave LAPW 14 . The systematic
errors due to the use of ASA cancel out while
determining the ground-state energy differences,
such as formation energies. In the last years, it was
successfully applied to the study of surface alloys
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Ž w xsee, e.g., 13 . In the case of dilute alloys, the
properties of Fe embedded in V and Cr matrices

w xwas successfully studied 15 . It seems that today
this scheme is one of the most promising tech-
niques in band-structure studies due to the ability
to calculate very fast very complicated structures.
The LMTO ASA method is ideally suited to the
relatively close-packed solid solutions of the tung-
sten treated here, where one can ensure a reason-
ably small overlap between the atomic spheres.
We reduced the value of this overlap by introduc-

Ž .ing an additional interstitial ‘‘empty’’ sphere. In
the LMTO ASA, the approximation due to spheri-
cal averaging is also controlled by changing the
ratio between atomic spheres of different species.
The overlap between the spheres is defined as
Ž .S q S y d = 100rS and is less than 30%. Here,1 2 1

Ž .S and S S - S are the radii of the two overlap-1 2 1 2
ping spheres and d is the distance between them.
By incorporating the so-called combined correc-
tion, one can partly reduce the error due to a

w xspherical form of potential and charge density 9 .
To study the effects of the electronic-density

distributions in tungsten-based solid solutions on
chemical bonding, we modeled different
tungsten-based cells. The behavior of additives in
tungsten were studied on the basis of the first-
principles total-energy calculations of binary, par-
tially ordered compounds in the coherent potential

Ž .approximation CPA . The total energies were cal-
wculated for varying lattice constants i.e., Wigner-

Ž . xSeitz WS radii to determine the relative stability
of different structures and to locate the equilib-
rium lattice constant. From the total energy of the
phase and constituent elemental solids, one can
find the formation energy using the expression

EWy do p ant s EWy do p ant
f o r m t ot al

W do p antŽ .y cE q 1 y c E .t o t al t o t al

Here, c is the concentration of tungsten, EWy do p ant
t o t al

refers to the total energy per formula unit of the
crystalline phase at equilibrium lattice constants,
and EW and Edo p ant represent the total energiest o t al t o t al
of tungsten and the dopant, respectively. Follow-
ing this line, the systematic errors in total energy
caused by ASA can be eliminated effectively.

A decomposition of the total energy of a ran-
dom alloy into partial contributions

Wy do p ant Ž . Ž . Ž . Ž .E c s cE c q 1 y c E cr an d W do p ant

Ž . Ž .is not, in general, possible. E c and E cW do p ant
are the partial contribution to the total energy
from the alloy components. However, it exists in
ASA, where the total energy of an alloy with an
arbitrary configuration may be written for N atoms
in the form

N

E s « ,Ýt o t i
is1

where N is the number of atoms in the system and
« is the local contribution to thei

1
Ž . ² Ž . :E c s « c c andÝW i iNW i

1
Ž . ² Ž .Ž .:E c s « c 1 y cÝdo p ant i iNdo p ant i

total energy from an atom on the site i. Hence, we
may use ASA in calculations of total energies as
long as the geometry of the lattice is fixed. In this
case, the on-site energies are determined as the

w xaverage quantities 16 and the total energy of a
random alloy may be rewritten

1
Ž . ² Ž .:E c s « c .Ýr and iN i

Here, N and N are the number of tungstenW do p ant
and dopant atoms. N s N q N , c s N rN,W do p ant W
c is an occupation number taking on the values 1i
and 0 depending on whether site i is occupied by
tungsten or a dopant, respectively. The angle

² :brackets, , mean averaging over configurations.
Band-structure calculations based on the DFT

allow one to obtain a quantitative description of
the ground-state properties of absolutely ordered
alloys. Application of these methods to the calcula-
tions of the thermodynamic properties of partially
ordered or random alloys gives reasonable results
w x17, 18 . The most attractive feature of the single-
site CPA is the ability to apply this scheme to the
direct calculations of the electronic structure of

w xrandomly or partially ordered alloys 18 . Recent
applications of the CPA scheme show that this
method allows one to reproduce accurately the
lattice parameters, bulk moduli, and enthalpies of

Ž w x .formation see, e.g., 19 and references therein .
This accuracy is similar to the accuracy of other
local density functional methods for completely
ordered phases.
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CPA Formalism

An approach based on direct calculations of the
electronic structure of random or partially ordered

Ž .alloys is the single-site SS CPA, which gives very
similar values for the equilibrium lattice parame-
ter, bulk moduli, and enthalpies of formation to
that obtained by ordinary first-principles methods.
We present herewith only a brief introduction into
the technique of the usual SS CPA for solids with

w xseveral different sublattices 19 .
Let us consider an ordering W B alloy with kc 1yc

a-type sublattices and m b-type sublattices, where
c is the concentration of the component W. Thus,
in the completely ordered state, the alloy has the
formula W B . Next, we can suggest, for simplic-k m
ity, that all the a as well as all the b sublattices
are equivalent. To describe a partially ordered
state of the alloy, it is important to represent a

Ž .single long-range order LRO parameter h. It is
defined by

Ž .h s c y c , 1a b

where c and c are concentrations of the compo-a b

nent A on the a and b sublattices, respectively. ca

and c can be written asb

m k
Ž .c s c q h and c s h , 2a bn n

where n s k q m is the total number of sublattices
in the alloy. Each sublattice is considered a com-
pletely random alloy with corresponding concen-
trations of W and B components. Thus, in the SS
approximation, the partially ordered alloy is de-
scribed as a set of coexisting completely random
alloys.

The average one-electron Green’s function
should be determined for calculations of electronic
structure and ground-state properties. To obtain
this function, we apply the SS CPA in conjunction
with the LMTO method in the ASA. The average
one-electron Green’s function may be obtained in

Ž .the form of the Korringa]Kohn]Rostoker KKR
ASA Green’s function, which is identical to the
scattering path operator in multiple scattering the-
ory. For a complex energy z, we have

1 y13Ž . w Ž . Ž .x Ž .G z s d k R z y L k , 3i jHi j V BZBZ

Ž .where V is the volume of Brillouin zone BZ ,BZ
Ž . Ž .L k are the LMTO structure constants, and R z

is the crystal coherent-potential matrix. The sub-
scripts i and j refer to individual sublattice sites in
the unit cell. We have omitted the angular momen-

Ž .tum quantum numbers l as well as the LMTOm
representation number. The coherent-potential ma-

Ž .trix that enters Eq. 3 is block-diagonal:

R 0 ??? 01

0 R ??? 02 Ž .R s 4
??? ??? ??? ???� 00 0 ??? R n

and each diagonal element R is the coherent-i
potential function of the i sublattice. To obtain the
complete coherent-potential function, we must
solve for each sublattice the following equation:

W Ž . BR s c R q 1 y c Ri i i i i

W W Ž .q R y R G R y R , 5i i i i i i

where c is the concentration of component A andi
R k is the potential function of the k species oni
sublattice i. In the a representation of the LMTO
method, the potential function may be found in
the form

Ck y zilak Ž . Ž .R z s 6i l k k kŽ .Ž .C y z g y a q Di l i l l l l

w x k kin terms of the LMTO parameters 9 C , D andi l i l
g k obtained from the solution of the radiali l
Schrodinger equation at some fixed energy E with¨ n

an angular momentum l. Coherent-potential func-
w Ž .xtions are coupled by the definition Eq. 3 of the

coherent Green’s function, which, together with
Ž .Eq. 5 , form the nonlinear system of CPA equa-

tions that must be solved self-consistently.
We calculated the electronic-density distribu-

w xtions with the CPA LMTO code 15, 19 . This code
includes the determination of the Madelung-
energy prefactor z , which makes the CPA
LMTO results agree with those obtained by the
Connolly]Williams method on the basis of the

w xtotal energies of ordered alloys 17 . This prefactor
enters into the expression for the Madelung energy
of the alloy, and for the case of the tungsten-based
solid solution it is

2Ž .Q y QW do p ant2 Ž . Ž .E s yz e c 1 y c . 7M ad Ž .R 1
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Ž .Here, R 1 is the radius of the first coordination
shell, e is the electron charge, and the tungsten
and dopant charges are Q and Q , respec-W do p ant
tively. These charges are defined as

Q s d3rr y Z , andHW w W
SWS

Q s d3rr y Z .Hdo p ant do p ant do p ant
Sws

In these equations, S is the radius of atomicw s
sphere, Z and Z are the atomic numbers ofW do p ant
tungsten and the dopant, and r and r arew do p ant
the electronic densities of tungsten and the dopant,
respectively. A number of models could be re-

Ž .duced to Eq. 7 . The only difference will be the
w xvalue of prefactor z . In 20 , it was demonstrated

that a single value of the prefactor can be chosen
for all concentrations and values of the lattice
parameters; it varies from system to system. Ad-
vances of our CPA calculations are in the use of
the total and not one-electron energies, in the in-
clusion of charge-transfer effects in CPA, and in
our refusal to use the effective pair interactions.

Calculations

Our study was based on the analysis of elec-
tronic-density distributions for diffeent interatomic
distances, supercell configurations, and composi-
tions of an interstitial impurity. Changes in the
concentration will lead to changes of the supercell
volume and to changes in the character of the
bonding forces. Band structures of a completely
ordered tungsten-based interstitial alloy with par-
tially occupied octahedral positions

1 1 1
and0 0 0ž / ž /2 2 2

were carried out within the CPA LMTO procedure
w xbriefly outlined in the previous section 19 . The

studied structures are presented in Figure 1. With
the self-consistently obtained bands, we calculated
the equilibrium total energies of the completely
ordered phases and phases with partially occupied
sublattices. The LMTO scheme permits a localized
expansion of electronic wave functions, densities,
and derived properties by treating fragments of

w xthe extended system in the supercell approach 9 .
This approach gives a feasible methodology for

FIGURE 1. Structure of tungsten ]boron supercell.
Nos. 1, 2, and 3 define the sublattices of octahedral
interstitial positions.

self-consistently treating large systems with low
symmetry and is, thus, particularly well suited for
problems of impurities, surfaces, and interfaces
w x19, 20 .

Results and Discussion

In our calculations, we studied the behavior of
the dilute solid solutions of boron in tungsten.
According to the Hagg’s rule, we assumed that
these solutions are interstitial, because the ratio of
atomic radii of constituents is less than 0.49. Boron
atoms were distributed on one of three sublattices
of the octahedral interstitial positions of the host
matrix. As may be seen from Tables I]III, the
atomic fraction of boron did not exceed 0.167. Such

Ž .a modeling had two main aims: a to study the
tendencies of the ordering of boron atoms on one
of the interstitial site sublattices in tungsten and
Ž .b to obtain knowledge about the bonding tenden-
cies for boron atoms in tungsten media.

TABLE I
Partial total energies per cubic cell for
tungsten and boron atoms.

Atomic
( ) ( )fraction of B E in Ry E in RyW B

0.001 y16.123054 y6.137887
0.01 y16.130929 y6.118304
0.1 y16.172706 y5.878522
0.167 y16.244500 y5.742988
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TABLE II
( )Total number of states T for tungsten and boron atoms at the Fermi energy, E , and total energy,NOS F

E , per atom for W—B dilute solid solutions.tot

Atomic Fermi energy, Total energy,
( ) ( ) ( ) ( )fraction of B T W T B E in Ry E in RyNOS NOS F tot

0.001 4.959377 2.554522 0.273295 y8.056310
0.01 4.974857 2.550489 0.271708 y8.079654
0.1 5.185947 2.518177 0.196862 y8.345946
0.167 5.349266 2.480321 0.185083 y8.580559

TABLE III
Partial T for W and for different compositions of solid solutions.NOS

W BAtomic
fraction of B s p d s p d

0.001 0.624397 0.496280 3.838700 0.665179 1.653194 0.236149
0.01 0.625342 0.506733 3.842782 0.664970 1.649617 0.235902
0.1 0.649117 0.632778 3.904052 0.676672 1.612493 0.229011
0.167 0.656756 0.728383 3.964127 0.674390 1.576550 0.229382

As the first step of the calculations, we investi-
gated the structure where boron occupies in small
concentrations only the corners of one cubic primi-
tive cell of the octahedral interstitial positions. At
each stage of the calculations, that is, at all the
studied concentrations, the lattice parameter was
varied to obtain the minimal total energy. As seen
from Table I, the increase of boron concentration
has an opposite effect on the partial total energies:
The tungsten energy decreases while the boron
energy increases. The same opposite tendency is
illustrated by Table II: The total number of states
at the Fermi energy for V increases while for B it
decreases with the growth of the boron concentra-
tion. At the same time, the total energy per atom
for dilute W—B interstitial solid solutions de-
creases as well as the Fermi energy.

In Table III, we present the results of the calcu-
Ž .lations of the partial total numbers of states TNOS

for W and B atoms for different compositions of
solid solutions. The partial s- and p-T for WNOS
show the stable tendency to increase with the
rising boron concentration while s- and p-T forNOS
B decrease. This is not case for the behavior of
d-T . For W, it increases, while for boron atomsNOS
when the concentration is decreasing and at a
concentration c s 0.167, it starts to increase, show-
ing, thus, a nonmonotonic behavior. In Figure 2,
we present the dependence of the energy per atom
on the lattice parameter for two concentrations of

extremely dilute solid solutions. The presented
curves show nontrivial behavior. We may analyze
these curves in terms of the enthalpy because the
pressure]volume term in the units, which are used
for calculations, is negligibly small. By drawing a
common tangent to the curve in points A and B in
this figure, we find that, for example, for the lattice
parameter of 6.2 au and the atomic fraction of
boron equal to 0.001, the two-phase mixture of
dilute solid solutions with lattice parameters 6.14
and 6.24 au is preferable in comparison with the
one-phase state of the solid solution. This means
that, although for pressure equal to zero, the one-
phase state with the lattice parameter a s 6.1 au is
stable; when tensile stress is applied, the solid
solution decomposes into a two-phase state. When
the concentration of boron increases, the effect
weakens as shown by the dashed line in Figure 2
and vanishes at a larger concentration of boron.

Additional information may be obtained from
the study of the concentration dependence of the
total energy of extremely dilute W—B solutions.
Figure 3 and 4 present this dependency. From
Figure 3, it follows that both the energy and lattice
parameters are nonlinear functions of the concen-
tration. It may be seen in Figure 3 that at an
extremely small boron concentration the lattice pa-
rameter has an anomalous behavior. Figure 4 pre-
sents a ‘‘microscope’’ study of this part of Figure 3.
It is easy to see that the coefficient of concentration
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FIGURE 2. Dependence of the energy per atom on the lattice parameter for different atomic fractions of boron.

y1Ž .dilatation of the lattice, u s a dardc , is nega-0

tive for the atomic fraction of B until 0.006, be-
comes equal to zero for this composition, and,
after this, becomes positive and concentration-
independent.

As the second step of our calculations, we stud-
ied the different possibilities of occupations of the
sites of one sublattice of the octahedral positions of
boron atoms. The results of this study are given in
Tables IV and V. In Table IV, we show how the
occupation influences the equilibrium Wigner]

Seitz radius and the total energy of the solid solu-
tion. The presented results clearly demonstrate the

Ž .tendency to form the B2 phase CsCl type on the
sublattice of octahedral interstitial positions. This
B2 phase consists of boron atoms which occupy
the corners of the cubic cell of the sublattice while
the centers of this cell are empty. This configura-
tion is favorable in comparison with others studied
if the energies are related. In Table V, we illustrate
the influence of the changes of boron concentration
on the energy of extremely dilute interstitial solid
solutions. In these calculations, boron atoms were
homogeneously distributed on the sublattice of
octahedral interstitial positions. In Figure 5, the
total densities of states for dilute W—B alloys are

presented for different compositions. The dis-
played plots clearly demonstrate the formation of
an additional band in the low-energy region when
the boron concentration increases. This fact indi-
cates the formation of chemical bonding in the W
—B solid solution. Our study of partial DOSs of
tungsten and boron shows that this bonding is
provided mainly by the interaction of low-lying s
and d bands of tungsten with s bands of boron.

Ž .The DOS at the Fermi level, N E , is an impor-F

tant quantity as it is used for the estimation of the
electronic specific heat and the electron]photon
coupling constant and even for determining the
vibration contribution to the entropy at finite tem-

Ž .perature. The numbers of N E reflect the trendF

of metallicity in this solid solution. Figure 6 dis-
plays the behavior of the total density of states in
the vicinity of the Fermi energy. It is seen that
increase of the atomic fraction of boron leads to
decrease of the number of states at the Fermi level,
thus decreasing the degree of the metallicity in the
system. At the same time for c s 0.167, we find,B

Ž .once more, the increase of N E . This conclusionF

is confirmed by the results given in Table VI,
Ž .which shows the nonmonotonic change of N EF

as a function of the boron concentration.
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FIGURE 3. Dependence of the lattice parameter and the energy of tungsten ]boron alloy on the atomic fraction of
boron.

FIGURE 4. ‘‘Microscope’’ of Figure 3 for extremely dilute W—B solid solutions.
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TABLE IV
Total energies per atom for W—B solid solution
versus equilibrium Wigner]Seitz radius, R forws
different occupations of the sites in sublattice of
octahedral interstitial positions.

Occupation

( ) ( )R in au B B E in Ryws 1 19 to t

2.38 0 0 y8.053733
2.45 1 0 y9.413844
2.44 0.9 0.1 y9.393629
2.44 0.5 0.5 y9.359033

Summary

In this article, we studied the electronic struc-
ture and the total energy characteristics of an ex-
tremely dilute interstitial tungsten]boron solid so-
lution. We discussed the tendencies of chemical
bonding in such solutions and showed the possi-
bility to form some type of ordering on the sublat-
tice of interstitial octahedral positions. We pre-

TABLE V
Total energies per atom in W—B solid solutions for
different concentrations of boron.

Total energy,Wigner ]Seitz
Occupation Eradius, tot

( ) ( )R in au B B in Ryws 1 19

2.38 0 0 y8.053733
2.38 0.001 0.001 y8.056310
2.38 0.01 0.01 y8.079654
2.38 0.2 0.2 y8.579468

sented the results of nonempirical calculations
which predict the anomalous behavior of the coef-
ficient of concentration dilatation of the lattice and
formation of a two-phase mixture in these solid
solutions when external tensile stress is applied.
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FIGURE 5. Total density of states in dilute interstitial W—B solid solutions for different atomic fractions of boron.
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FIGURE 6. The same as Figure 5 in the vicinity of the Fermi energy.

TABLE VI
( )Dependence of N E on atomic fraction of boron.F

Atomic
( ) ( )fraction of B E in Ry N EF F

0.001 0.273 10.307
0.01 0.271 10.476
0.1 0.196 4.112
0.167 0.185 4.945
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