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ABSTRACT: We present a study of the instability and convergence of Hartree–Fock
(HF) ab initio solutions for the diatomic systems H2, LiH, CH, C2, and N2. In our study, we
consider real molecular orbitals (MOs) and analyze the classes of single-determinant
functions associated to Hartree–Fock–Roothaan (HFR) and Hartree–Fock–Pople–Nesbet
(HFPN) equations. To determine the multiple HF solutions, we used either an SCF
iterative procedure with aufbau and non-aufbau ordering rules or the algebraic method
(AM). Stability conditions were determined using TICS and ASDW stability matrices,
derived from the maximum and minimum method of functions (MMF). We examined the
relationship between pure SCF convergence criterion with the aufbau ordering rule, and
the classification of the HF solution as an extremum point in its respective class of
functions. Our results show that (i) in a pure converged SCF calculation, with the aufbau
ordering rule, the solutions are not necessarily classified as a minimum of the HF
functional with respect to the TICS or ASDW classes of solutions, and (ii) for all studied
systems, we obtained local minimum points associated only with the aufbau rule and the
solutions of lower energies. c© 2000 John Wiley & Sons, Inc. Int J Quant Chem 76: 600–610, 2000
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MULTIPLICITY, INSTABILITY, AND SCF CONVERGENCE

1. Introduction

I nstabilities in Hartree–Fock (HF) solutions and
their consequences have been studied by several

authors in many versions [1 – 3]. Extremum suffi-
cient conditions for the HF problem were formu-
lated initially by Thouless [1] and Adams [2]. Cizek
and Paldus [4] introduced singlet and triplet insta-
bility concepts. Löwdin et al. [5] deduced stability
criteria for the projected HF problem and related
their approach with Cizek and Paldus’s results.
Fukutome [6], using group theory, proposed a gen-
eral classification for HF instabilities. Also, it is pos-
sible to obtain all classes of the HF instabilities using
concepts of functional analysis [7, 8]. On the other
hand, the usual procedure to resolve the HF equa-
tion, the self-consistent field (SCF) method, in some
cases, presents convergence problems. Stanton [9]
introduced an intrinsic numerical convergence crite-
rion for the pure closed-shell SCF calculations, that
is, SCF calculation without use of any algorithm to
enforce convergence.

In this context, Facelli and Contreras [10] pre-
sented a relation between instabilities of the closed-
shell HF wave functions and Stanton’s criterion [9].
In a subsequent article [11], those authors showed a
relation among the convergence in the unrestricted
HF method (UHF), SCF calculations, and Löwdin’s
stability condition [5]. In this work, we present some
comments and numerical results about this ques-
tion. This article is organized as follows: In Section 2,
we present the methodology that we have used and
a résumé of the theory; Section 3 contains our re-
sults, and Section 4, our conclusions.

2. Theory

2.1. MULTIPLICITY OF HF SOLUTIONS

The HF equation is a nonlinear equation ow-
ing to its SCF character and, therefore, it presents,
in principle, several solutions. Besides the usual
SCF method for solving the HF equation, in LCAO
(linear combination of atomic orbitals) formula-
tion, there is an equivalent procedure, the algebraic
method (AM) [12], developed for solving an alge-
braic system of nonlinear equations in the LCAO
coefficients Cuu′ . The general AM procedure is a
computationally different approach, which, unlike
the usual iterative procedure SCF, does not use or-
dering rules. For the Hartree–Fock–Roothaan (HFR)

closed-shell problem, it is based on the following
considerations: (i) The equations of the algebraic
system are

Fµ′,ν′ =
m∑
µν

Cµµ′Cνν′hµν +
N∑

i= 1

m∑
µνλσ

Cµµ′CλiCνν′Cσ i

× [2〈µλ|νσ 〉 − 〈µλ|σν〉] = 0, (2.1)

withµ′ < ν ′. The symbol i stands for occupied mole-
cular orbitals (MOs) and

Sµ′,ν′ =
m∑
µν

Cµµ′Cνν′Sµν = δµ′ν′
µ′ ≤ ν ′; µ′, ν ′ = 1, . . . , m, (2.2)

where Sµν , hµν , and 〈µλ|νσ 〉 are the overlap integral,
one-electron integral, and two-electron integral,
respectively; µ denotes atomic orbitals (AOs),
and µ′, (MOs). (ii) The orbital energies εµ′ are given
by the diagonal elements Fµ′ ,µ′ . (iii) Equations (2.1)
and (2.2) constitute a system of m2 independent
nonlinear algebraic equations in the m2 variables
Cuu′ ; this algebraic equation system is equivalent
to the canonical integrodifferential HFR equations
and can be solved using, for instance, a quadrat-
ically convergent Newton-like method [15]. Each
solution of this system corresponds to a set of
m vectors Cµ′ = (C1µ′ , C2µ′ , . . . , Cmµ′ ), where we
have µ′ = 1, 2, . . . , N for the occupied molecular
orbitals and µ′ = N + 1, . . . , m for the respective
set of virtual molecular orbitals. The N occupied
molecular orbitals are not necessarily related to the
lowest orbital energies εµ′ or, in other words, do
not necessarily satisfy the aufbau principle. (iv) We
define the occupancy scheme in the AM procedure
by the relative order of the N occupied MO energies
in the increasing ordered set of the m MO (occupied
+ virtual) energies. Unlike the SCF procedure, the
occupancy scheme in the AM procedure is only
known at the end of the calculus.

For the Hartree–Fock–Pople–Nesbet (HFPN)
equations, the AM procedure gives a similar alge-
braic system [13] with 2m2 independent nonlinear
equations. The occupancy scheme for each set of
spin molecular orbitals is defined in the same way
as that for the HFR case.

In the usual iterative SCF procedure, it is also
possible to obtain canonical converged RHF or UHF
solutions which do not obey the aufbau principle of
occupation. It is possible to obtain these non-aufbau
solutions if at each step of the iterative procedure
we systematically leave unfilled one or more MOs
with a lower orbital energy and replace them by oth-
ers with greater orbital energies. The final scheme
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of occupation is determined by the ordering rule
(based on the m relative MO orbital energies) used
to fill the occupied moleculars which are used to
construct the Fock matrix at each step of the it-
erative procedure. This simple strategy to obtain
self-consistent non-aufbau solutions has the draw-
back to generate, in many cases, a divergent or
oscillatory process. We can take advantage of these
nonconvergent processes using their nonconverged
LCAO coefficients as starting points for the AM
procedure. It is important to note that different con-
verged solutions can be obtained if we start the SCF
or the AM procedure with different initial guesses
for the LCAO coefficients. In this work, the different
initial guesses for the AM procedure are taken as the
nonconverged LCAO coefficients generated at some
step of nonconvergent SCF procedures with differ-
ent ordering rules. In this way, it is possible to obtain
a set of converged solutions with different occupa-
tion schemes.

As related in the literature, there are HF solutions
which are not obtained using the SCF procedure
(pure or not) but they can be determined using
the AM procedure. So, to analyze some results pre-
sented by Stanton, Contreras, and Facelli about the
SCF solutions, we shall consider, in the calculations,
both the SCF and AM procedures [12, 13].

2.2. STABILITY AND CONVERGENCE OF
HF SOLUTIONS

The HF equation is a necessary condition equa-
tion (first-order necessary condition) for the exis-
tence of extremum in a variational problem. Speci-
fically, any HF solution should be a minimum,
maximum, or saddle point of the electronic energy
functional:

E(9) = 〈9|Ĥ|9〉〈9|9〉 , (2.3)

where Ĥ is the Hamiltonian of the system and 9 is
a trial monodeterminantal function.

The kind of HF extremum is determined
from sufficient conditions (second-order condi-
tions), which can be presented as a matrix called
stability matrix. In this context, the kind of ex-
tremum is determined by an analysis of the signs
of stability matrix eigenvalues {λi} associated with
the HF solution. If all λi > 0, then the extremum is
a local minimum; if all λi < 0, then the extremum
is a local maximum. Otherwise, the extremum is a
saddle point.

Stanton’s criterion [9] for intrinsic numerical con-
vergence in closed-shell SCF calculation considers a

matrix M and a matrix Q, given in Stanton’s nota-
tion, as

M2,ij =
∑
r,s

Qij;rsM1,rs (2.4)

Qij;rs = − (4〈ir|js〉 − 〈ij|rs〉 − 〈ij|sr〉)√
(εi − εj)(εr − εs)

, (2.5)

where the Q matrix is formed by the exact occu-
pied MOs i and r and by the virtual MOs j and s,
respectively. The matrix Mn represents the error in
the wave function at the n-th cycle of the SCF pro-
cedure. More specifically, Mn,rs represents the error
due to the contamination of the occupied orbital r by
the virtual orbital s at the n-th SCF iteration. Equa-
tion (2.4) governs the propagation of error from one
SCF iteration to the next. The convergence criterion
is given in terms of the largest eigenvalue |λmax| of
the matrix Q. The SCF procedure is intrinsically con-
vergent if |λmax| < 1.

In the comment of Facelli and Contreras [10]
about Stanton’s article, those authors have estab-
lished a relation between the eigenvalues of Q,
given by Eq. (2.5), and the eigenvalues of the sta-
bility matrix E (Cizek–Paldus singlet stability ma-
trix [4]), which is written, in Stanton’s notation, as

Eij;rs = (εi − εj)δirδjs

+ (4〈ir|js〉 − 〈ij|rs〉 − 〈ij|sr〉). (2.6)

Facelli and Contreras [10] affirmed that when the
Stanton’s convergence criterion [Eq. (2.5)] is satis-
fied, the singlet stability condition [Eq. (2.6)] is also
satisfied. To obtain this result, they supposed that
the aufbau principle is followed and wrote the ma-
trix Q as the product between a symmetric matrix S
and a diagonal positive matrix D given, respec-
tively, by

Smk;rs = −
(
4〈mr|ks〉 − 〈mk|rs〉 − 〈mk|sr〉) (2.7)

Dij;mk = (εi − εj)−1δjkδim. (2.8)

In terms of D and S, the following expressions are
obtained for Q and E:

Q = D1/2SD1/2 (2.9)
E = D−1/2(1−D1/2SD1/2)D−1/2. (2.10)

Hence, they noted that if all eigenvalues of
D1/2SD1/2 are smaller than unity in absolute value,
those corresponding to the matrix 1 − D1/2SD1/2

will be positive, and the matrix E will have posi-
tive eigenvalues also, since a pre- and post-multi-
plication by D−1/2 does not modify the sign of
its eigenvalues. In consequence, as their result be-
comes a condition for the existence of a stable singlet
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closed-shell SCF wave function, they concluded that
“if the classical algorithm converges, then one can be sure
that the corresponding closed-shell energy is a minimum
in allowed space of singlet functions.” In a second arti-
cle [11], those authors extended their conclusion for
a general one-determinantal wave function which
satisfies the aufbau principle.

In his article, Stanton [9] made a series of sym-
metry considerations, not mentioned in the work of
Contreras and Facelli, about the choice of SCF start-
ing orbitals, the symmetry of the final solution, and
his criterion for intrinsic numerical convergence. If
the desired final solution has completely broken
symmetry or if we start the SCF procedure with
initial orbitals without any symmetry character, his
criterion holds with full rigor. The final SCF will di-
verge unless |λmax| of its respective Q matrix is less
than 1. If the final SCF solution presents any sym-
metry in its MOs, it is always possible to make a
symmetry blocking decomposition of the Q matrix.
Then, in the Mn,rs error matrix, there will be blocks
connecting the errors propagated between orbitals
of the same symmetry species and blocks connect-
ing the propagation of errors between orbitals of
different symmetries or, in other words, symmetry
mixing blocks. In this case, if we start the SCF pro-
cedure with orbitals symmetrically adapted, it is
equivalent to start with zero elements in the mix-
ing blocks. These errors will continue to be zero
during the interative procedure due to the resul-
tant symmetry of the Fock matrix. The consequence
of this last consideration is that the presence of Q
eigenvalues greater than 1 in absolute value are not
implicated in an intrinsically divergent process if we
start the SCF procedure with symmetrically adapted
orbitals, or containing some species of symmetry,
and these eigenvalues are associated with the cor-
respondent symmetry mixing blocks. It is perfectly
possible that in a pure converged SCF procedure an
eigenvalue associated to a symmetry mixing block
of the Q matrix has a value greater than 1. It is
easy to see in Eq. (2.10) that, in this case, the sta-
bility matrix E will have at least one eigenvalue less
than 1 and, consequently, the final solution will be
not classified as a minimum in the respective space
of functions associated to the stability matrix.

In the following section, to analyze the Facelli
and Contreras conclusion, we present a numerical
study about the relation between the SCF conver-
gence problem and the stability of the HF real solu-
tion in HFR and HFPN calculations without use of
spacial symmetry restrictions.

3. Results

We present results for ab initio calculations. We
use the GAMESS [14] code in conjunction with our
own computer codes [12, 13, 15] for the AM calcu-
lations and stability analysis. We consider H2, LiH,
CH, C2, and N2 diatomic systems, at their equilib-
rium interatomic distances, without use of any point
symmetry condition. For closed-shell systems, the
equilibrium interatomic distance was obtained us-
ing the RHF method, and for open-shell systems,
using the UHF method. For H2 systems, we used
a triple-zeta basis with six basis functions, and for
other systems, we used a minimal basis STO-6G.

Our studies concern the instabilities associated
with two classes of solutions in Fukutome classi-
fication [6]: the time-reversal invariant closed-shell
solutions (TICS) associated with the HFR functional,
which are eigenfunctions of Sz and S2 operators, and
the axial spin density wave solutions (ASDW) asso-
ciated with the HFPN functional, which are eigen-
functions of Sz, but not of S2 operators. These two
classes are associated with one-determinantal solu-
tions formed by real spin MOs and are connected
only to different symmetry restrictions upon spin.
No spacial symmetry restrictions in the Fock matri-
ces are imposed. An RHF solution can be regarded
as a special case of a UHF solution when the α set of
the LCAO coefficients have the same value of the
β set and we can consider the space of functions
associated with the HFR functional as a subspace
of the space associated with the HFPN functional.
A solution belonging to the TICS/RHF class can be
characterized as a stationary point within the HFR
functional space (by the TICS stability matrix) or
within the HFPN functional space (by the ASDW
stability matrix).

Our calculations were done using the pure
SCF procedure with aufbau and non-aufbau (imple-
mented by us in the GAMESS code) schemes (see
Section 2.1), for HFR and HFPN equations. For ini-
tial SCF MOs, we used those obtained from the
GAMESS’s Extended Huckel option, which nor-
mally leads to a set of initial molecular orbitals with
σ or π symmetry character. The accuracy of all SCF
calculations is less than 10−5 in the density matrix.
For the solutions which present a saddle-point char-
acter, the accuracy was increased to 10−10. In some
cases, where pure SCF procedure with the aufbau
scheme did not reach convergent solutions, we used
routines to enforce SCF convergence. In other cases,
when an SCF calculation did not reach convergent
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TABLE I
Multiple UHF/HFPN solutions for H2.

Solution Total energy Occupancy Extremum 〈S2〉 Method

1 −1.128029 (1) (1) Minimum 0.0 SCF
2 −0.690646 (2) (1) SP (1) 1.0 AM
3 −0.555071 (2) (1) SP (2) 0.977 AM
4 −0.279593 (3) (1) SP (3) 1.0 AM
5 −0.060009 (2) (2) SP (2) 0.0 SCF

Interatomic distance Re = 0.7315368 Å. Total energy is given in Hartrees. Occupancy means the MO occupancy scheme—in the
first parentheses, alpha molecular spin–orbital occupancy, and in the second parentheses, beta molecular spin–orbital occupancy.
The ASDW stability matrix is used to characterize the extremum. The notation SP(X) means a saddle point with X stability matrix
eigenvalues less than zero.

solutions or presented an oscillatory behavior, we
used the AM discussed above with the nonconver-
gent SCF–LCAO coefficients as a starting point. The
accuracy of all AM calculations is less than 10−7 in
the LCAO expansion coefficients. We used the sta-
bility matrices for TICS and ASDW solutions [6 – 8]
in order to characterize the nature of the HF solu-
tion as an extremum point. For H2, LiH, C2, and N2

closed-shell systems, we calculated Q Stanton’s ma-
trix eigenvalues of the solutions belonging to TICS
class, found by an aufbau RHF/SCF procedure, pure
or not. We took care of determining the solutions
with an accuracy of 10−10 in density matrix in order
to apply Stanton’s criterion.

The results below present several converged HF
solutions that we have found. In all tables, the
total energy is given in Hartrees, and occupancy
scheme means MO occupancy, where in the first
parentheses we present alpha molecular spin orbital
occupancy, and, in the second parentheses, the cor-
respondent beta molecular spin orbital occupation
(see Section 2.1). The notation SP(X) means a sad-
dle point with X stability matrix eigenvalues less
than zero. Solutions classified as minimum∗ have
all eigenvalues of the stability matrix greater than

zero except one which is zero (a zero eigenvalue in-
dicates that there exists a parameter for which the
energy value is independent at least up to the sec-
ond order [3]).

We present in Table I multiple UHF/HFPN solu-
tions for H2 with 〈Sz〉 = 0.0 and interatomic distance
Re = 0.7315368 Å. The characterization of the type
of extremum for each solution was made using the
corresponding ASDW stability matrix. Solutions 1
and 5 belong to TICS class (see Table II). The min-
imum aufbau solutions were obtained using pure
SCF procedure.

In Table III we present some multiple UHF/
HFPN solutions for LiH, with 〈Sz〉 = 0.0 and inter-
atomic distance Re = 1.5065913 Å. The characteriza-
tion of the type of extremum for each solution was
made using the corresponding ASDW stability ma-
trix. Again, we found that the minimum extremum
point is an aufbau solution and was determined us-
ing pure SCF calculation for the HFPN equations.
But for this system, we found two other aufbau so-
lutions (see solutions 2 and 3) using the AM proce-
dure; these solutions are identified as saddle points.
Solutions 6, 7, and 9 belong to the TICS class. They
were obtained by the pure RHF–SCF method and

TABLE II
Multiple RHF solutions for H2.

Solution Total energy Occupancy Extremum 〈S2〉 Method

1 −1.128029 (1) Minimum 0.0 SCF
2 −0.060009 (2) SP (1) 0.0 SCF

Interatomic distance Re = 0.7315368 Å. Total energy is given in Hartrees. Occupancy means MO occupancy scheme. The TICS
stability matrix is used to characterize the extremum. The notation SP(X) means a saddle point with X stability matrix eigenvalues
less than zero.
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TABLE III
Multiple UHF/HFPN solutions for LiH, 〈Sz〉 = 0.0.

Solution Total energy Occupancy Extremum 〈S2〉 Method

1 −7.953470 (1,2) (1,2) Minimum 0.0 SCF
2 −7.835055 (1,2) (1,2) SP (1) 0.924 AM
3 −7.792617 (1,2) (1,2) SP (2) 1.0 AM
4 −7.320230 (1,3) (1,3) SP (3) 1.0 AM
5 −7.317940 (1,3) (1,3) SP (4) 1.0 AM
6 −7.317221 (1,3) (1,3) SP (4) 0.0 SCF
7 −7.284190 (1,3) (1,3) SP (4) 0.0 AM
8 −7.133688 (1,3) (1,3) SP (6) 1.0 AM
9 −6.852158 (1,6) (1,6) SP (4) 0.0 AM

10 −5.873923 (2,3) (1,2) SP (2) 1.0 SCF
11 −5.802609 (2,3) (1,2) SP (3) 1.032 AM

Interatomic distance Re = 1.5065913 Å. Total energy is given in Hartrees. Occupancy means MO occupancy scheme—in the
first parentheses, alpha molecular spin–orbital occupancy, and in the second parentheses, beta molecular spin–orbital occupancy.
The ASDW stability matrix is used to characterize the extremum. The notation SP(X) means a saddle point with X stability matrix
eigenvalues less than zero.

the AM procedure and characterized using the TICS
stability matrix (Table IV).

For H2 and LiH aufbau SCF solutions belonging
to the TICS class, we found that all Q Stanton’s ma-
trix eigenvalues are less than 1 in absolute value. In
these cases, there is not any intrinsic numerical di-
vergence. This is in accordance with the fact that
these solutions were found by a pure SCF proce-
dure.

In Table V, we present some UHF/HFPN solu-
tions for LiH, with 〈Sz〉 = 1.0 and the same inter-
atomic distance as above; these solutions belong to
the ASDW class. Result 1 is a minimum aufbau solu-
tion and was determined by the pure SCF method;
solution 2 also is an aufbau solution but it has been
obtained by the AM procedure and is classified as
a saddle point. For both, 〈Sz〉 = 0.0 and 〈Sz〉 = 1.0,

we obtained only one minimum extremum point for
each class of solutions.

Table VI contains some multiple UHF solutions
for CH, with 〈Sz〉 = 0.5 and interatomic distance
Re = 1.1380338 Å; these solutions belong to the
ASDW class and were obtained by HFPN equa-
tions. We note that in this case the pure SCF method
gives an aufbau solution which is not characterized
as a minimum, in the ASDW class of solutions,
but as a saddle point. This result contradicts Facelli
and Contreras’ conclusion [11]. Using the AM pro-
cedure, we obtained another aufbau solution with
energy less than that determined from pure SCF
method and this AM solution is classified as a min-
imum. It is possible to find this minimum using
the SCF method, but the only way we found to do
this is by the utilization of algorithms to enforce

TABLE IV
Multiple RHF solutions for LiH, 〈Sz〉 = 0.0.

Solution Total energy Occupancy Extremum 〈S2〉 Method

1 −7.953470 (12) Minimum 0.0 SCF
2 −7.317221 (13) SP (1) 0.0 SCF
3 −7.284190 (13) SP (1) 0.0 AM
4 −6.852158 (16) SP (4) 0.0 AM

Interatomic distance Re = 1.5065913 Å. Total energy is given in Hartrees. Occupancy means MO occupancy scheme. The TICS
stability matrix is used to characterize the extremum. The notation SP(X) means a saddle point with X stability matrix eigenvalues
less than zero.
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TABLE V
Multiple UHF/HFPN solutions for LiH, 〈Sz〉 = 1.0.

Solution Total energy Occupancy Extremum 〈S2〉 Method

1 −7.849592 (123) (1) Minimum 2.0 SCF
2 −7.803801 (123) (1) SP (2) 2.0 AM
3 −7.375723 (134) (1) SP (2) 2.0 AM
4 −7.151784 (135) (1) SP (5) 2.0 AM

Interatomic distance Re = 1.5065913 Å. Total energy is given in Hartrees. Occupancy means MO occupancy scheme—in the
first parentheses, alpha molecular spin–orbital occupancy, and in the second parentheses, beta molecular spin–orbital occupancy.
The ASDW stability matrix is used to characterize the extremum. The notation SP(X) means a saddle point with X stability matrix
eigenvalues less than zero.

the convergence in conjunction with a very specific
choice of the starting LCAO coefficients. Other so-
lutions were obtained by the AM procedure and all
are classified as saddle points. Solution 8 presents a
non-aufbau occupancy and a lower energy than that
of solution 9 with aufbau occupancy.

Table VII refers to the CH system and UHF/
HFPN equations, but with 〈Sz〉 = 1.5 and the same
interatomic distance Re = 1.1380338 Å. Here, the
pure SCF method leads to an aufbau solution which
is classified as a minimum and presents an en-
ergy lower than that of any solution obtained with
〈Sz〉 = 0.5. The AM procedure exhibits other auf-
bau solutions (see solutions 2, 3, and 7) classified as
saddle points. It is interesting to note that the non-
aufbau solutions 4 and 6 present an energy lower
than that of the aufbau solutions 5 and 7, respec-
tively.

The fact that we have found, for systems LiH
and CH, many converged solutions which present
an aufbau occupancy using the AM procedure does
not signify that these solutions cannot be obtained
by the SCF procedure. It is probable that with a
specific choice for the initial guess (like different
filling schemes for the π-orbitals) several among
these solutions can be recovered using a pure aufbau
SCF procedure. Our results showing that these solu-
tions were obtained by the AM procedure reflect the
methodology which we used (described at the end
of Section 2.1), where unconverged solutions using
the SCF procedure with different ordering rules are
used as starting points for the AM procedure.

In Table VIII, we present multiple UHF/HFPN
solutions for C2, with 〈Sz〉 = 0.0, interatomic dis-
tance Re = 1.2337470 Å, and accuracy less than
10−8 in the density matrix. In all calculations, we

TABLE VI
Multiple UHF/HFPN solutions for CH, 〈Sz〉 = 0.5.

Solution Total energy Occupancy Extremum 〈S2〉 Method

1 −38.149624 (1234) (123) Minimum∗ 1.081 AM
2 −38.145699 (1234) (123) SP (1) 0.753 SCF
3 −38.062958 (1234) (123) SP (1) 1.762 AM
4 −38.058218 (1234) (123) SP (2) 1.809 AM
5 −37.990395 (1234) (123) SP (2) 0.762 AM
6 −37.799653 (1234) (123) SP (3) 0.908 AM
7 −37.672278 (1234) (123) SP (4) 0.750 AM
8 −37.654388 (1234) (124) SP (2) 1.766 AM
9 −37.639109 (1234) (123) SP (3) 1.750 AM

Equilibrium interatomic distance Re = 1.1380338 Å. Total energy is given in Hartrees. Occupancy means MO occupancy scheme—
in the first parentheses, alpha molecular spin–orbital occupancy, and in the second parentheses, beta molecular spin–orbital
occupancy. The ASDW stability matrix is used to characterize the extremum. The notation SP (X) means a saddle point with X
stability matrix eigenvalues less than zero.
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TABLE VII
Multiple UHF/HFPN solutions for CH, 〈Sz〉 = 1.5.

Solution Total energy Extremum 〈S2〉 Method

1 −38.167209 (12345) (12) Minimum 3.755 SCF
2 −37.776728 (12345) (12) SP (1) 3.797 AM
3 −37.703512 (12345) (12) SP (1) 3.750 AM
4 −37.634366 (12345) (13) SP (2) 3.750 AM
5 −37.357585 (12345) (12) SP (3) 4.750 AM
6 −37.288682 (12345) (14) SP (4) 4.740 AM
7 −37.285022 (12345) (12) SP (4) 3.750 AM
8 −36.737326 (12346) (16) SP (5) 3.750 AM

Interatomic distance Re = 1.1380338 Å. Total energy is given in Hartrees. Occupancy means MO occupancy scheme—in the
first parentheses, alpha molecular spin–orbital occupancy, and in the second parentheses, beta molecular spin–orbital occupancy.
The ASDW stability matrix is used to characterize the extremum. The notation SP(X) means a saddle point with X stability matrix
eigenvalues less than zero.

have used the pure aufbau SCF procedure only. Us-
ing HFPN equations and the ASDW stability matrix,
we obtained seven solutions, where four are ASDW
(nonsinglet) solutions and three are TICS (singlet)
solutions. Only one solution is a minimum and only
one is a minimum∗; all other solutions are saddle
points, this fact again contradicts Facelli and Con-
treras’ theoretical results [11]. An RHF calculation
using a pure SCF aufbau procedure was given the
same three singlet solutions, presented in Table IX,
but in this case, using the TICS stability matrix,
one is identified as a minimum∗ and two as sad-
dle points, instead of three ASDW saddle points.
The solution classified as a minimum∗, in the TICS
class, was found only after a careful choice of the

TABLE VIII
Multiple UHF solutions for C2, with 〈Sz〉 = 0.0.

Solution Total energy Extremum 〈S2〉

1 −75.302267 Minimum 1.780
2 −75.245462 Minimum∗ 1.236
3 −75.214829 SP (1) 1.067
4 −75.178787 SP (2) 1.0
5 −75.162885 SP (3) 0.0
6 −75.162719 SP (5) 0.0
7 −75.136109 SP (4) 0.0

Interatomic distance Re = 1.2337470 Å and accuracy less
than 10−8 in the density matrix. All calculations were per-
formed with the pure SCF aufbau procedure only. Total
energy is given in Hartrees. The ASDW stability matrix is used
to characterize the extremum. The notation SP(X) means a
saddle point with X stability matrix eigenvalues less than zero.

starting LCAO coefficients for the pure SCF proce-
dure. We found that the Q Stanton’s matrices for
TICS solutions 2 and 3, classified as saddle points
(see Table IX), present 2 and 1 eigenvalues greater
than 1, respectively. The existence of these eigenval-
ues greater than 1 does not implicate in a numerical
intrinsic divergence in the aufbau SCF procedure.
These results are in accordance with the general
equation (2.10) found by Facelli and Contreras but
are in disagreement with their conclusion, that is,
that the convergence of a pure aufbau SCF procedure
implicates, necessarily, that the found solution is a
minimum in its respective class.

In Table X, we present multiple UHF/HFPN so-
lutions for N2, with 〈Sz〉 = 0.0. They were calculated
using the pure SCF aufbau procedure, interatomic
distance Re = 1.1366370 Å, and accuracy less than
10−8 in the density matrix. In this case, we obtained
eight solutions, where five are ASDW (nonsinglet)

TABLE IX
Multiple RHF solutions for C2, with 〈Sz〉 = 0.0.

Solution Total energy Extremum 〈S2〉

1 −75.162885 Minimum∗ 0.0
2 −75.162719 SP (2) 0.0
3 −75.136109 SP (1) 0.0

Interatomic distance Re = 1.2337470 Å and accuracy less
than 10−8 in the density matrix. All calculations were per-
formed with the pure SCF aufbau procedure only. Total
energy is given in Hartrees. The TICS stability matrix is used
to characterize the extremum. The notation SP(X) means a
saddle point with X stability matrix eigenvalues less than zero.
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TABLE X
Multiple UHF solutions for N2, with 〈Sz〉 = 0.0.

Solution Total energy Extremum 〈S2〉

1 −108.548190 Minimum 0.182
2 −108.547232 SP (1) 0.0
3 −108.275283 SP (1) 1.148
4 −108.260206 SP (2) 1.0
5 −108.053861 SP (2) 2.0
6 −107.937910 SP (3) 1.108
7 −107.876369 SP (7) 0.0
8 −107.866282 SP (6) 0.0

Interatomic distance Re = 1.1366370 Å and accuracy less
than 10−8 in the density matrix. All calculations were per-
formed with the pure SCF aufbau procedure only. Total
energy is given in Hartrees. The ASDW stability matrix is used
to characterize the extremum. The notation SP (X) means a
saddle point with X stability matrix eigenvalues less than zero.

solutions and three are TICS (singlet) solutions.
Only one solution is a minimum and all other solu-
tions are saddle points. As in the case of C2 system,
this result is in disagreement with Facelli and Contr-
eras affirmation. An RHF calculation gave the same
three singlet solutions (Table XI), and using the
TICS stability matrix, one is identified as a mini-
mum and the other two as saddle points, instead of
three saddle points obtained using the ASDW stabil-
ity matrix. A calculation of the Q Stanton’s matrix
eigenvalues for RHF/TICS solutions presented in
Table XI shows that solution 1 has |λmax| < 1 and
solutions 2 and 3 have two eigenvalues greater than
the one associated to their respective Q matrix; this
fact, however, does not implicate an intrinsic nu-
merical divergence. The existence of Q eigenvalues
with |λmax| > 1 in pure converged SCF procedures
does not signify that our results are in disagreement

TABLE XI
Multiple RHF solutions for N2, with 〈Sz〉 = 0.0.

Solution Total energy Extremum 〈S2〉

1 −108.547232 Minimum 0.0
2 −107.876369 SP (2) 0.0
3 −107.866282 SP (2) 0.0

Interatomic distance Re = 1.1366370 Å and accuracy less
than 10−8 in the density matrix. All calculations were per-
formed with the pure SCF aufbau procedure only. Total
energy is given in Hartrees. The TICS stability matrix is used
to characterize the extremum. The notation SP (X) means a
saddle point with X stability matrix eigenvalues less than zero.

with Stanton’s criterion for intrinsic numerical con-
vergence. The explanation why we do not observe,
in these cases, an intrinsic divergence is directly con-
nected with the symmetry considerations made by
Stanton and commented on by us in Section 2.2.

4. Conclusions

In the study of convergence criteria for the clas-
sical SCF procedure, it is known in the literature
that (i) the SCF procedure is intrinsically numerical
convergent if |λmax| < 1, where λmax is the largest
eigenvalue in the absolute value of the matrix Q
introduced by Stanton [9]; (ii) if the classical SCF
algorithm converges, then one can be sure that the
corresponding closed-shell energy is a minimum
in the allowed space of singlet functions [10]; and
(iii) the two statements above can be extended for
a general one-determinantal wave function which
satisfies the aufbau principle [11]. To verify these
theoretical criteria, we make some calculations on
H2, LiH, CH, C2, and N2 systems. An analysis of
our results (see Tables I–XI) shows that the pure
SCF iterative procedure with the aufbau scheme can
converge to solutions classified as saddle points.
As a consequence of our results, we can conclude
that the Facelli and Contreras affirmation, that is,
that in a pure SCF converged aufbau calculation, the
solution is necessarily a minimum, is not valid in gen-
eral. It is important to make some comments about
in what context we disagree with the conclusion
cited above. First, we agree that in a pure SCF con-
verged aufbau calculation the solution obtained will
be a minimum in a certain subspace of Fukutome’s
classes of one-determinantal functions (where only
restrictions upon spin are considered). The subspace
in question is determined by the additional con-
straints used, implicitly or not, in the variational
process used to determine the converged solution.
To achieve this conclusion that the final solution is
a minimum, it is necessary that, in Eq. (2.10), the
stability matrix E considers all the constraints in-
cluded in the variational process. In a pure SCF
aufbau procedure, without an explicit spacial sym-
metry restriction, the implicit constraints included
in the variational process are directly connected
with the symmetries contained in the MOs taken as
an initial guess. In this way, we can consider that
the conclusion of Contreras and Facelli is valid, in
general, if one assumes that the initial guesses have
a complete symmetry breaking in their MOs. In
this sense, our numerical study reinforces Löwdin’s
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standpoint [16] that it is essential to understand in
greater detail the connection between the final SCF
solution and the starting point of the SCF procedure.
In the context of multiple solutions, it is natural that
we characterize these solutions in the same space
or subspace. Fukutome’s classes TICS and ASDW,
and their respective stability matrices, are natural
ones for RHF and UHF calculus, respectively. Our
results show that although we can consider all HF
solutions, obtained by a pure SCF aufbau procedure,
as minimum points in their respective subspaces,
when evaluated in the same space (associated to
one of Fukutome’s eight classes and where only
constraints upon spin are imposed), the change to
saddle points is a behavior that we cannot consider
as an exception. This result is not obvious princi-
pally if we consider that very few minima were
found for all systems, considering both TICS and
ASDW classes of solutions. In light of our results,
we can cite two advantages in evaluating all the
multiple HF solutions in the same functional space:
(i) detection of a poor initial guess, or the pres-
ence of another solution with lower energy, by the
inspection of a saddle-point character in the con-
verged solution. This can be useful when the system
has not a special symmetry; (ii) in the calculus of
dissociation curves, the detection of saddle points,
especially by an analysis of the number of eigen-
values less than zero, can be useful to distinguish
solutions pertaining to different curves in regions
where two or more curves are very close or crossing.

Relative to solutions classified as a local mini-
mum point, we obtained the following results: For
H2, we obtained, for 〈Sz〉 = 0.0, only one minimum
in each class (TICS and ASDW) of solutions; for the
LiH and CH systems, we obtained, to each set of
solution characterized by a specific value for 〈Sz〉,
only one minimum relative to the ASDW class; for
the C2 system, we obtained one minimum relative
to the TICS class and two minima relative to the
ASDW class of solutions; and for N2, we obtained
only one minimum in each class of solutions. In all
cases, the minimum points correspond to an aufbau
orbital occupancy scheme. We did not find any so-
lution classified as a minimum point with an energy
value greater than a solution classified as a saddle
point, but we found non-aufbau solutions, for the
CH system (see Tables VI and VII), with an energy
lower than aufbau solutions pertaining to the same
ASDW class and with a same value for 〈Sz〉. All so-
lutions that we have found with non-aufbau orbital
occupancy schemes are saddle points and have been
determined mainly with the AM.

Our results, principally those related to the CH
and C2 systems, show that the pursuit for a solu-
tion classified as a minimum extremum point of the
HF functional in its respective class of functions can
be a very difficult task. This situation corresponds
to finding a solution associated to a numerical in-
trinsic divergence and with some of the Q Stanton’s
matrix eigenvalues less than −1 (and |λi| < 1 for
the others). In some cases, the only way to achieve
such a solution using an iterative procedure like the
SCF method implies the utilization of algorithms
to enforce the convergence in conjunction or/and
a careful choice of the starting MOs. A pure aufbau
SCF procedure does not assure that a convergent
solution will be a minimum extremum point with
respect to the TICS or ASDW classes and a stability
analysis is necessary to characterize the solution. It
is important to point out that there is no criterion
described in the literature which allows us to distin-
guish a local minimum from a global one without
an extensive investigation of the hypersurface asso-
ciated to the respective HF functional. The problem
of finding the absolute minimum remains open.

Finally, due to the nonlinear character of the in-
tegrodifferential system of equations relative to the
HF functional, it is expected that different basis sets,
for a same system at the same geometry, will be
associated with different hypersurfaces which can
differ in the number and type of extremum points.
However, in any basis set, it is possible to obtain
similar results as presented here.
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