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Abstract – We consider the 3-dimensional massive Gross-Neveu model at finite temperature
as an effective theory for strong interactions. Using the Matsubara imaginary-time formalism, we
derive a closed form for the renormalized T -dependent four-point function. This gives a singularity,
suggesting a phase transition. Considering the free energy we obtain the T -dependent mass, which
goes to zero for some temperature. These results lead us to the conclusion that there is a second-
order phase transition.

open  access Copyright c© EPLA, 2010

Introduction. – The Gross-Neveu (GN) model [1],
proposed as an effective model for quantum chromo-
dynamics (QCD), has been analyzed extensively in recent
years. In several cases, these studies consider the temper-
ature effect, associated with fermion systems, in both
particle and condensed-matter physics [2–18]. The motiva-
tions and the nature of such analysis are multiple, includ-
ing investigations of the continuous and discrete chiral
symmetry [6,7]. The version with N massless fermions in
(2+1) dimensions, for instance, presents chirality break-
ing in perturbative analysis, and its restoration at finite
temperature [14]. This provides insight into the intricate
structure of the hadronic matter, such as for the quark
confinement/deconfinement transition [5,15–17]. Due to
such characteristics, the GN model is taken as a prototype
for analysis of phase transitions in quantum field theory for
fermions. In this sense, the search for analytical results is
another aspect that attracts interest, in general [18], but in
particular for N = 1, where lattice calculations are hard to
carry out. In this note, we address the (2+1)-dimensional
GN model at finite temperature, but with non-zero mass
and one type of fermion.
The massive GN model in (2+1) dimensions was

considered in [19], even though this version for dimensions
greater than two is perturbatively non-renormalizable.

(a)E-mail: adolfo@cbpf.br

This is justified by considering that, perturbative renor-
malizability is not an absolute criterion for an effective
theory to be physically consistent. This fact is known
and has been used for long [20–25]. Here we will consider
the (2+1)-dimensional massive GN model at finite
temperature with an arbitrary zero-temperature coupling
constant, as an effective theory for QCD. We will take
both the thermal mass and the thermal coupling constant
at one-loop order. This approximation will be justified
by a non-perturbative analysis of the four-point function,
by summing the chains of loop diagrams. This provides
a non-perturbative relationship between the four-point
function and temperature. Such a relation leads to a
singularity, suggesting a possible phase transition [26].
In order to get the nature of the phase transition, an
analysis of the free energy is carried out. It gives rise to
a T -dependent mass that goes to zero for some values of
temperature, suggesting a second-order phase transition.
An additional argument in favour of a second-order phase
transition comes from an analysis of the beta-function.
The argument relies on the fact that this analysis gives
the result that there is a non-trivial infrared stable fixed
point.
Such results bring up an interesting question: can such a

study of an effective model yield any information about a
phase transition in physically relevant situations for QCD?
In order to get an answer to this question, we rely on
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a procedure that follows methods first developed for the
BCS model in superconductivity [26].
The paper is organized in the following way. In the

second section, the model is defined. In the third section,
the thermal correction of the mass at the one-loop level is
calculated. In the fourth section, using the temperature-
dependent coupling constant, an expression for the
thermal mass is derived. In the fifth section, starting with
non-perturbative results for the four-point function, the
analysis of the critical region is discussed. The concluding
remarks are presented in the last section.

The model. – In a D-dimensional Euclidean manifold,
R
D, we consider the Hamiltonian for the massive GN
model,

H =

∫
dDx

{
ψ†(x)(γj(i∂j))ψ(x)−m0ψ†(x)ψ(x)

+
λ0

2

[
ψ†(x)ψ(x)

]2}
, (1)

where m0 and λ0 are respectively the physical zero-
temperature mass and coupling constant, x∈RD and the
γ-matrices are elements of the Clifford algebra (natural
units �= c= kB = 1 are used). This Hamiltonian is
obtained using conventions for Euclidean field theories
in [27].
From eq. (1), introducing the thermally corrected mass,

m(T ) =m0+Σ(T ), (2)

we have a free energy density of the Ginzburg-Landau
type [28],

F = a+ b(T )φ2(x)+ c φ4(x), (3)

where b(T ) =−m(T ) and c= λ0/2. The minus sign for
the mass in eq. (3) implies that, in the disordered phase
we have m(T )< 0 and for the ordered phase m(T )> 0,
consistently. The second-order phase transition occurs at
the temperature wherem(T ) changes sign from negative to
positive, characterizing a spontaneous symmetry breaking.
In this formalism, the quantity φ(x) =

√
ψ†(x)ψ(x) plays

the role of the order parameter for the transition.

Thermal self-energy. – We evaluate the thermal self-
energy, Σ(T ), by using the Matsubara imaginary-time
formalism. The Cartesian coordinates are specified by
x= (x0 = τ,x), where x is a (D− 1)-dimensional vector.
The conjugate momentum of x is denoted by k= (k0,k),
k being a (D− 1)-dimensional vector in momentum space.
The KMS (Kubo, Martin, Schwinger) condition implies
that the Feynman rules are modified by the well-known
Matsubara prescription, [29]∫

dk0
2π
→ 1

β

+∞∑
n=−∞

, k0→ 2π(n+
1
2 )

β
≡ ωn, (4)

where ωn are Matsubara frequencies and β = 1/T , T being
the temperature.

At the one-loop level the finite-temperature self-energy
is given by

Σ(D,T, s) = λ0
m0

β

∞∑
n=−∞

∫
dD−1k
(2π)D−1

1

(k2+ω2n+m
2
0)
s
.

In order to use the dimensional regularization procedure,
we introduce dimensionless quantities,

qj = kj/2πm0, j = 1, 2, . . . ,D− 1 and a= (m0β)−2.
(5)

For the present case, we have D= 3 and s= 1. After
dimensional regularization [27], we obtain

Σ(D,T, s) =
m0λ0Γ(ν)

(4π)(D−1)/2Γ(s)β

∞∑
n=−∞

(ω2n+m
2
0)
−ν , (6)

where ν = s− (D− 1)/2. The sum in eq. (6) is cast in the
general form

+∞∑
n=−∞

[
a

(
n+
1

2

)2
+ c2

]−ν
= 4νZ4c

2

1 (ν, a)−Zc
2

1 (ν, a),

(7)

where

Zb
2

1 (ν, a) =
+∞∑
n=−∞

[
an2+ b2

]−ν
(8)

is the generalized Epstein zeta-function [30] defined for

Re(ν)> 1/2. We then analytically continue Zb
2

1 (ν, a) to
the whole complex ν-plane [31–34]:

Zb
2

1 (ν, a) =

√
π√

aΓ(ν)

[
Γ(ν− 1/2)
b2ν−1

+4

∞∑
n=1

(
πn

b
√
a

)ν− 12
Kν− 12

(
2πbn√
a

)]
, (9)

where Kα(x) is the Bessel function of the third kind. As
a consequence, Σ(D,T, s) reads

Σ(D,T, s) = Σ̃(D, s)
m1−2ν0

β(2π)2ν
[4νZ4c

2

1 (ν, a)−Zc
2

1 (ν, a)],

(10)

where c= 1/2π. Using eq. (9) in eq. (10), we obtain
Σ(D,T, s) as

Σ(D,T, s) = F0(D, s)+F1(D, a, s). (11)

Here F0(D, s) is a term independent of a, arising from
the first term in brackets in eq. (9), while F1(D, a, s)
is the term arising from the sum in the second term.
We find that, for s= 1 and even dimensions D� 2,
F0(D, s) is divergent due to the pole of the Γ-function.
Accordingly, this term is subtracted to get the physical
a-dependent function ΣR(D, a). The mass counter-
term is a pole appearing at the physical value s= 1.
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The a-dependent correction to the mass is proportional
to the regular part of the analytical extension of the
Epstein zeta-function in the neighborhood of the pole at
s= 1. For uniformity, the term F0(D) is also subtracted
in the case of odd dimensions D, where no poles of
Γ-functions are present. Therefore, using the modified
Bessel function for D= 3, s= 1 and a= (m0/T )

−2, i.e.
K±1/2(z) =

√
πe−z/

√
2z, the physical thermal self-energy

for D= 3 is given by

ΣR(3, T, 1) =
1

2π
λ0m

2
0f(T ), (12)

where

f(T ) =− T

m0
ln(1+ e−m0/T ). (13)

The behavior of f(T ) is the following: for T → 0, f(T )→ 0;
for T →∞, f(T )→−∞, with f(T )< 0 for all values of
T > 0. Using eq. (2), the temperature-dependent mass is

m(T ) =m0+
1

2π
λ0m

2
0f(T ). (14)

The condition for a phase transition, m(T ) = 0, provides
a critical temperature for each fixed value of the zero-
temperature coupling constant, λ0. This result indicates
a second-order phase transition. However, in order to
establish this result on a firmer ground, we consider the
T -dependent correction to the coupling constant λ0.

T -dependent coupling constant. – Initially, we
consider the four-point function with null external
momenta, which defines the temperature-dependent
coupling constant. It is given up to one-loop by

Γ
(4)
D (λ0, β)� λ0[1+λ0Π(D,β)], (15)

where Π(D,β) is the β-dependent one-loop polarization
diagram given by

Π(D,β) =
1

β

∞∑
n=−∞

∫
dD−1k
(2π)D−1

m20− (k2+ω2n)
(k2+ω2n+m

2
0)
2
. (16)

Using the dimensionless quantities introduced in eq. (5),
Π(D,β) is given as

Π(D, a) = Π(D, a, s)|s=2 = mD−2(s−1)

(2π)2
√
a

×
[
1

2π2
UD(s; a)−UD(s− 1; a)

]
s=2

, (17)

where

UD(µ; a) = π
(D−1)
2
Γ(µ− (D− 1)/2)

Γ(µ)

×
∞∑

n=−∞

[
a

(
n+
1

2

)2
+(2π)−2

](D−1)/2)−µ
.

(18)

0.5 1 1.5
t

-0.01

0.01

0.02
S

Fig. 1: Polarization (in units of m0), S =ΠR(3, T )/m0, as a
function of T (in units of m0, i.e. t= T/m0).

The function UD(µ, a) is extended to the whole complex
µ-plane, resulting in

UD(µ, a) =
h(µ,D)√

a

[
Γ

(
µ− D

2

)
+4W (µ, a,D)

]
, (19)

where h(µ,D) = π2µ−D/2/(2D−2µΓ(µ)) and

W (µ, a,D) = 2

∞∑
n=1

(√
a

n

)D
2 −µ

KD
2 −µ

(
2n√
a

)

−
∞∑
n=1

(
2
√
a

n

)D
2 −µ

KD
2 −µ

(
n√
a

)
. (20)

Using these results in eq. (17), we obtain Π(D, a, s) as

Π(D, a, s) =H(D, s)+G(D, a, s), (21)

where H(D, s) is a term independent of a, arising from the
first term in brackets in eq. (19), while the term G(D, a, s)
arises from the the W -functions. As in the case of the
thermal self-energy, the physical thermal polarization is
obtained by subtracting the term H(D, s) in eq. (21) and
is given by

ΠR(D, a) =
mD−20

2D−2πD/2
[2πW (2, a,D)−W (1, a,D)] .

(22)
Taking D= 3 and a= (m0/T )

−2, we obtain

ΠR(3, T ) =
m0

2π

[
T

m0
ln(1+ e−m0/T )− 1

1+ em0/T

]
. (23)

Substituting this expression into eq. (15), we obtain the
temperature-dependent coupling constant,

g(T ;λ0)≡ Γ(4)3R(λ0, T )� λ0[1+λ0ΠR(3, T )]. (24)

The physical polarization ΠR(3, T ) is shown in fig. 1.
We find from this plot and from eq. (24) that g(T =
0;λ0) = λ0; this just reflects the fact that λ0 is the physical
coupling constant at T = 0.
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The temperature-dependent coupling constant,
g(T ;λ0), is introduced in place of λ0 in eq. (14).
Then we get a T -dependent mass,

m(T ) =m0

[
1+

1

2π
g(T ;λ0)m0f(T )

]
. (25)

We have then all the elements to analyze the phase
transition.

The phase transition. – Let us first remind an essen-
tial feature of a situation in condensed-matter physics,
theoretically close to the one we examine in this article;
namely, the BCS field-theoretical approach to the super-
conducting phase transition [26]. In this case it is shown
that, at criticality, the leading contribution to the four-
point function with zero external momenta is given by
the sum of all chains of one-loop diagrams. This non-
perturbative calculation leads to an expression of the form

Γ
(4)
3R(λ0, T ) =

λ0

[1−λ0ΠR(3, T )] . (26)

In our case the first two terms of the expansion in powers
of λ0 of such a function are given in eq. (24). The existence
of a singularity of the four-point function in eq. (26)
indicates a phase transition, as explained in [26]; in other
words the phase transition is characterized by the poles of

Γ
(4)
3R(λ0, Tc), i.e.,

λ0ΠR(3, T ) = 1. (27)

In our case this singularity is found from an analysis of
fig. 1. The nature of the transition is obtained by a study
of the free energy, eq. (3).
In the present article we have a situation analogous

to the BCS theory, and we have done the study of the
free energy for a second-order phase transition starting
from eq. (3). Then the critical region is defined by taking
m(Tc) = 0, in eq. (25), which leads to

g(Tc;λ0) =− 2π

m0f(Tc)
. (28)

This provides Tc as a function of λ0, giving a curve plotted
in fig. 2. On the curve we have m(Tc) = 0; below the curve
we have m(T )> 0 and above the curve m(T )< 0. We find
that the sign for the thermal mass corresponds to the
expected behavior of a phase transition from a disordered
to an ordered phase, as temperature is lowered.
Moreover, eq. (27) gives rise to a function t= t(λ)

(where again λ= λ0m0/2π and t= T/m0), with a behav-
ior that is similar to that presented in fig. 2. Indeed, from
fig. 1, we obtain that t→ 0.87 for λ0→∞. On the other
hand, t→∞ for λ→ 0. This non-perturbative result is
then compatible with the analysis performed in the previ-
ous sections, of the mass as a function of the tempera-
ture, taking the thermal corrections to both the mass and
the coupling constant at one-loop level. Then we conclude

2 4 6 8 10
λ

1

2

3

4

5

t

Fig. 2: Phase transition defined by m(Tc) = 0: values for the
pair (Tc, λ0) define the critical line; on the vertical axis t=
Tc/m0 and on the horizontal axis λ= λ0m0/2π. The minimum
critical temperature is Tc � 0.874m0.

that indeed there is a second-order phase transition, char-
acterized by the divergence of the four-point function and
with the critical temperature obtained from the condition
m(Tc) = 0.
A further indication of a second-order transition can

be obtained from a renormalization group point of view,
following lines analogous to those employed in [35] for
type-II superconducting films. If an infrared stable fixed
point exists, it is possible to determine it by a study of
the infrared behaviour of the beta-function, i.e., in the
neighbourhood of vanishing external momentum |p|= 0;
we consider the thermal coupling constant at criticality,
with an external small momentum, given by

g(T, |p| ≈ 0) = λ0

[1−λ0Π(D,T, p)] . (29)

Using a Feynman parameter x, the one-loop four-point
function is

Π(D,T, p) =
1

β

∞∑
n=−∞

∫ 1
0

dx

∫
dD−1k
(2π)D−1

M2
0 − (k2+ω2n)

(k2+ω2n+M
2
0 )
2

−p
2

β

∞∑
n=−∞

∫ 1
0

dx

∫
dD−1k
(2π)D−1

x(1−x)
(k2+ω2n+M

2
0 )
2
,

(30)

where

M2
0 (p) =m

2
0+ p

2x(1−x); ac(p) =
1

β2M0(p)
. (31)

The second term in eq. (30) vanishes in the limit |p| → 0.
Following the calculation steps for small values of |p|
detailed in [35], we are left for |p| ≈ 0, after regularization,
with an expression similar to eq. (22),

ΠR(D,T, p) =
MD−2
0

2D−2πD/2
[2πW (2, ac(p),D)

−W (1, ac(p),D)] , (32)
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where it is understood that we take asymptotic values for
small values of the argument in the Bessel functions in
eq. (20), which defines the quantity W (µ, a,D).
For D= 3 we have, MD−2

0 ≈m0+ 12p2x(1−x), and

ΠR(3, T, p) =B(3, T )+A(3, T )|p|, (33)

where

B(3, T ) =
m0

2π3/2
[2πW (2, ac, 3)−W (1, ac, 3)] (34)

and

A(3, T ) =
a

2π3/2
[2πW (2, ac, 3)−W (1, ac, 3)] , (35)

with a=
∫ 1
0
dx
√
x(1−x) = π/8.

The coupling constant has dimension of |p|−1; taking
|p| as a running scale we define a dimensionless coupling
constant

g′ = |p|g= |p|λ0
1−λ0[B(T, 3]+A(T, 3)|p|

and the beta-function,

β(g′) = |p| ∂ g
′

∂|p| ; (36)

we easily see that the condition of a non-trivial infrared
stable fixed point is fullfiled by the solution

g′� =
1

A(3, Tc)
. (37)

As we have already stated in this note, the GN model
may be seen as an effective theory for QCD, with an
arbitrary zero-temperature coupling constant. Let us then
estimate a specific value for the critical temperature,
choosing the mass of the Gross-Neveu fermion to be the
effective quark mass of the proton [36], m0 ≈ 330MeV.
Consider a strong coupling regime characterized by large
values of λ0, up to the limit λ0→∞ (see fig. 2). For
these values (for instance for λ0 ≈ 16π/m0 = 0.15MeV−1,
corresponding to λ= 8 in fig. 2), we find a critical
temperature, Tc, of the order of Tc ∼ 0.87m0 ≈ 288MeV.
Concluding remarks. – In short, we have answered

positively the question whether there is a phase transition
in the N = 1 massive GN model; i.e. yes, there is a
second-order phase transition. This conclusion is based
in two results. From the non-perturbative analysis of the
four-point function, a critical region can be established.
Thereby the analysis of the free energy provides the
nature of the transition, as being of second order. It is
important to add that this procedure is strikingly similar
in character to the method for finding critical temperature
for the second-order phase transition in BCS model of
superconductivity. Also, we have shown that we can define
a beta-function, which has a non-trivial infrared fixed

point, thus reinforcing the conclusion that the transition
is a second-order one.
Considering a regime of strong coupling as defined

above, and the mass of the GN fermion as the effective
quark mass, we find a critical temperature of the order of
Tc � 288MeV. It is interesting to observe that this value is
of the same order of magnitude as the estimated temper-
ature ∼ 200MeV for the quark deconfinement transition,
obtained from lattice calculations. The phase transition
here may be then associated with the transition from a
hadronic state to a quark-gluon plasma.
This has been possible by employing the massive

GN model in three dimensions, which has been shown
to exist and constructed for the first time in [19]. In
previous works devoted to get insights on the behaviour
of hadronic matter [2–13,15–17], the massless GN model,
in its version with a large number of components, has
been often employed. Using the one-component massive
GN model in three dimensions and taking the fermion
mass as a physical parameter (the effective quark mass),
we have been able using analytical means, to determine
the transition temperature. Moreover this temperature is
found to fall into a range of values compatible with the
transition temperature for hadronization, estimated from
lattice simulations. A rigorous study involving additional
aspects of this transition, including determination of
critical exponents, is left for future work.
Finally, we would like to add some comments about

the suitability of the GN model to fit QCD. We have
in mind the Nambu-Jona-Lasinio (NJL) model which,
particularly in its four-dimensional version, is closer to
QCD than the GN model. Many studies on the phase
structure of the two- and four-dimensional NJL model
have been performed, which includes articles by some of
us (see [37,38] and references therein). A relevant aspect
of the massive three-dimensional GN model, as we have
employed in this article, is that the critical temperature
can be obtained analytically in the context of a well-known
phenomenological approach to phase transitions. This is
much harder to be studied with the NJL model; it will be
the subject of future work.
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