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The first bismuth(III)-catalyzed guanylation of thioureas
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Abstract—This work describes the first catalytic bismuth-promoted synthesis of polysubstituted guanidines in good yields through
the guanylation reaction of N-benzoyl or N-phenylthioureas with primary and secondary amines, but now employing equimolar
amounts of each organic reagent. Both bismuth iodine and bismuth nitrate were efficient as inorganic thiophiles at only 5 mol %
in relation to substrates, being the first example of inorganic thiophiles acting in guanylation at catalytic levels.
� 2006 Elsevier Ltd. All rights reserved.
Despite of the variety of guanylating reagents to solu-
tion synthesis of guanidines, the most used guanylation
protocols employ protected thiourea as guanylating re-
agents and stoichiometric amounts of heavy metal salts
as guanylating agent, HgCl2 being the toxic and the
most popular.1

Bismuth is the least toxic of the heavy metals and their
salts have been intensively used in organic transforma-
tions.2,3 We have reported guanylation of N-benzoyl-
thioureas using stoichiometric amounts of Bi(NO3)3

as thiophile, but the use of 2 equiv of the amine was
required to achieve an yield comparable to the HgCl2
method.4 This is a serious drawback when expensive
or no commercial amines are necessary. Herein, we
describe the first successful catalytic Bi(III)-mediated
synthesis of functionalized guanidines. Besides, no
excess of nucleophilic amine was needed.

In the previously stoichiometric bismuth-promoted
guanylation, we identified Bi2S3 as byproduct. Here we
hypothesized that stoichiometric amount of Bi(NO3)3

was necessary because the low solubility of Bi2S3 in
the reaction medium precluded the continuous thiourea
activation, that is, necessary to the guanylation. Thus,
we reason that a catalytic cycle could operate if Bi2S3

could be in situ transformed into a more soluble Bi(III)
derivative, affording guanidines in good yields. To this
end, an oxidant agent as co-reagent could be useful
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because (SOx)y�-derivatives of Bi(III) are more soluble
than Bi2S3.1a To test this hypothesis we reacted thiourea
2a with amine 3a in the presence of diverse Bi(III) salts
and oxidants. After experimentation, 4a was obtained in
15% yield after 5 days when BiI3 5 mol % was used in the
presence of K2S2O8. The oxidant was thus screened.
Changing the oxidant to sodium bismuthate, NaBiO3,
guanidine 4a was isolated in 92% yield and 10 h, Table 1.
The use of cheap NaBiO3 is noteworthy because both
thiophile and oxidant are now environmental friendly.2,5

This protocol could be extended to less activated N-
phenylthioureas, and primary and secondary amines
were tolerated as the nucleophilic component using both
N-substituted thioureas, affording a representative
spectrum of guanidines through this new catalytic
guanylation (Table 1). Bi(NO3)3 5 mol % was also
effective but BiI3 afforded better yield and shorter
reaction time. For instance, guanylation of 2a with
cyclohexylamine and Bi(NO3)3 5 mol % afforded 4c in
69% yield (21 h).

The proposed catalytic cycle for this guanylation is indi-
cated in Figure 1. In analogy to the HgCl2-promoted
guanylation,1 we assumed that a carbodiimide is the
key intermediate. In this way, Bi(III) should behave as
a thiophilic soft Lewis acid that coordinated to the thio-
urea followed by reaction with Et3N and form the car-
bodiimide by thiourea desulfurization, which is
trapped by the amine affording the guanidine, and the
insoluble Bi2S3 is oxidized to a more soluble Bi(III)
derivative.

In conclusion, we have developed the first catalytic
Bi(III) guanylation of thioureas, wherein only 5 mol %
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Figure 1. Proposed catalytic cycle for the Bi(III)-promoted guanyl-
ation of thioureas.

Table 1. Isolated guanidine yields
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Guanidine Thiourea R1/R2 Amine R3/R4 Yield
(%)

Time
(h)

4a Bz/p-CH3OPh p-CH3OPh/H 92 10
4b Bz/Ph p-CH3OPh/H 75 12
4c Bz/p-CH3OPh c-C6H11/H 86 3
4d Bz/p-CH3Ph c-C6H11/H 65 8
4e Bz/Ph c-C6H11/H 77 3
4f Bz/c-C6H11 c-C6H11/H 69 21
4g Bz/o-ClPh c-C6H11/c-C6H11 91 11
4h Bz/p-CH3OPh CH2CH2OCH2CH2 97 5
4i Ph/p-CH3OPh CH2CH2OCH2CH2 95 3
4j Ph/c-C6H11 c-C6H11/H 95 7
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of inorganic thiophiles and no excess of amine was
required, with yields and scope comparable with the
stoichiometric HgCl2 protocol.6 Efforts are underway
to elucidate the mechanistic details of this reaction and
define the scope, limitations and synthetic applications
to natural and unnatural bioactive guanidines.
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through a pad of Celite and the pad washed with 10 mL of
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Compound 4d: Mp 100–103 �C. IR (KBr): 3287, 1570 cm�1.
1H NMR (CDCl3): 1.10–2.10 (10H, m); 2.34 (3H, s); 4.15
(1H, m); 4.80 (1H, br); 7.13 (2H, d, J = 8.0 Hz); 7.21 (2H, d,
J = 8.0 Hz); 7.38–7.45 (3H, m); 8.24 (2H, d, J = 6.3 Hz);
11.97 (1H, br). 13C NMR (CDCl3): 20.9 (CH3); 24.7 (CH2);
25.5 (CH2); 33.1 (CH2) 50.0 (CH); 125.3 (CH); 127.7 (CH);
129.0 (CH); 130.9 (CH); 133.4 (C); 136.6 (C); 138.8 (C);
158.0 (C); 177.3 (C).
Compound 4e: Mp 107–110 �C. IR (KBr): 3250, 1570 cm�1.
1H NMR (CDCl3): 1.10–2.15 (10H, m); 4.18 (1H, m); 4.84
(1H, br); 7.20–7.30 (3H, m); 7.35–7.50 (5H, m); 8.26 (2H, d,
J = 6.6 Hz); 12.97 (1H, br). 13C NMR (CDCl3): 24.7 (CH2);
25.4 (CH2). 33.0 (CH2); 50.1 (CH); 125.0 (CH): 126.5 (CH);
127.8 (CH); 128.9 (CH); 129.9 (CH); 131.03 (CH); 136.2 (C);
138.6 (C); 157.7 (C); 177.4 (C).
Compound 4g: Mp 125–127 �C; IR (KBr): 3065, 1610, 1544,
1366 cm�1. 1H NMR (CDCl3): 1.00–2.25 (20H, m); 3.25–
3.40 (2H, m); 7.00–7.20 (2H, m); 7.30–7.50 (2H, m); 8.26 (1H,
d, J = 6.6 Hz); 11.07 (1H, br). 13C NMR (CDCl3): 25.5
(CH2); 26.3 (CH2); 31.1 (CH2); 58.6 (CH); 125.2 (CH); 126.0
(CH); 127.2 (CH); 127.2 (CH); 127.8 (CH); 128.7 (C); 129.0
(CH); 130.0 (CH); 130.9 (CH); 138.5 (C); 160.7 (C); 175.4 (C).
Compound 4h: oil. IR (film): 3013, 1600, 1575 cm�1. 1H
NMR (CDCl3): 3.55 (4H, m); 3.67 (4H, m); 3.78 (3H, s); 6.85
(2H, d, J = 8.8 Hz); 7.06 (2H, d, J = 8.8 Hz); 7.40–7.55 (3H,
m); 8.22 (2H, d, J = 6.9 Hz); 11.85 (1H, br). 13C
NMR(CDCl3): 46.9 (CH2); 55.4 (CH3); 66.3 (CH2); 114.8
(CH); 123.4 (CH); 127.9 (CH); 129.2 (CH); 131.5 (CH); 132.3
(C); 138.2 (C); 156.9 (C); 160.2 (C); 177.1 (C).
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