Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/38293
Registro completo de metadados
Campo DCValorIdioma
dc.creatorOliveira, Iam de Cerqueira-
dc.date.accessioned2023-10-30T14:25:56Z-
dc.date.available2023-10-30T14:25:56Z-
dc.date.issued2022-12-14-
dc.identifier.citationOLIVEIRA, Iam de Cerqueira. Estudo de CNVs em indivíduos com Síndrome Inflamatória Multissistêmica Pediátrica Associada à COVID-19 (SIM-P). 2022. 81 f. Dissertação (Mestrado em Processos Interativos dos Órgãos e Sistemas) - Universidade Federal da Bahia, Instituto de Ciências da Saúde, Programa de Pós-graduação em Processos Interativos de Órgãos e Sistemas, Salvador, 2022.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/38293-
dc.description.abstractPediatric Multisystemic Inflammatory Syndrome (SIM-P) is characterized by an exacerbated and delayed inflammatory response that occurs, on average, from two to four weeks after contact with SARS-CoV2 in the population aged 0 to 19 years. Its frequency is considered rare, but with the potential for death due to the severity of the clinical manifestations. The search for genetic variants that confer predisposition to SIM-P should involve the evaluation of the entire human genome or its coding regions (exome). The identification of genetic variants that are determinant for Y-PS-M is fundamental to better understand the genetic architecture of the disease and to define prevention strategies to detect individuals at high risk of developing the disease, as well as the treatment to partially restore the deficient immune response. Objective: Identify Copy Number Variants (CNVs) potentially involved in MIS-C. Methodology: The present study is descriptive in nature, with a convenience sample consisting of 21 children and adolescents (0-19 years of age). The data were organized in Excel 2013 and the statistical analysis was performed using the SPSS program, version 2.8.0 through descriptive and inferential analysis, with the data described by the medians and interquartile ranges. Clinical and laboratory information from individuals diagnosed with MIS-C after SARS-CoV-2 infection were used. The patients came from 03 (three) hospitals in the Northeast region of Brazil. Whole exome sequencing was performed using the Illumina platform (San Diego, CA, USA) with analysis of CNVs in 445 candidate genes. Results: We identified 43 pathogenic or likely pathogenic CNVs in 18 of the 21 patients. These CNVs are present in 30 genes associated with inborn immune errors or described related to SARS-CoV2 infection. Discussion: Most of these CNVs were considered secondary finds for being in heterozigose and associated with diseases with a standard of recessive inherited autosomal. However, eight of the patients showed signs of CNVs, that, according to the zygosity in evidence and the standard of inherited associated phenotypes, can be clinically relevant for SIM-P. These variants are present in the genes IFNGR1, CFHR3, CSF3R, CFHR4, DOCK8, ICOS, SRP72. Conclusion: The identification of these genetic markers enables a better understanding of susceptibility to MIS-C after COVID and can be applied for the development of targeted therapies.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectCOVID-19pt_BR
dc.subjectVariações no Número de Cópias do DNApt_BR
dc.subjectSíndrome de Resposta Inflamatória Sistêmicapt_BR
dc.subjectSARS-CoV-2pt_BR
dc.subjectCriançapt_BR
dc.subject.otherCOVID-19pt_BR
dc.subject.otherDNA Copy Number Variationspt_BR
dc.subject.otherSystemic Inflammatory Response Syndromept_BR
dc.subject.otherSARS-CoV-2pt_BR
dc.subject.otherChildpt_BR
dc.titleEstudo de CNVs em indivíduos com síndrome inflamatória multissistêmica pediátrica associada à COVID-19 (SIM-P)pt_BR
dc.title.alternativeStudy of CNVs in Individuals with Pediatric Multisystemic Inflammatory Syndrome (SIM-P) Associated with COVID-19 (SIM-P)pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Carvalho, Acácia Fernandes Lacerda de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-3639-338Xpt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8227096712575197pt_BR
dc.contributor.advisor-co1Oliveira, Pablo Rafael Silveira-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0001-9541-3737pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/0858029972032771pt_BR
dc.contributor.referee1Toralles, Maria Betânia Pereira-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7970-7102pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7880272950478674pt_BR
dc.contributor.referee2Sandes, Kiyoko Abe-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-4429-5301pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1788483338376326pt_BR
dc.contributor.referee3Carvalho, Acácia Fernandes Lacerda de-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-3639-338Xpt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8227096712575197pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-2062-7308pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7429759469519430pt_BR
dc.description.resumoA Síndrome Inflamatória Multissistêmica Pediátrica (SIM-P) caracteriza-se por constituir-se em resposta inflamatória exacerbada e tardia que ocorre, em média, no período de duas a quatro semanas após o contato com o SARS-CoV2, na população de 0 a 19 anos de idade. Sua frequência é considerada rara, porém, com potencial para o óbito diante da gravidade das manifestações clínicas. A busca por variantes genéticas que conferem predisposição à SIM-P deve envolver a avaliação de todo o genoma humano ou de suas regiões codificantes (exoma). A identificação de variantes genéticas determinantes para a SIM-P é fundamental para a melhor compreensão da arquitetura genética da doença e definição de estratégias de prevenção para detecção de indivíduos com alto risco de desenvolvimento da doença, bem como para o tratamento, visando restabelecer parcialmente resposta imune deficiente. Objetivo: Identificar Variantes de Número de Cópias (CNVs) potencialmente envolvidas na SIM-P. Método: O presente estudo tem caráter descritivo, com uma amostra de conveniência, composta por 21 crianças e adolescentes de 0-19 anos de idade. Utilizaram-se informações clínicas e laboratoriais de indivíduos diagnosticados com SIM-P, após infecção pelo SARS-CoV-2. Os participantes desta pesquisa são provenientes de três hospitais da região Nordeste do Brasil. Realizou-se sequenciamento do exoma completo, usando a plataforma Illumina (San Diego, CA, EUA) com análise de CNVs em 445 genes candidatos. Resultados: Identificaram-se 43 CNVs patogênicas ou provavelmente patogênicas, em 18 dos 21 pacientes estudados. Essas CNVs estão presentes em 30 genes associados a erros inatos da imunidade ou descritos relacionados à infecção pelo SARS-CoV2. Discussão: A maioria dessas CNVs foram consideradas achados secundários por estarem em heterozigose e associadas a doenças com padrão de herança autossômico recessivo. No entanto, oito desses pacientes apresentaram CNVs que, de acordo com a zigosidade apresentada e o padrão de herança dos fenótipos associados, podem ser clinicamente relevantes para SIM-P. Essas variantes estão presentes nos genes IFNGR1, CFHR3, CSF3R, CFHR4, DOCK8, ICOS, SRP72. Conclusão: A identificação desses marcadores genéticos possibilita entender melhor a susceptibilidade a SIM-P pós-COVID, podendo ser aplicada no desenvolvimento de terapias direcionadas.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.references1. World Health Organization. Coronavirus disease (COVID-19) pandemic. Geneva: WHO; 2020. 2. Brasil. Ministério da Saúde: COVID-19 e saúde da criança e do adolescente. Rio de Janeiro: Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Ferreira - Fiocruz; 2020. 3. Wu Q, Xing Y, Shi L, Li W, Gao Y, Pan S, et al. Coinfection and other clinical characteristics of COVID-19 in children. Pediatrics. 2020;146(1). 4. Ahmed M et al. Multisystem inflammatory syndrome in children: A systematic review. EClinical Medicine. 2020;26: 100527. 5. Borges PBA, Cunha, MAA Características clínicas da Síndrome Inflamatória Multissistêmica em crianças associada à COVID-19. Brasília, DF: Centro Universitário do Planalto Central Apparecido dos Santos,2021. 6. Centers for Disease and Control Prevention. Case definition multisystem inflammatory syndrome in children (MIS-C)]. Atlanta: CDC; 2020. 7. Campos LR, Almeida RG, Goldenzon AV, Rodrigues MCF, Sztajnbok F, Lino K, et al. Síndrome inflamatória multissistêmica pediátrica (SIM-P) temporalmente associada a COVID-19: atualização. Resid Pediatr. 2021. 8. Badal S, Thapa Bajgain K, Badal S, Thapa R, Bajgain BB, Santana MJ. Prevalence, clinical characteristics, and outcomes of pediatric COVID-19: A systematic review and meta-analysis. J Clin Virol. 2021 Feb; 135:104715. 9. Barral-Netto, Manoel et al. Construção de conhecimento no curso da pandemia de COVID-19: aspectos biomédicos, clínico-assistenciais, epidemiológicos e sociais. Salbador: EDUFBA; 2020. https://doi.org/10.9771/9786556300443 10. Son MBF, Friedman K. Coronavirus disease 2019 (COVID-19): multisystem inflammatory syndrome in children (MIS-C) clinical features, evaluation, and diagnosis. 2020. 11. Ghisolfi S, Almas I, Sandefur JC, et al. Predicted COVID-19 fatality rates based on age, sex, comorbidities and health system capacity. BMJ Global Health, 2020; 5(9). 12. Ioannidis, John P A. (‎2021)‎. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bulletin of the World Health Organization. 2021;99(‎1):19-33F. 13. Iser, Betine Pinto Moehlecke et al. Definição de caso suspeito da COVID-19: uma revisão narrativa dos sinais e sintomas mais frequentes entre os casos confirmados. Epidemiologia e Serviços de Saúde 2020;29(3). 14. Feldstein LR. CDC COVID-19 Response Team. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N Engl J Med. 2020 Jul 23;383:334-46. 15. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet. 2020 May 23;395(10237):1607-8. 16. Centers for Disease Control and Prevention. Emergency preparedness and response: multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19). Health advisory. Disponível em: https://www.cdc.gov/mis/mis-c.html 17. Sociedade Brasileira de Pediatria. Nota de Alerta: Notificação obrigatória no Ministério da Saúde dos casos de síndrome inflamatória multissistêmica pediátrica (SIM- -P) potencialmente associada à COVID-19. 18. Godfred-Cato S, Bryant B, Leung J, et al. COVID-19–Associated Multisystem Inflammatory Syndrome in Children — United States, March–July 2020. MMWR. Morbidity and Mortality Weekly Report. 2020;69(32):1074–80. 19. Marenne G, Rodríguez-Santiago B, Closas MG, Pérez-Jurado L, Rothman N, Rico D, Pita G, Pisano DG, Kogevinas M, Silverman DT, Valencia A, Real FX, Chanock SJ, Génin E, Malats N. Assessment of copy number variation using the Illumina Infinium 1M SNP-array: a comparison of methodological approaches in the Spanish Bladder Cancer/EPICURO study. Hum Mutat. 2011 Feb;32(2):240-8. Doi 10.1002/humu.21398. 20. Connolly JJ, Glessner JT, Almoguera B, Crosslin DR, Jarvik GP, Sleiman PM, Hakonarson H. Copy number variation analysis in the context of electronic medical records and large-scale genomics consortium efforts. Front Genet. 2014. Mar;18(5):51.doi:10.3389/fgene.2014.00051.eCollection 2014. 21. Carter M J et al. Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med. 2020;26: 1701-7. 22. Castagnoli R, Votto M, Licari A, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr. 2020 April 22. 23. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020; 382:1663-5. 24. Guan W, Ni Z, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020; 382:1708-20. 25. Hou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395:1054-62. 26. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020; 20:269-70. 27. Ministério da Saúde, Brasil. Boletim epidemiológico especial: COVID-19. Brasília, DF: Secretaria de Vigilância em Saúde, 2021. Semana Epidemiológica 45. 7/11 a 13/11/2021. 28. Porritt RA, Binek A, Paschold L, Rivas MN, McArdle A, Yonker LM, Alter G, Chandnani HK, Lopez M, Fasano A, Van Eyk JE, Binder M, Arditi M. The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children. J Clin Invest. 2021;131(20):e151520. doi: 10.1172/JCI151520. 29. Sood M, Sharma S, Sood I, Sharma K, Kaushik A. Emerging evidence on multisystem inflammatory syndrome in children associated with SARS-CoV-2 infection: a systematic review with meta-analysis. SN Compr Clin Med. 2021 Jan;1-10. 30. Vella LA, Rowley AH. Current insights into the pathophysiology of multisystem inflammatory syndrome in children. Curr Pediatr Rep. 2021; 9:83–92. https://doi.org/10.1007/s40124-021-00257-6 31. Godfred-Cato S, Bryant B, Leung J, et al. COVID-19-associated multisystem inflammatory syndrome in children - United States, March-July 2020. MMWR Morb Mortal Wkly Rep. 2020; 69:1074–80. 32. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2021680. Reports clinical features of children in the USA with MIS-C. 33. Campbell JI, Roberts JE, Dubois M, Naureckas Li C, Sandora TJ, Lamb GS. Non-SARS-CoV-2 infections among patients evaluated for MIS-C associated with COVID-19. Pediatr Infect Dis J. 2021; 40:e90–e93. 34. Consiglio C, Cotugno N.The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020; 183(4) 968-81. 35. Carter MJ, Fish M, Jennings A, et al.Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Nat Med. 2020; 26:1701–7. 36. Gruber CN, Patel RS, Trachtman R, et al.Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell. 2020; 183:982–95.e14. 37. Ramaswamy A, Brodsky NN, Sumida TS, et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity. 2021;54:1083–95.e7. 38. Moreews M, Le Gouge K, Khaldi-Plassart S, et al.Polyclonal expansion of TCR Vbeta 21.3 CD4 and CD8 T cells is a hallmark of multisystem inflammatory syndrome in children. Sci Immunol. 2021. 39. Pierce CA, Preston-Hurlburt P, Dai Y, et al.Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci Transl Med. 2020. 40. Porritt RA, Paschold L, Rivas MN, et al.HLA class I–associated expansion of TRBV11-2 T cells in multisystem inflammatory syndrome in children. J Clin Invest. 2021. https://doi.org/10.1172/JCI146614. 41. Diorio C, Shraim R, Vella LA, et al. Proteomic profiling of MIS-C patients reveals heterogeneity relating to interferon gamma dysregulation and vascular endothelial dysfunction. medRxiv. 2021 Apr 20;4(13).Doi 10.1101/2021.04.13.21255439. Preprint. 42. Lee PY, Day-Lewis M, Henderson LA, et al. Distinct clinical and immunological features of SARS–CoV-2–induced multisystem inflammatory syndrome in children. J Clin Invest. 2020;130:5942–50. 43. Rodriguez-Smith JJ, Verweyen EL, Clay GM, et al (2021) Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: a cohort study. The Lancet Rheumatology. https://doi.org/10.1016/S2665-9913(21)00139-9 44. Chou J, Platt CD, Habiballah S, et al (2021) Mechanisms underlying genetic susceptibility to multisystem inflammatory syndrome in children (MIS-C). J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2021.06.024 45. Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. Journal of Clininical Immunology. 2015;35(4):331-8. doi: 10.1007/s10875-015-0141-9. 46. Hobbs CV, Khaitan A, Kirmse BM, Borkowsky W. COVID-19 in children: a review and parallels to other hyperinflammatory syndromes. Front Pediatr. 2020 Nov;8:593455. 47. Kuypers FA, Rostad CA, Anderson EJ, et al. Secretory phospholipase A2 in SARS-CoV-2 infection and multisystem inflammatory syndrome in children (MIS-C). Exp Biol Med.2021; 15353702211028560. 48. Cheng MH, Zhang S, Porritt RA, Noval Rivas M, Paschold L, Willscher E, Binder M, Arditi M, Bahar I. Superantigenic character of an insert unique to SARS-CoV-2 spike supported by skewed TCR repertoire in patients with hyperinflammation. Proc Natl Acad Sci USA. 2020 Oct. 49. Diorio C, Henrickson SE, Vella LA, et al (2020) Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS–CoV-2. J Clin Invest 130:5967–5975. 50. Cheng MH, Zhang S, Porritt RA, Noval Rivas M, Paschold L, Willscher E, Binder M, Arditi M, Bahar I. Caráter superantigênico de uma inserção exclusiva do pico de SARS-CoV-2 suportado por repertório TCR enviesado em pacientes com hiperinflamação. Proc Natl Acad Sci USA.2020;117:25254-62. 51. Ahmed M, Advani S, Moreira A, Zoretic S, Martinez J, Chorath K, et al. Multisystem inflammatory syndrome in children: a systematic review. EClinicalMedicine. 2020 Set;26:100527. Doi:10.1016/j.eclinm.2020.100527. 52. Vinh DC, Abel L, Bastard P, Cheng MP, Condino-Neto A, Gregersen PK, Haerynck F, Cicalese MP, Hagin D, Soler-Palacín P, Planas AM, Pujol A, Notarangelo LD, Zhang Q, Su HC, Casanova JL, Meyts I; COVID Human Genetic Effort. Harnessing Type I IFN Immunity Against SARS-CoV-2 with Early Administration of IFN-β. J Clin Immunol. 2021 Oct;41(7):1425-1442. doi: 10.1007/s10875-021-01068-6. 53. Ramoz N, Rueda LA, Bouadjar B, Montoya LS, Orth G, and Favre M. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 2002;32, 579–581 10.1038/ng1044. 54. Rigaud S, Fondanèche MC, Lambert N, Pasquier B, Mateo V, Soulas P, Galicier L, Le Deist F, Rieux-Laucat F, Revy P, Fischer A, de Saint Basile G, Latour S. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110-4. doi: 10.1038/nature05257. 55. Li B, Zhang S, Zhang R, Chen X, Wang Y, Zhu C. Epidemiological and Clinical Characteristics of COVID-19 in Children: A Systematic Review and Meta-Analysis. Frontiers in Pediatrics. 2020;8, 591132. doi: 10.3389/fped.2020.591132. 56. Centers for Disease Control and Prevention. Webinar May 19, 2020 - multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 (COVID-19). Atlanta: CDC; 2020. 57. Belhadjer Z, Auriau J, Méot M, Oualha M, Renolleau S, Houyel L, Bonnet D. Addition of corticosteroids to immunoglobulins is associated with recovery of cardiac function in multi-inflammatory syndrome in children. Circulation. 2020;142:2282-4. 58. Ouldali N, Toubiana J, Antona D, et al. Association of intravenous immunoglobulins plus methylprednisolone vs immunoglobulins alone with course of fever in multisystem inflammatory syndrome in children. JAMA. 2021;325:855-64. 59. Redon R et al. Global variation in copy number in the human genome. Nature. 2006 Nov; 444-444–54. 60. Riggs ER et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). American College of Medical Genetics and Genomics. 2019. 61. Scherer S W, Lee C, Birney E, Altshuler D M, Eichler E E, Carter N P et al. Challenges and standards in integrating surveys of structural variation. Nature Genetics. 2007 Jul;39(7):S7- 15. Doi 10.1038/ng2093 62. Lins TCL. Variação estrutural no número de cópias e sua implicação na expressão de microRNA em humanos. 2014. Orientador: Rinaldo Wellerson Pereira. Tese (Doutorado em Patologia Molecular) - Universidade de Brasília. http://repositorio2.unb.br/jspui/handle/10482/16506 63. South S T, Lee C, Lamb A N, Higgins A W, Kearney H M. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: revision 2013. Genetics in Medicine. 2013;15(11):901-9. 64. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, Franco JL, Holland SM, Klein C, Morio T, Ochs HD, Oksenhendler E, Picard C, Puck J, Torgerson TR, Casanova JL, Sullivan KE. Human inborn errors of immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020 Jan;40(1):24-64. doi:10.1007/s10875-019-00737-x. 65. Hughes AE, Orr N, Esfandiary H, Diaz-Torres M., Goodship T, Chakravarthy U. A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nature Genet. 38: 1173-1177, 2006. Note: Erratum: Nature Genet. 2007;39:567only. 66. Hellwage J, Jokiranta TS, Koistinen V, Vaarala O, Meri S, Zipfel PF. Functional properties of complement factor H-related proteins FHR-3 and FHR-4: binding to the C3d region of C3b and differential regulation by heparin. FEBS Lett.1999; 462:345-52. 67. Skerka C, Kühn S, Günther K, Lingelbach K, Zipfel PF. A novel short consensus repeat-containing molecule is related to human complement factor H. J Biol Chem. 1993 Feb 5;268(4):2904-8. 68. Fritsche L G, Lauer N, Hartmann A, Stippa S, Keilhauer CN, Oppermann M, Pandey M J, Kohl J, Zipfel PF, Weber B H F, Skerka C. An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Hum. Molec. Genet. 2010;19:4694-704. 69. Vassalakis JA. O papel do componente C3 do sistema complemento na infecção in vivo por Leptospira interrogans. 2017. Dissertação (Mestrado em Ciências Biomédicas) - Universidade de São Paulo. doi:10.11606/D.42.2018.tde-20022018-143003. 70. Noris M, Mescia F, Remuzzi G. STEC-SHU, SHU atípica e PTT são todas doenças de ativação do complemento. Nat Rev Neophrol. 2012; 11:622–33. 71. Ixon BP, Gruppo RA. Atypical hemolytic uremic syndrome. Pediatr Clin North Am. 2018 Jun;65(3):509-25. 72. Campistol JM, Arias M, Ariceta G, et al. Uma atualização para a síndrome hemolítico-urêmica atípica: diagnóstico e documento de tratamento. Nefrologia. 2015;5:421-7. 73. Balgradean M, Cinteza E, Aria LA, Matei RL, Marin L, Moga L, Negritoru SC, Slavulete RE, Stefan MC, Ionescu M. Clinical and Pathogenic Correlations Between SARS-CoV-2 Infection and Hemolytic Uremic Syndrome in Children. Maedica (Bucur). 2020 Sep;15(3):376-380. doi: 10.26574/maedica.2020.15.3.376. 74. Kavanagh D, Goodship T. Genética e complemento em SHU atípica. Pediatr Nephrol. 2010;12 :2431-42. 75. Geerdink LM, Westra D, Van Wijk JAE, Dorresteijn EM, Lilien MR, Davin JC, et al. Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics. Pediatr Nephrol J. 2012 Aug;27(8):1283-91. 76. Schaefer F, Ardissino G, Ariceta G, Fakhouri F, Scully M, Isbel N, et al. Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype and outcome. Kidney Int. 2018 Aug;94(2):408-18. 77. Wang Y, Wrennall J A, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int. J. Biochem. Cell Biol. 52: 47-57, 2014. 78. Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood. 2008;112(13):4948-52. 79. Lotti V, Merigo F, Lagni A, Di Clemente A, Ligozzi M, Bernardi P, Rossini G, Concia E, Plebani R, Romano M, Sbarbati A, Sorio C, Gibellini D. CFTR Modulation Reduces SARS-CoV-2 Infection in Human Bronchial Epithelial Cells. Cells. 2022 Apr 15;11(8):1347. 80. Online Mendelian Inheritance in Man, OMIM (TM). Baltimore; Bethesda: BeMcKusick-Nathans Institute for Genetic Medicine; Johns Hopkins University; National Center for Biotechnology Information, National Library of Medicine. 81. Deakyne J S, Mazin AV. Fanconi anemia: at the crossroads of DNA repair. Biochemistry. 2011; 76:36-48. 82. Sagaseta IM, Molina J, Lezáun I, Valiente A, Durán G. Anemia de Fanconi. Consideraciones actuales. Anales Sis San Navarra. 2003;26:63-78. 83. Zen PR G et al. Características clínicas de pacientes com anemia de Fanconi. Revista Paulista de Pediatria. 2011; 29(3). 84. Kennedy RD, D'Andrea AD. DNA repair pathways in clinical practice: lessons from pediatric cancer susceptibility syndromes. J Clin Oncol 2006;24:3799-808. 85. Taniguchi T. Fanconi Anemia. In: Pagon RA, Bird TC, Dolan CR, Stephens K editors. GeneReviews. Seattle: University of Washington; 1993. 86. Svojgr K, Sumerauer D, Puchmajerova A, et al. Fanconi anemia with biallelic FANCD1/BRCA2 mutations - Case report of a family with three affected children. European Journal of Medical Genetics. 2016 Mar;59(3):152-7. doi: 10.1016/j.ejmg.2015.11.013. PMID: 26657402. 87. Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res. 2009;668:11-9. 88. Sarma A et al. Tracheal aspirate RNA sequencing identifies distinct immunological features of COVID-19 ARDS. Nat Commun. 2021 Aug 26;12(1):5152.doi:10.1038/s41467-021-25040-5. 89. Zhou, M. et al. PTEN–Foxo1 signaling triggers HMGB1-mediated innate immune responses in acute lung injury. Immunologic Res.2015; 62: 95-105. 90. Schabbauer G. et al. Myeloid PTEN promotes inflammation but impairs bactericidal activities during murine pneumococcal pneumonia. J. Immunol. 2010;185:468-76. 91. Teresi RE, Zbuk KM, Pezzolesi MG, Waite KA, Eng C. Cowden syndrome-affected patients with PTEN promoter mutations demonstrate abnormal protein translation. Am J Hum Genet. 2007Oct;81(4):756-67. Doi:10.1086/521051. 92. .Li Y., Zhang K., Chen H., Sun F., Xu J., Wu Z., Li P., Zhang L., Du Y., Luan H., et al. A genome-wide association study in Han Chinese identifies a susceptibility locus for primary Sjögren’s syndrome at 7q11.23. Nat. Genet. 2013;45:1361-1365. doi: 10.1038/ng.2779. 93. Olsson L.M, Johansson C, Gullstrand B, Jönsen A, Saevarsdottir S, Rönnblom L, Leonard D, Wetterö J, Sjöwall C, Svenungsson E, et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann. Rheum. Dis. 2017;76:1607–1613. doi: 10.1136/annrheumdis-2017-211287. 94. Zhao J, Ma J, Deng Y, Kelly J, Kim K, Bang SY, Lee HS, Li QZ, Wakeland QZ.K, Qiu R, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat. Genet. 2017;49:433-7. 95. Zhang L, Wax J, Huang R, Petersen F, Yu X. Meta-analysis and systematic review of the association between a hypoactive ncf1 variant and various autoimmune diseases. Antioxidants (Basel). 2022Aug.16;11(8):1589. Doi:10.3390/antiox11081589. 96. Savitsky K, et al., A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995 Schon, K., van Os. Genotype, extrapyramidal features, and severity of variant ataxia-telangiectasia. Ann. Neurol.2019;85:170-80. 97. Mastropasqua L, Toto L, Chiricosta L, Diomede F, Gugliandolo A, Silvestro S, Marconi GD, Sinjari B, Vecchiet J, Cipollone F, D'Ardes D, Auricchio A, Lanzini M, Caputi S, D'Aloisio R, Mazzon E, Trubiani O. Transcriptomic analysis revealed increased expression of genes involved in keratinization in the tears of COVID-19 patients.Sci Rep. 2021 Oct 6;11(1):19817. Doi: 10.1038/s41598-021-99344-3. 98. Nicolas L et al. Cutting edge: ATM influences germinal center integrity. J. Immunol. 2019Jun 1;202(11):3137-42. https://doi.org/10.4049/jimmunol.1801033(2019). 99. Matei I R, Guidos C J, Danska J S. ATM-dependent DNA damage surveillance in T-cell development and leukemogenesis: the DSB connection. Immunol. Rev. 2006 Feb;209:142-58. Doi:10.1111/j.0105-2896.2006.00361. 100. Sengupta S, Robles AI, Linke SP, Sinogeeva NI, Zhang R, Pedeux R, et al. Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest. J. Cell Biol. 2004;166: 801–13. doi: 10.1083/jcb.200405128. 101. Kaur E, Agrawal R, Sengupta S. Functions of BLM Helicase in Cells: Is it acting like a double-edged sword? Front Genet. 2021 Mar 12;12:634789. Doi:10.3389/fgene.2021.634789. 102. Ildebrandt J, Yalcin E, Bresser HG, Cinel G, Gappa M, Haghighi A, Kiper N, Khalilzadeh S, Reiter K, Sayer J, Schwerk N, Sibbersen A, Van Daele S, Nübling G, Lohse P, Griese M. Characterization of CSF2RA mutation related juvenile pulmonary alveolar proteinosis. Orphanet J Raro Dis. 2014 Nov 14; 26(9):171. 103. Fukunaga R, Seto Y, Mizushima S, Nagata S. Three different mRNAs encoding human granulocyte colony-stimulating factor receptor. Proc Natl Acad Sci USA. 1990 Nov; 87(22):8702-6. Doi: 10.1073/pnas.87.22.8702. 104. Triot A, Järvinen PM, Arostegui JI, Murugan D, Kohistani N, Dapena Díaz JL, Racek T, Puchałka J, Gertz EM, Schäffer AA, Kotlarz D, Pfeifer D, Díaz de Heredia Rubio C, Ozdemir MA, Patiroglu T, Karakukcu M, Sánchez de Toledo Codina J, Yagüe J, Touw IP, Unal E, Klein C. Inherited biallelic CSF3R mutations in severe congenital neutropenia. Blood. 2014 Jun 12;123(24):3811-7 105. Namkoong H et al. DOCK2 is involved in the host genetics and biology of severe COVID-19. Nature. 2022 Sep;609(7928):754-60. doi: 10.1038/s41586-022-05163-5. 106. Schulert GS, Cron RQ. A genética da síndrome de ativação de macrófagos. Genes Immun. 2020; 21:169-81. 107. Cron RQ, Chatham WW. O papel do reumatologista na COVID-19. J Rheumatol. 2020;47:639-42. 108. Elahi E, Shafaghati Y, Asadi S, Absalan F, Goodarzi H, Gharaii N, Karimi-Nejad MH, Shahram F, Hughes AE. Os haplótipos SNP intragênicos associados à mutação 84dup18 em TNFRSF11A em quatro pedigrees FEO sugerem três origens independentes para essa mutação. J Bone Miner Metab. 2007;25(3):159-64. 109. Silva CA; et al. Imunopatogênese no desenvolvimento da covid-19. Revista Saúde & Ciência online. 2021 jan-abr; 85-102. 110. Whittaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol. Scand. 2020; 142:14-22. 111. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. J. Neurol. Sci. 2020; 413:116832. 112. Bassiri H, Canna SW. IL-1 receptor antagonist, MIS-C, and the peculiar autoimmunity of SARS-CoV-2. Lancet Rheumatol. 2022 May;4(5):e305-e307. doi: 10.1016/S2665-9913(22)00090-X. 113. Lacina L, Brábek J, Fingerhutová Š, Zeman J, Smetana K Jr. Pediatric Inflammatory Multisystem Syndrome (PIMS) - Potential role for cytokines such Is IL-6. Physiol Res. 2021 Apr.30;70(2):153-9. Doi: 10.33549/fisiolres.934673 114. Gao YM, Xu G, Wang B, Liu BC. Cytokine storm syndrome in coronavirus disease 2019: A narrative review. J Intern Med. 2021 Feb;289(2):147-61. Doi: 10.1111/joim.13144. 115. Ruusala, A., Aspenstrom, P. Isolation and characterisation of DOCK8, a member of the DOCK180-related regulators of cell morphology. FEBS Lett. 2004;572:159-166. 116. Abuhammour W, Yavuz L, Jain R, Abu Hammour K, Al-Hammouri GF, El Naofal M, Halabi N, Yaslam S, Ramaswamy S, Taylor A, Wafadari D, Alsarhan A, Khansaheb H, Deesi ZO, Varghese RM, Uddin M, Al Suwaidi H, Al-Hammadi S, Alkhaja A, AlDabal LM, Loney T, Nowotny N, Al Khayat A, Alsheikh-Ali A, Abou Tayoun A. Genetic and clinical characteristics of patients in the middle east with multisystem inflammatory syndrome in children. JAMA Netw Open. 2022 May 2;5(5):e2214985. Doi: 10.1001/jamanetworkopen.2022.14985. 117. Gelzo M, Castaldo A, Giannattasio A, Scalia G, Raia M, Esposito MV, Maglione M, Muzzica S, D'Anna C, Grieco M, Tipo V, La Cava A, Castaldo G. MIS-C: A COVID-19-as sociated condition between hypoimmunity and hyperimmunity. Front Immunol. 2022 Oct. 3;13:985433. Doi: 10.3389/fimmu.2022.985433.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertação Iam PPg PIOS_final corrigido.pdf3,78 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons