
Does viscosity describe the kinetic barrier for crystal growth
from the liquidus to the glass transition?

Marcio Luis Ferreira Nascimento1,a� and Edgar Dutra Zanotto2,b�

1Institute of Humanities, Arts and Sciences, Federal University of Bahia, Rua Barão de Jeremoabo s/n,
Glauber Rocha Pavilion (PAF3), Ondina University Campus, 40170-115 Salvador, Bahia, Brazil
2Department of Materials Engineering, Vitreous Materials Laboratory, Federal University of São Carlos,
13565-905 São Carlos, São Paulo, Brazil

�Received 19 May 2010; accepted 30 August 2010; published online 1 November 2010�

An analysis of the kinetic coefficient of crystal growth Ukin, recently proposed by Ediger et al. �J.
Chem. Phys. 128, 034709 �2008��, indicates that the Stokes–Einstein/Eyring �SE/E� equation does
not describe the diffusion process controlling crystal growth rates in fragile glass-forming liquids.
Ukin was defined using the normal growth model and tested for crystal data for inorganic and organic
liquids covering a viscosity range of about 104–1012 Pa s. Here, we revisit their interesting finding
considering two other models: the screw dislocation �SD� and the two-dimensional surface
nucleated �2D� growth models for nine undercooled oxide liquids, in a wider temperature range,
from slightly below the melting point down to the glass transition region Tg, thus covering a wider
viscosity range: 101–1013 Pa s. We then propose and use normalized kinetic coefficients �Mkin� for
the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to
describe the transport part of crystal growth rates �Mkin�1 /� and ��1� from low to moderate
viscosities ���106 Pa s�, and thus the SE/E equation works well in this viscosity range for all
systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from
the melting point down to Tg! However, for at least three fragile liquids, diopside �kink at 1.08Tg,
�=1.6�108 Pa s�, lead metasilicate �kink at 1.14Tg, �=4.3�106 Pa s�, and lithium disilicate
�kink at 1.11Tg, �=1.6�108 Pa s�, there are clear signs of a breakdown of the SE/E equation at
these higher viscosities. Our results corroborate the findings of Ediger et al. and demonstrate that
viscosity data cannot be used to describe the transport part of the crystal growth �via the SE/E
equation� in fragile glasses in the neighborhood of Tg. © 2010 American Institute of Physics.
�doi:10.1063/1.3490793�

I. INTRODUCTION

The mechanisms, thermodynamics, and kinetic aspects
of crystal growth in glass-forming liquids are some of the
most important features for understanding and controlling
the vitrification process, as well as for the development of
new glass ceramics �polycrystalline materials made by con-
trolled crystallization of special glass compositions� with
usual or improved properties. The theoretical and the experi-
mental analyses of crystal nucleation and growth kinetics in
glasses and undercooled liquids and the applicability of vis-
cosity to describe the diffusion process associated with these
two phenomena have been discussed for many years and,
particularly, intensively in the past two decades.1–3

The growth velocity of a crystal in an undercooled liquid
U can be regarded as the product of two quantities: �i� the
probability that the newly captured molecules are irrevers-
ibly retained into the crystal, which can be expressed in
terms of the free energy difference between the two phases,
and �ii� the rate at which molecules of the liquid adjacent to

the growth front can diffuse and organize into a crystal �the
kinetic coefficient Ukin�, i.e., the attachment process that re-
flects the dynamics of collective fluctuations at the crystal-
liquid interface.

A classical crystal growth model, denoted as continuous
or normal growth model, was derived by Wilson2 and
Frenkel,3 in which Ukin is associated with an activated pro-
cess for atoms or molecules to move from the liquid to a
growing crystal. A similar growth model is the screw
dislocation,4 but in this model atoms are preferentially at-
tached to screw dislocations on the surface of the growing
crystal. For both cases, the transport process is assumed to be
similar to that which governs self-diffusion. At small under-
coolings, just below the melting point, the temperature de-
pendence of the diffusion coefficient D is often assumed to
be described by the inverse shear viscosity �−1, i.e., by the
Stokes–Einstein/Eyring �SE/E� equation. Such assumption is
quite handy because viscosity is the most readily available
transport coefficient in highly viscous liquids. Using this ap-
proximation, these two growth models have met with success
over the modest and intermediate undercoolings, starting
from the melting point Tm down to �1.1Tg for two inorganic
glass-forming liquids: diopside4 and silica.5 On the other
hand, Swallen et al.6,7 suggested that below �1.2Tg, D and �
have different temperature dependences for an organic liq-
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uid, tris-�-naphthylbenzene. Similar results have been ob-
served from Mapes et al.8 for o-terphenyl. However, to the
best of our knowledge, there is no firm proof of the break-
down of the SE/E equation at a sufficiently low temperature
for inorganic glass-forming liquids.

An analysis of the kinetic coefficient of crystal growth,
Ukin�T�=U�T� / �1−exp�−�G�T� /kBT��, where U is the crys-
tal growth rate, �G is the thermodynamic driving force, T is
the temperature, and kB is the Boltzmann constant recently
proposed by Ediger et al.,9 indicates that the Stokes–
Einstein/Eyring equation does not describe the transport con-
trolling crystal growth rates in fragile glass-forming liquids.
Ediger et al. demonstrated that Ukin scales with �−�, and the
exponent � depends systematically on the fragility of the
liquid: the greater the fragility, the lower the value of �. If the
SE/E equation was valid, �=1, a value that was found only
for the strongest liquids, such as SiO2 and GeO2. In Ref. 9,
Ukin was defined using the normal growth model and tested
for crystal data for inorganic and organic liquids covering a
viscosity range of about 104–1012 Pa s. For the organic liq-
uids, all of the data analyzed were below 1.25Tg �the typical
decoupling temperature�; for the oxide glasses, the data in-
cluded somewhat higher temperatures. Thus, their finding
that the SE/E equation does not describe the transport part of
the crystal growth corroborates the suggestions of other au-
thors; the new finding is that the departure from the predicted
behavior was more intense for more fragile liquids.

In this article, we focus on nine stoichiometric oxide
glass-forming systems with widely different fragilities �20
�m�60� that crystallize without obvious compositional
changes, i.e., they undergo polymorphic crystallization. The
used data span a very wide range of viscosities from 101 to
1013 Pa s. We follow the approach of Ediger et al.9 to cal-
culate Ukin, but we compare the transport part of the crystal
growth Ukin with �−1 using two other growth models instead
of the normal growth model. Additionally, we introduce two
modified forms of the kinetic coefficient to fully test the
possible influence of the growth models and their pre-
exponential factors, as described below. In summary, our ob-
jective is to test whether �i� viscosity describes the transport
part controlling the crystal growth all the way from Tm to Tg;
�ii� viscosity can describe only a part of the growth curve,
with a breakdown at 1.1Tg–1.2Tg; or �iii� it fails at all tem-
peratures below the melting point. For clarity, these three
possibilities are schematically shown in Fig. 1.

II. SUMMARY OF CRYSTAL GROWTH RATE MODELS

In discussing the crystal growth from the melt, it should
be recognized that the nature of the crystal/melt interface
plays a decisive influence on crystallization kinetics. As we
shall see, each one of the standard growth models is based on
a particular assumption concerning the relative amount and
the nature of interfacial sites where atoms can be added or
removed. Three standard models are often used to describe
the crystal growth process in inorganic glasses, which are
based on different views of the nature of the crystal/liquid
interface. These models are �i� the screw dislocation model,
�ii� the normal or continuous growth model, and �iii� the

two-dimensional secondary surface nucleation growth
model. All these models are based on the assumption that the
release of latent heat does not substantially alter the crystal-
melt interface temperature and that only interfacial rear-
rangements occur at the interface �no long range diffusion is
necessary�. Such models are summarized in the following
paragraphs.

A. The screw dislocation growth model

The screw dislocation growth model views the interface
as smooth but imperfect on an atomic scale, with growth
taking place at step sites provided by screw dislocations in-
tersecting the interface. The crystal growth rate U is given
by10,11

U = f
D

�
�1 − exp	−

�G

kBT

� = f

kBT

�2�
�1 − exp	−

�G

kBT

� ,

�1�

where � is the shear viscosity, � is the distance advanced by
the interface in a unit kinetic process �usually taken as a
molecular diameter�, �G is the thermodynamic driving force
for crystallization, i.e., the difference between the free ener-
gies of the undercooled melt and crystalline phase, T is the
absolute temperature, and kB is the Boltzmann constant.

In Eq. �1�, D is the diffusion coefficient controlling the
molecular rearrangements at the crystal/liquid interface and
is often related to the viscosity by the Stokes–Einstein/
Eyring equation: D=kBT /��. For one-component systems,
one could expect good agreement between certain crystal
growth models and experiment when employing viscosity to
calculate the transport part, at least from the melting point
down to Td�1.1Tg–1.2Tg, i.e., DU �Refs. 4 and 5� is quite
likely proportional to 1 /� at temperatures above Td. How-
ever, for multicomponent systems, a description of diffusion
in terms of viscosity becomes questionable even at higher
temperatures,1 and the actual diffusion coefficient controlling
crystal growth must be replaced by an effective diffusion
coefficient Deff, which is a combination of the diffusion co-
efficients of all components. These hypotheses will be tested
here.

FIG. 1. Schematic representation of three possibilities for the SE/E equa-
tion: �i� full line, gray: D� calculated via viscosity by the SE/E equation; DU

��� agrees with D� all the way; �ii� DU ��� breaks down at Td	Tg; and �iii�
DU� �D�, i.e., the two diffusivities are different.
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The fraction of sites on the interface where atoms of the
liquid can preferentially be added to or removed from the
crystal f is given by

f =
��G

4
�Vm
, �2�

where � is the specific surface energy of the liquid/crystal
interface and Vm is the molar volume of the crystal. Accord-
ing to Ref. 10, it is possible to define � as

� = ��Hm/�3 Vm
2 NA, �3�

where NA is the Avogadro’s number and �Hm is the melting
enthalpy. The fraction of the preferred site f can then be
calculated by Eq. �2� using the empirical coefficient � �0.3–
0.5� in Eq. �3�. Thus, consider �=0.5, f ��T /2
Tm, where
Tm is the thermodynamic melting point and �T=Tm−T is the
undercooling.

When experimental data are not available, the free en-
ergy barrier �G can be estimated in two ways: by the
Thomson/Turnbull �Eq. �4a�� or Hoffman �Eq. �4b�� approxi-
mations. These give upper and lower bounds to experimental
�G, respectively,

�G = �Hm
�T

Tm
�Thomson/Turnbull� , �4a�

�G = �Hm
�T · T

Tm
2 �Hoffman� . �4b�

A previous analysis4 of these two equations has shown
that they yield almost identical results at high temperatures
for some glasses. In this work, for brevity, we use only Th-
omson’s approximation �Eq. �4a��.

B. Normal growth model

According to the normal growth model, atoms can be
added to or removed from any site on the crystal-liquid in-
terface, and the individual molecular process in crystalliza-
tion is treated as simply activated. Therefore, such interface
is pictured as rough on an atomic scale and all the sites on
the interface are assumed to be equivalent growth sites �f
�1�. The growth rate is expressed by Eq. �1� with f =1. Note
that for this and the previous model, the only one unknown
parameter is the jump distance �. All other parameters are
known or can be estimated.

C. Two-dimensional surface nucleation growth

From the two-dimensional �2D� growth model, the sur-
face is considered atomically smooth and free from defects.
Growth occurs by the formation of two-dimensional nuclei
on top of the primary crystals, which grow laterally. The
growth rate is expressed by10,11

U = C
D

�2exp	−
Z

T�G

 = C

kBT

�3�
exp	−

Z

T�G

 . �5�

In the above equation, Z is given by one of the following
expressions, depending on the size of the secondary crystal
relative to the size of the primary crystal:

Z =

�Vm�2

kB
�small crystal� , �6a�

Z =

�Vm�2

3kB
�large crystal� , �6b�

where � is the surface edge energy of the 2D crystal for
growth, usually taken as the liquid-crystal surface energy
cited above.

The terms small and large crystal in Eqs. �6a� and �6b�,
respectively, refer to two general cases: small crystal is valid
when the base crystals are much larger than the 2D crystals
growing on their surfaces, while large crystal applies when
the secondary 2D crystals have sizes similar to the primary
ones.10 Or when the secondary nuclei grow at a time shorter
than the time period between nucleation events, one has a
“small” crystal case. In the opposite situation, one has a
“large” crystal case.

One should notice that these two cases are related by a
factor of 3 in Z. In Eq. �5�, C is given by

C = �NSA0 �small crystal� , �7a�

C =
�3 
NS�5/3

��4/3�
�1 − exp�− �G/kBT��2/3 �large crystal� ,

�7b�

where A0 is the interface area of the growing crystal, NS is
the number of molecules �f.u.� per unit area of interface, and
� is the gamma function. From Eq. �7b�, it is possible to note
that C=C�T� is a function that is weakly temperature depen-
dent. In this work, we will consider only the large crystal
case and NS��3 NV

2 , where NV�1028 f.u. /m3, and the sur-
face energy � as free parameters. For this particular model,
we will fix the jump distance �=1 Å.

Regarding the general trends about crystal growth pro-
cesses, Jackson et al.11 showed that the operative growth
mechanism can be inferred from a plot of the reduced growth
rate UR �Eq. �8a�� versus undercooling �T,

UR =
U�

1 − exp�− �G/kBT�
= f

kBT

�2 , �8a�

where UR gives information on the temperature dependence
on the fraction of the preferred growth sites f at the interface.
The proposal of Ediger et al.9 is based on this equation.

Please note that Eq. �8a� refers to the normal and screw
dislocation growth models, choosing appropriate f values.
Considering the same approach, for the 2D crystal growth
case, the expression for the reduced growth rate should be

UR = U� exp	 Z

T�G

 = C

kBT

�3 exp	 Z

T�G

 . �8b�

Ediger et al.9 defined Ukin in terms of the observed
growth rate U from Eqs. �8a� and �8b�,
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Ukin
N,SD =

U

1 − exp�− �G/kBT�
= f

D

�
= f

kBT

�2�
, �9a�

where the superscripts N and SD refer to the application of
the normal and screw dislocation mechanisms, respectively
�i.e., using f =1 or f = f�T��.

From the same reasons considered to define UR �Eqs.
�8a� and �8b��, it is possible to define a different Ukin term for
the 2D growth mechanism, which was not considered by
Ediger et al., but can be useful in the analysis of the crystal
growth rate of some systems,

Ukin
2D = U exp	 Z

T�G

 = C

D

�2 = C
kBT

�3�
, �9b�

where exp�−Z /T�G� is related to the thermodynamic barrier,
in the same form as the denominator in Eq. �9a�.

Ediger et al.9 noted that for the organic material
tris-�-naphthylbenzene12 at temperatures below the maxi-
mum, the growth rate is dominated by Ukin and supposed that
this feature is generic for all liquids that are capable of being
substantially undercooled. The present authors verified the
validity of this assumption for several silicates, borates, and
for three other organic materials.13 As Ediger et al.9 focused
on Ukin, they restricted their analysis to liquids for which
crystal growth rates have been measured at temperatures be-
low the growth rate maximum and considered only Eq. �9a�
for all systems. Below, we further extend the analysis of Ref.
9.

III. VISCOUS FLOW AND FRAGILITY

The viscosities of most silicate melts are well described
by the empirical equation of Vogel–Fulcher–Tammann–
Hesse �VFTH�,14–16

log10 � = A +
B

T − T0
, �10�

where A, B, and T0 �the Kauzmann temperature� are empiri-
cal parameters.

The VFTH expression was independently proposed by
several authors: Vogel14 developed this equation in 1921
based on the investigations of the temperature dependence of
the viscosity of some simple liquids, such as water, mercury,
and oil, but not glass-forming liquids. Fulcher15 analyzed the
viscosities of several silicate glasses in 1925, and in 1926,
Tammann and Hesse16 analyzed their experiments with
glass-forming organic substances based in this equation. The
VFTH equation can also be derived in the framework of both
the Adam–Gibbs17 and the free volume theories of liquids.18

A useful way to understand structural arrangements oc-
curring with temperature is by means of the so-called fragil-
ity parameter introduced by Angell,19


m =
d�log10 ��

d�Tg/T�



T=Tg

, �11�

which indicates the variation of viscosity with temperature at
Tg. Glass forming liquids are characterized as strong, mod-
erate, or fragile, depending on the value of m. For instance,

m�20 for strong liquids and can be as high as 100 for frag-
ile oxide glass formers.

Tridimensionally bonded network liquids, such as SiO2

or GeO2, with highly polymerized networks �which are vir-
tually free from nonbridging oxygens� barely change their
structure and activation energy for viscous flow with tem-
perature showing an Arrhenius dependence of viscosity be-
tween Tg and the liquidus. These liquids are classified as
“strong” with m�20. All the other glass-forming systems
are classified as “moderate” and “fragile.” For fragile liquids,
the viscosities vary in a stoutly non-Arrhenius fashion with a
larger value of m �m	50�, and their apparent activation en-
ergies significantly change with temperature. The extremely
fast rise of viscosity is one of the most striking properties of
fragile glasses: it can increase by ten orders of magnitude as
the temperature is decreased by a factor of 2.

The viscosity of good glass-forming liquids at the equi-
librium melting point or liquidus is typically larger than
�102 Pa s, while for poor glass formers, ��10 Pa s at the
liquidus, and the viscosity dramatically increases upon cool-
ing, reaching �1012 Pa s at the laboratory glass transition
Tg. A decrease in temperature reduces the atomic mobility,
and thus some systems can be easily vitrified before crystal-
lization, while others require quite high cooling rates.

The decoupling of effective diffusion and viscosity may
lead to modifications of the classical expressions for crystal
growth rates and can be one of the reasons for a deviation of
theoretical predictions from experimental crystal growth
data. DU �Refs. 4 and 5� could be related to the diffusion
coefficient of the ambient phase units and to their character-
istic size � �or average jumping distance�. For instance, dif-
fusivity calculated from viscosity is generally different from
self-diffusion of alkalis in ionic conducting glasses.20 For
fragile systems—such as the multicomponent systems fo-
cused in our paper—it is not trivial to determine what these
diffusing “units” are. In these cases, Schmelzer1 proposed
that the actual diffusion coefficient must be a combination of
the diffusion coefficients of all components Deff and that this
parameter probably may not have a direct correspondence
with that calculated from the Newtonian viscosity.

IV. OBJECTIVES OF THIS RESEARCH

In this article, we test the interesting proposal of Ediger
et al.9 for the Ukin versus � relationship by analyzing the
crystal growth rates using different growth models plus vis-
cosity and thermodynamic data in a wide temperature range,
between �Tg and Tm for strong, moderate, and fragile oxide
glass-forming systems. We selected several systems accord-
ing to the following criteria: �i� the liquid and equilibrium
crystal compositions are the same; �ii� the crystal growth is
linear in time in isothermal experiments; �iii� crystal growth
rates are available in a wide temperature range, from slightly
above Tg to Tm �we include our own data for diopside:
CaO·MgO·2SiO2 and PbO·SiO2�. We considered nine
glass-forming systems that preferentially crystallize from the
sample surface, plus one that also crystallizes in the interior
�lithium disilicate, LS2�. The tested glasses have fragility
within the range of 20�m�60.
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From the proposal of Ediger et al. �Eq. �12��, one can
plot Ukin versus � in the log-log scale for each composition,
which in their paper yields straight lines. One can then assess
a power law dependence of Ukin on the liquid viscosity, with
a slope �,

Ukin 
 �−�, �12�

where values of the exponent ��1 express a decoupling of
viscosity from the transport part of the crystal growth in the
temperature range of study. In this article, we will go deeper
into this question by analyzing in detail the crystal growth
and viscosity data in a wider temperature range for nine sili-
cate glasses to confirm the possibility of decoupling.

V. RESULTS

Figure 2 shows the experimental crystal growth rate data
for nine inorganic glass-forming systems4,5,13,21–28 and the
classical crystal growth models that best fit the data with
only one adjustable parameter, i.e., the jumping distance �,
for the normal and screw dislocation models. For the 2D
model, � was fixed and two fitting parameters were used: NS

and �. These parameters are largely temperature indepen-
dent. The respective Tg’s are indicated for all systems.

According to Table I, for the SD model the fitted � is
between 0.15 and 3 Å for all systems, which are acceptable
values for the undefined “structural units,” as explained
above �all the experimental, model, and fitting errors are em-
bedded in this parameter�.

The normal growth model describes well the growth ki-

FIG. 2. ��a�–�i�� Experimental crystal growth rates for nine glass-forming liquids. The lines are fitted curves using the crystal growth model that best fits each
data set. For LS2 glass, we also show a dashed line corresponding to the use of a second growth mechanism. Viscosity and growth rate data for SiO2, GeO2,
LS2, LS3, NS3, PS, diopside, and cordierite �shown in Table I� are averaged values from several authors. However, for these fragile highly depolymerized
glasses, there is only a relatively small scatter between data from different sources using different glass melts. A different behavior is shown by the strong,
highly polymerized silica glass �Ref. 4�, which is extremely sensitive to the impurity content. Special care in analyzing the data was taken in this case �Ref.
4�.
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netics for silica �SiO2� �Fig. 2�a�� and germania �GeO2� �Fig.
2�b��. It is important to note that we also tested the other
classical models and found that they do not apply for these
glasses.

Regarding the 2D growth mechanism, we fixed one of
the parameters �the jumping distance, �=1 Å� and varied NS

and �. The resulting values presented in Table I are reason-
able. For example, lithium disilicate �LS2� is a case for
which both SD and 2D models could be equally applicable,
but the screw dislocation model provides a slightly better fit
�the full line in Fig. 2�c��. The NS and � values from the 2D
model are quite similar to those for two other systems �lead
silicate �PS� �Fig. 2�g�� and lithium trisilicate �LS3� �Fig.
2�d���. There is not enough growth rate data for LS3, sodium
disilicate �NS2�, and sodium trisilicate NS3 glasses, but the
models used here agree quite well with the available data.
For NS3 �Fig. 2�f��, however, the lowest crystal growth rate
datum departs somewhat from the predicted curve.

We also show our own experimental data at low tem-
peratures for diopside glass. The crystal growth data for di-
opside at low temperatures correspond to observable single
crystals, as well as to layer crystallization.13 A kink occurs
near 750 °C �Fig. 2�i��; our experimental data below and
above Reinsch and Müller’s data show somewhat faster
growth kinetics �possibly, Reinsch and Müller’s datum at
750 °C is only approximate due to the experimental diffi-
culty in obtaining U at such low temperatures, which require
very long heat treatments—i.e., several weeks�.

Regarding the cordierite glass �2MgO·2Al2O3·5SiO2�,
the melting point of �metastable� �-cordierite crystals cannot
be directly measured. Therefore, we assume that its upper
bound is the melting point of the stable high temperature
polymorph of cordierite �indialite, h- or �-cordierite� at
1467 °C. The lower bound of Tm is assumed to be
�1350 °C since metastable �-cordierite is detectable as the
primary crystal phase up to 1300 °C and is best fitted with

the 2D growth model equation. For higher Tm, the best
choice is obtained applying the screw dislocation mecha-
nism.

However, growth rates in cordierite glass can be de-
scribed by the so-called “combined model.”27 Thus, the ex-
perimental data �including the kinks� could be fitted for the
whole temperature range by a linear combination of two
growth models. Such fittings indicate that viscosity can be
used to assess the transport mechanism that determines crys-
tal growth in this system, from the melting point Tm down to
Tg, with no breakdown of the Stokes–Einstein/Eyring equa-
tion.

In all plots shown below, one or another model describes
fairly well, but not perfectly, the growth rate versus tempera-
ture curves, with some departure from the experimental data
at the lowest temperatures. These results corroborate the va-
lidity of the SE/E expression at high temperatures �average
and low viscosities� and point to some breakdown at lower
temperatures. These features will be tested in the following
sections of this article.

Table I shows the respective VFTH viscosity parameters,
considering the same temperature range used for the analysis
of crystal growth data, as well as the fragility index m. This
parameter confirms that silica is the strongest and diopside is
the most fragile among the nine systems. For these silicates,
the fragility index corresponds to the depolymerization de-
gree or to the increase of the alkali content—as noted for
sodium and lithium di- and trisilicates. Lithium, sodium, and
potassium disilicates have about the same m, while the meta-
silicates �lead metasilicate, diopside, and cordierite� are the
most fragile, as expected. Table I also shows the � parameter
calculated from all the experimental crystal growth rates us-
ing the original Ukin of Ediger et al.9 �Eq. �12��. Lithium
disilicate, lead metasilicate, cordierite, and diopside, for
which crystal growth rate data are available at the lowest
temperatures, T�1.1Tg, show the lowest �. This result indi-
cates that if extensive data were available at lower tempera-

TABLE I. VFTH viscosity parameters �� in Pa s and T in K� and fitted crystal growth rate parameters between Tg and Tm. The respective fragility index m
for nine selected inorganic glass-forming systems. The crystal growth model used �normal, screw dislocation, or 2D� is indicated. We also compared by means
of Eq. �14� the slopes of the curves in Fig. 5 �denominated ���, which showed systematically higher values than � calculated using the definition of Ediger et
al. �Eq. �12��. For the calculation of � and ��, the growth rate data from near the melting point down to temperatures as low as 0.98Tg were used, as shown
above, where the lowest temperatures for which crystal growth rate data are available. Notes: for cordierite, the crystal growth mechanism is uncertain because
both SD and 2D can be used due to the uncertainty in the Tm of �-cordierite. Using Tm as 1623 K, the best fit is obtained with the screw dislocation model.
For LS2, both SD and 2D growth mechanisms could be used, but the former gives the best fit.

Glass Model A
B

�K�
T0

�K� m
�

�Å�
NS

�m−2�
�

�J /m2� � �Eq. �12�� �� �Eq. �14��
Vm

�10−5 m3 /mol�
�Hm

�kJ/mol�
Tc /Tg

�K/K�

SiO2 N �8.811 30 193.8 0 21 1.99 ¯ ¯ 0.95�0.03 0.94�0.03 2.37 7.68 1.12

GeO2 N �5.997 14 535.8 0 22 3.06 ¯ ¯ 0.95�0.01 0.94�0.02 2.46 12.98 1.20

Li2O·2SiO2 Screw/2D �2.623 3 388.8 491.1 35 0.35/1.0 1.48�1016 0.150 0.82�0.01 0.81�0.01 6.15 57.3 0.98b

Li2O·3SiO2 2D �4.668 7 732.0 274.6 25 1.0 5.57�1021 0.178 0.92�0.02 0.90�0.01 6.15a 57.3a 1.12

Na2O·2SiO2 Screw �3.075 4 595.8 392.9 36 0.15 ¯ ¯ 0.94�0.01 0.93�0.14 7.09 33.45 1.16

Na2O·3SiO2 Screw �2.687 4 451.5 427.5 27 1.12 ¯ ¯ 0.93�0.05 0.91�0.05 7.35 36.05 1.17

PbO·SiO2 2D �4.390 3 188.1 481.5 40 1.0 2.62�1013 0.162 0.83�0.02 0.77�0.02 4.496 33.89 1.11b

2MgO·2Al2O3·5SiO2 Screw �3.97 5 316.0 762.0 50 1.19 ¯ ¯ 0.74�0.02 0.73�0.02 22.59 175.0 0.98b

CaO·MgO·2SiO2 Screw �4.680 4 463.6 726.8 59 3.69 ¯ ¯ 0.85�0.01 0.84�0.04 7.59 138.0 1.03b

aEstimated values from lithium disilicate glass.
bFragile glasses that show a kink at T /Tg�1.2–1.1 in the kinetic coefficient versus viscosity plot.
cTc is the lowest temperature for which crystal growth rate data is available.
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tures for other systems perhaps the values of � would be
modified. Silica and germania are well-known strong glasses,
for which crystal growth can be described by the normal
growth mechanism, and � is indeed close to unity. Below, we
discuss the sensitivity of � to different ways of calculating it.

VI. DISCUSSION

Figure 3 shows the Ukin versus viscosity dependence in
the log-log scale for the nine systems in the previous figure.
It is important to note that the extreme points �corresponding
to the lowest viscosities� were obtained at temperatures just
below the melting point Tm. Using the original proposal of
Ediger et al. �Eqs. �9a� and �9b��, the plot of Ukin versus �
shows a departure from the expected straight line of slope
�Fig. 3�. According to Ediger et al.,9 the slope � scales with
the glass fragility. In addition, at high temperatures, near the
maximum of the crystal growth rate, a departure from the
theoretical line is observable for diopside, cordierite, and
Li2O·2SiO2. We will show below that part of these depar-
tures is due to factors that were not used in the original
proposal, such as the pre-exponential factors, f and C /�, for
the screw dislocation and 2D mechanisms, respectively. As
f �1 for the normal growth model, the original Ukin scales
with �−1 for silica and germania.

Figure 3 shows that for silica glass the directly measured
silicon diffusivity is the same as that calculated from crystal
growth rate and from viscosity �for viscosities up to
1013 Pa s�: Ukin=D /�=kBT /�2�, as previously observed.5,13

This means that for SiO2 the SE/E equation works from the
melting point down to �Tg.

In this article, we modify Eqs. �9a� and �9b� by inserting
temperature dependent parameters f�T� from Eq. �2� and
C�T� from Eq. �7�, giving Eqs. �13a� and �13b�,

Ukin
�N,SD =

U

f�1 − exp�− �G/kBT��
=

kBT

�2�
�13a�

and

Ukin
*2D

=
U�

C
exp	 Z

T�G

 =

kBT

�2�
. �13b�

For silica and germania, which display normal growth, the
application of Eq. �13a� does not modify the results of Ediger
et al.9 because f is a constant between 0.5 and 1 for this
growth mechanism.

However, the use of Eqs. �13a� and �13b� in Fig. 4 con-
firms that the factor f�T� for screw dislocation growth—in
the form Ukin / f—or the factor Ukin� /C for 2D growth elimi-
nates most of the discrepancy observed at high temperatures
and approaches the experimental data to the expected viscos-
ity curve �dashed line, �−1�. The new Ukin

� from Eqs. �13a�
and �13b� are similar to the previous one given by Eqs. �9a�
and �9b�, but now the product of crystal growth and viscosity
depends on the temperature and jump distance �. This ex-
plains the departure from the dashed line in Fig. 4 for some
systems.

Perhaps, a better way to compare the kinetic part of crys-
tal growth with viscosity is by comparing parameters having
the same units �i.e., by defining a normalized kinetic term
Mkin in 1/Pa s�. Thus, we propose the following equations:

Mkin
SD =

U�2

fkBT�1 − exp�− �G/kBT��
�14a�

and

Mkin
2D =

U�3

CkBT
exp	 Z

T�G

 . �14b�

Figure 5 shows that by considering the term Ukin�
2 / fkBT

for the screw dislocation and 2D growth models, the devia-
tions between the calculated Mkin and the measured viscosity

FIG. 3. Original kinetic coefficient �Ukin� proposed by Ediger et al. �Ref. 9�
using the normal growth model. There is a deviation from the �1 slope and
of the vertical positions from the expected �−1 �dashed line� for most glasses
�fragile�, except for the two strong glasses SiO2 and GeO2. For silica glass
�*� means the silicon diffusion data from Brebec et al. and ��� refers to the
measured crystal growth rate. For more details, please check Refs. 5 and 13.

FIG. 4. Modified kinetic coefficient �Ukin / f� or �Ukin� /C�, where f is the
pre-exponential interface site factor �f ��T /2
Tm� from Eq. �2� or C /�
from Eqs. �7a� and �7b�, respectively. A deviation from the expected �−1

behavior �dashed line� is still observed for some fragile glasses.
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almost disappear at high temperatures—low viscosities. At
high temperatures, all systems follow the SE/E equation, as
previously shown in Figs. 2�a�–2�i�.

However, at low temperatures �viscosities	106 Pa s�,
there is a departure of �−1 for four fragile systems: cordierite,
diopside, lead metasilicate, and lithium disilicate. Such de-
partures are noted because crystal growth data are available
near Tg for these four systems, and some are presented here
for first time. For the five other systems analyzed in this
paper, the growth rate data are only available at somewhat
higher temperatures above 1.1Tg–1.2Tg.

Just for comparison, we calculated another slope param-
eter, ��, from Fig. 5, following the definition of Ediger et
al.,9 but based on Eqs. �14a� and �14b�, and shown in Fig. 6.
We used the data available for the whole temperature range
in the fitting procedure to obtain the values of ��. The results
shown in Table I are lower than the original � of Ediger et
al.9 For the strong systems such as silica and germania, the
slope is very close to �1. The calculated �� parameters are

lower than 0.95 for five glasses, but are significantly smaller
for four systems �LS2, PS, diopside, and cordierite�, which
will be discussed below. For the calculation of � and ��, the
growth rate data from just below the melting point down to
temperatures as low as 0.98Tg were used �please check Table
I for more details�.

A. Signs of a breakdown of the SE/E equation for
four fragile glasses

Let us now focus on the four systems that show signs of
decoupling at Td between viscous flow and the transport part
controlling the crystal growth. As regards the �-cordierite
�Fig. 2�h��, there is a noticeable shoulder at �1.2Tg, exactly
where a possible breakdown of the SE/E equation could be
expected. However, for real decoupling between viscous
flow and effective diffusivity—such as those reported in
Refs. 6–8 for organic materials and in Ref. 29 for metallic
glasses—below �1.2Tg, the Stokes–Einstein/Eyring equa-
tion would no longer describe the diffusion coefficients and a
permanent change in the slope, not only a kink in the curve,
would be observed. However, in Ref. 27, a fitting of U�T�
including this shoulder in Fig. 2�h� was performed, assuming
that the melt/crystal interface, growing from screw disloca-
tion defects, is additionally roughened by superimposed 2D
surface nucleation at large undercoolings below 1.2Tg. Thus,
this supposition of a “combined” growth mechanism might
be feasible, although no clear evidence can be claimed. How-
ever, other possibilities can be considered to account for this
phenomenon, which may also affect the assessed growth
mechanism and the fitted parameters, for instance, composi-
tional changes within the crystal �such as those reported in
Refs. 30 and 31�, and changes of the crystal phase and mor-
phology.

Small effects, such as the observed shoulder in U�T� for
cordierite, might be caused by changes of the chemical com-
position of the growing crystals with annealing time or tem-
perature. Such changes in silicates have been experimentally
verified in other silicate glasses by Fokin et al.30 and Ros-
kosz et al.,31 but not in all glasses. For instance, considering
diopside, preliminary results of quantitative EDS analysis by
SEM �crystallized layer heat treated at 890 °C for 16 h�
showed no difference between the glassy and the crystal
phase compositions. In addition, to the best of our knowl-
edge, no chemical changes have ever been reported for the
crystal phases of the other two systems of interest here: LS2

and PS.
Possible morphology changes in diopside, LS2, and PS

crystals growing in their isochemical glass have not been
exhaustibly tested, but, to the best of our knowledge, there is
no published evidence for such changes. We should note,
however, that for �-cordierite, Diaz-Mora32 observed a
change in morphology from elongated hexagonal crystals to
regular hexagons at T�900 °C. Small crystals �2 �m,
grown at T�900 °C, were observed at the melt/crystal in-
terfaces, whereas large crystals grown at T	1000 °C are
dendritically structured. Nevertheless, the shape of the iso-
lated crystals does not deviate from hexagonal bipyramids
and their growth rate does not explicitly depend on time �or

FIG. 5. Normalized kinetic coefficients �Ukin�
2 / fkBT� or �Ukin�

3 /CkBT�,
where f is the pre-exponential interface site factor �f ��T /2
Tm� from Eq.
�2� or C /� from Eqs. �7a� and �7b�, respectively, and � is the jump distance.

FIG. 6. Details of the previous figure showing only the four fragile silicate
systems that present a kink at Td.
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crystal size�. Hence, we believe that the influence of mor-
phology may be neglected for the measured crystal growth
rate data of �-cordierite. In summary, for cordierite, a
change in the growth mechanism could perhaps explain the
observed kink.

However, for the other three systems—LS2, diopside,
and PS—below Td, the temperature dependences of the ki-
netic coefficient for growth and viscosity differ. Therefore,
there is indeed a possible breakdown of the SE/E equation
for these three “suspect” systems. Figure 6 shows clear signs
of a departure from the line of slope �1.0 at Td between
1.10Tg and 1.15Tg, equivalent to viscosities of 108–4
�106 Pa s, respectively. Following the suggestion of one
reviewer, another exponent parameter ����, different from ��,
can be obtained from Fig. 6. �� was calculated using the low
temperature/high viscosity data of the three glasses for which
it is possible to note a clear deviation from the Stokes–
Einstein behavior at Td. At this range of high viscosities, the
slope significantly deviates from the expected �1 curve. For
T�Td, ���0.73�0.01 for LS2 and ���0.70�0.04 for di-
opside. These slopes are equal within the error limits. For
lead metasilicate, there are only few data points and the es-
timated slope ���0.41�0.21 is probably too low, with high
uncertainty. These small slopes suggest a decoupling of vis-
cosity and the effective diffusivity controlling crystal growth
at such high viscosities.

However, in the present analysis, the success or failure
of the SE/E relation depends on the validity of the models of
the crystal growth employed. Thus, the venerable SE/E rela-
tion is put on trial using arguments based on theories of the
crystal growth. But have these theories been similarly tested?
Yes, they have been and work quite well for oxide glass-
forming systems at high temperatures �see, e.g., Refs 4, 5,
and 10�. However, one might also argue that a change of the
crystal growth mechanism could be occurring at Td, which
could lead to a kink in the curves. However, if this was the
case, viscosity would still describe the temperature depen-
dence of the effective diffusivity that controls crystal growth
at temperatures below the kink �as observed for cordierite
using a combined growth model�.

In resume, the present tests cannot clearly distinguish a
breakdown of the SE/E equation from a possible change of
growth mechanism. However, the first is more likely to occur
because a simple change of growth mechanism would pro-
duce a kink in the curve, but the viscosity would still de-
scribe the temperature dependence of the transport processes
controlling crystal growth. In any case, viscosity �via the
SE/E equation� cannot be used to describe the transport part
of crystal growth in fragile liquids in the neighborhood of Tg.
This finding is consistent with the results of Ediger et
al.9—our results thus show clear deviations of Mkin from
1 /� for fragile glasses—and the normalized kinetic coeffi-
cient here proposed �Mkin� is thus an appropriate tool to as-
sess liquid dynamics from crystal growth rate data.

VII. SUMMARY AND CONCLUSIONS

We revisited the proposal of Ediger et al. that the diffu-
sivities controlling crystal growth rates in some inorganic

and organic liquids decouple from inverse viscosity in a
manner that systematically depends on the liquid fragility.
We proposed a normalized kinetic term and tested it with
nine oxide glass-forming systems of different fragilities in a
very wide range of viscosities, from 101 to 1013 Pa s.

Our analysis corroborated the ability of the viscosity to
describe the transport process controlling crystal growth
rates from low to average viscosities ���106 Pa s� for all
glasses. In addition, for strong glasses, the SE/E equation
works well for all viscosities from the melting point down to
Tg! Regarding the four fragile liquids for which very low
temperature crystal growth data are available down to
�1.1Tg, for cordierite glass, the kink could, in principle, be
explained by a change of the growth mechanism because the
temperature dependences of the two diffusion processes are
the about same for temperatures above and below the kink.
However, in agreement with the findings of Ediger et al., at
higher viscosities, there are clear signs of a decoupling of
these two kinetic properties for the three other fragile liquids
�diopside, lead metasilicate, and lithium disilicate�. Thus, we
argue that the diffusion coefficients calculated from crystal
growth rates and from viscosity via the SE/E equation have
the same temperature dependence at relatively low or mod-
erate viscosities, but for fragile liquids, they decouple at
some temperature where the viscosity is high enough. Hence,
in general, viscosity cannot be used to analyze or predict
crystal growth kinetics of fragile glasses in the high viscosity
range.
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