Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/38050
Registro completo de metadados
Campo DCValorIdioma
dc.creatorProtasio, Laianne dos Santos-
dc.date.accessioned2023-10-17T10:32:26Z-
dc.date.available2023-10-17T10:32:26Z-
dc.date.issued2021-11-29-
dc.identifier.citationPROTASIO, Laianne dos Santos. Proposta metodológica utilizando simulação computacional para avaliar dinâmica de um derramamento de óleo e a dose na biota. 2021. 56 f. Dissertação (Mestrado em Geoquímica do Petróleo e Ambiental) - Instituto de Geociências, Universidade Federal da Bahia, Salvador (Bahia), 2021.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/38050-
dc.description.abstractOil spills are one of the most impactful sources of marine pollution. The release of oil on the ocean surface can have potential environmental impacts. Due to these impacts caused by the oil exploration industry, knowing its behavior in the marine environment through studies of prevention, control and mitigation of oil spills is necessary. Many studies already make use of computational models and codes that have proved to be an important tool, with low computational cost, for risk management. The present work aims to analyze the output data of the oil dispersion model in the MEDSLICK-II software, through the case study of an oil spill in the Cumuruxatiba Basin region. This model calculates the transport and weathering of oil from data from a regional oceanic model, using a Lagrangian representation of the slick. Furthermore, we propose to observe the impact of oil on biota through the Monte Carlo computational code (MCNP), which estimates the transport of ionizing radiation from oil to biota in the oceanic environment. Our results showed that BC, with its acceleration associated with the summer months, can act as a physical barrier against zonal oil transport, and another important point is that the characteristic transport of western boundary currents can act as a strong agent spreader of elements associated with oil along the Brazilian coast. Furthermore, the Th-232 series stood out for presenting a significant contribution to the dose. However, a corrective action capable of removing Tl-208 would significantly reduce the effects of radiation on readily exposed populations, since this radionuclide stands out as the one that delivers the highest percentage of dose. This study is a first approximation in terms of the dose rate in the biota due to an oil spill. Thus, based on this information generated by the models, the aim is to create an application methodology for future studies of oil spills and their impact on coastal areas of the Brazilian coast.pt_BR
dc.description.sponsorshipFUNDACAO DE AMPARO A PESQUISA DO ESTADO DA BAHIApt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectDerramamento de óleopt_BR
dc.subjectModelagem de Dispersãopt_BR
dc.subjectRadiodetecçãopt_BR
dc.subjectIntemperismo do óleopt_BR
dc.subjectPoluição marinhapt_BR
dc.subjectMEDSLICKpt_BR
dc.subject.otherOil spilpt_BR
dc.subject.otherDispersion Modelingpt_BR
dc.subject.otherRadiosensingpt_BR
dc.subject.otherOil weatheringpt_BR
dc.subject.otherMarine pollutionpt_BR
dc.subject.otherMEDSLICKpt_BR
dc.titleProposta metodológica utilizando simulação computacional para avaliar dinâmica de um derramamento de óleo e a dose na biota.pt_BR
dc.title.alternativeMethodological proposal using computer simulation to assess the dynamics of an oil spill and the dose to the biota.pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::GEOQUIMICApt_BR
dc.contributor.advisor1Mendonça, Luis Felipe Ferreira de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-7836-200Xpt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0858411444864247pt_BR
dc.contributor.advisor-co1Lentini, Carlos Alessandre Domingos-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-0406-1006pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5969005066506687pt_BR
dc.contributor.referee1Mendonça, Luís Felipe Ferreira de-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7836-200Xpt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0858411444864247pt_BR
dc.contributor.referee2Lentini, Carlos Alessandre Domingos-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-0406-1006pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5969005066506687pt_BR
dc.contributor.referee3Lopes, José Marques-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-7819-6646pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4361840482376714pt_BR
dc.contributor.referee4Freitas, Rose Ane Pereira de-
dc.contributor.referee4IDhttps://orcid.org/0000-0003-0186-3484pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2098305176727416pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-7080-3595pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2179922186158524pt_BR
dc.description.resumoOs derramamentos de óleo correspondem a uma das mais impactantes fontes de poluição marinha. A liberação de óleo na superfície do oceano pode gerar potenciais impactos ambientais. Devido a estes impactos causados pela indústria de exploração de petróleo, conhecer seu comportamento no ambiente marinho através de estudos de prevenção, controle e mitigação de derramamentos de óleo se fazem necessários. Muitos estudos já fazem utilização de modelos e códigos computacionais que têm se mostrado uma importante ferramenta, de baixo custo computacional, para o gerenciamento de riscos. O presente trabalho tem por objetivo analisar os dados de saída do modelo de dispersão de óleo no software MEDSLICKII, através do estudo de caso de um derramamento de óleo na região da Bacia de Cumuruxatiba. Este modelo calcula a partir de dados de um modelo regional oceânico o transporte e intemperismo do óleo, utilizando uma representação Lagrangiana da mancha. Além disto, propomos observar o impacto do óleo na biota através do código computacional Monte Carlo (MCNP), que estima o transporte de radiação ionizante do óleo para biota no meio oceânico. Nossos resultados mostraram que a CB, com sua aceleração associada aos meses de verão, pode funcionar como uma barreira física contra o transporte zonal de óleo, e outro ponto importante é que o transporte característico das correntes de contorno oeste, pode funcionar como um forte agente espalhador de elementos associados ao óleo ao longo da costa brasileira. Além disso, a série Th-232 se destacou por apresentar contribuição significativa para a dose. Porém, uma ação corretiva capaz de remover o Tl-208 diminuiria significativamente os efeitos da radiação nas populações expostas prontamente, uma vez que esse radionuclídeo se destaca como aquele que entrega mais percentual de dose. Esse estudo é uma primeira aproximação em termos de taxa de dose na biota devido a um derramamento de óleo. Assim, com base nestas informações geradas pelos modelos se almeja criar uma metodologia de aplicação para futuros estudos de derramamentos de óleo e seu impacto nas áreas costeiras do litoral brasileiro.pt_BR
dc.publisher.departmentInstituto de Geociênciaspt_BR
dc.relation.referencesABO-ELMAGD, M. et al. Radiological hazards of TENORM in the wasted petroleum pipes. Journal of environmental radioactivity, v. 101, n. 1, p. 51-54, 2010. DOI:https://doi.org/10.1016/j.jenvrad.2009.08.016 AL-SALEH, F.S.; AL-HARSHAN, G.A. Measurements of radiation level in petroleum products and wastes in Riyadh City Refinery. Journal of environmental radioactivity, v. 99, n. 7, p. 1026-1031, 2008. DOI: https://doi.org/10.1016/j.jenvrad.2007.12.002 ALIYU, A. S. et al. S. Fukushima nuclear accident: Preliminary assessment of the risks to non-human biota. Radiation Protection Dosimetry, v. 163, n. 2, p. 238-250, 2015. DOI: https://doi.org/10.1093/rpd/ncu158 AMORIM, F. N. D. et al. Coastal and shelf circulation in the vicinity of Camamu Bay (14 S), Eastern Brazilian Shelf. Continental Shelf Research, v. 31, n. 2, p. 108-119, 2011. DOI: https://doi.org/10.1016/j.csr.2010.11.011 ARAKAWA, A.; LAMB. V. Computational design of the basic dynamical process of the ucla general circulation model. Methods in Computational Physics, v.17, p. 173–265, 1977. ATTALLAH, M. F.; AWWAD, N. S.; ALY, H. f. Environmental radioactivity of TE-NORM waste produced from petroleum industry in Egypt: review on characterization and treatment. In: GUPTA S. (Ed.). Natural Gas: Extraction to End Use. Rijeka: InTech, Rijeka, HR, p. 548-603, 2012. BARKER, COLIN. Origin, composition and properties of petroleum. In: Developments in Petroleum Science. Elsevier, v.17, p. 11-45, 1985. BASTOS, C. C.; FERREIRA, N. J. Análise climatológica da alta subtropical do Atlântico Sul. In: CONGRESSO BRASILEIRO DE METEOROLOGIA, 11, 2000, Rio de janeiro. Anais [...]. 2000. p. 612-619. I BATLLE, J. V. et al. The estimation of absorbed dose rates for non-human biota: an extended intercomparison. Radiation and environmental biophysics, v. 50, n. 2, p. 231-251, 2011. DOI: https://doi.org/10.1007/s00411-010-0346-5 BEYER, J. et al. Environmental effects of the Deepwater Horizon oil spill: a review. Marine pollution bulletin, v. 110, n. 1, p. 28-51, 2016. DOI: https://doi.org/10.1016/j.marpolbul.2016.06.027 BERESFORD, N. A. et al. An international comparison of models and approaches for the estimation of the radiological exposure of non-human biota. Applied radiation and Isotopes, v. 66, n. 11, p. 1745-1749, 2008. DOI: https://doi.org/10.1016/j.apradiso.2008.04.009 BITTENCOURT, A. C. D. S. P. et al. R. Patterns of sediment dispersion coastwise the State of Bahia-Brazil. Anais da Academia Brasileira de Ciências, v. 72, p. 271-287, 2000. 46 BOEHM, P. D. et al. Comparison of mussels and semi-permeable membrane devices as intertidal monitors of polycyclic aromatic hydrocarbons at oil spill sites. Marine Pollution Bulletin, v. 50, n. 7, p. 740-750, 2005. DOI: https://doi.org/10.1016/j.marpolbul.2005.02.002 BOLLMAN, MORITZ et al. World Ocean Review: Living with Oceans. UNEP Scientific and Technical Advisory Panel, Marine Debris as a Global Environmental Problem. Hamburg: Maribus/Future Ocean: Kiel Marine Sceinces/International Ocean Institute, p. 6, 2010. BROWN, J. E. et al. Radiation doses to aquatic organisms from natural radionuclides. Journal of Radiological Protection, v. 24, n. 4A, p. A63, 2004. BROWN, J. E. et al. The ERICA tool. Journal of Environmental Radioactivity, v. 99, n. 9, p. 1371-1383, 2008. DOI: https://doi.org/10.1016/j.jenvrad.2008.01.008 CÂMARA, S. F. et al. Socioeconomic vulnerability of communities on the Brazilian coast to the largest oil spill (2019–2020) in tropical oceans. Ocean & Coastal Management, v. 202, p. 105506, 2021. DOI: https://doi.org/10.1016/j.ocecoaman.2020.105506 CARMO, A. S. Descarga de efluentes líquidos contendo radionuclídeos em uma instalação de medicina nuclear e seus impactos no meio ambiente. 2019. p. 124-142. Tese (Doutorado em Engenharia Nuclear) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2019. CASTILHO, J. D. Integração de dados e métodos potencias e de sensoriamento remoto como subsidio à exploração petrolífera offshore nas bacias de cumuruxatiba e jequitinhonha. 2005. 176 p. Dissertação (Mestrado em Ciências) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2005. CASTRO, B. M. et al. Physical oceanography of the western Atlantic continental shelf located between 4° N and 34° S: coastal segment (4° W). The Sea, v. 11, p. 209-251, 1998. CELINO, J. J.; QUEIROZ, A. F. D. S. Fonte e grau da contaminação por hidrocarbonetos policíclicos aromáticos (HPAs) de baixa massa molecular em sedimentos da baía de Todos os Santos, Bahia. Rem: Revista Escola de Minas, v. 59, p. 265-270, 2006. CELINO, J. J. et al. Persistent toxic substances in surface water of Todos Os Santos Bay, Brazil. Resources and Environment, v. 2, n. 4, p. 141-149, 2012. DOI: 10.5923/j.re.20120204.03 CHANG, S. E. et al. Consequences of oil spills: a review and framework for informing planning. Ecology and Society, v. 19, n. 2, 2014. DOI: http://dx.doi.org/10.5751/ES-06406- 190226 CHENG, Y. et al. SAR observation and model tracking of an oil spill event in coastal waters. Marine Pollution Bulletin, v. 62, n. 2, p. 350-363, 2011. DOI: https://doi.org/10.1016/j.marpolbul.2010.10.005 47 CIRANO, M. et al. A circulação oceânica de larga-escala na região oeste do Atlântico Sul com base no modelo de circulação global OCCAM. Revista Brasileira de Geofísica, v. 24, p. 209-230, 2006. DANIEL, P. et al. Improvement of drift calculation in Mothy operational oil spill prediction system. International Oil Spill Conference. American Petroleum Institute, v. 2003, n. 1, p. 1067-1072. 2003. DOI: https://doi.org/10.7901/2169-3358-2003-1-1067 DEGOLA, T. S. D. Impactos e variabilidade do Anticiclone Subtropical do Atlântico Sul sobre o Brasil no clima presente e em cenários futuros. 2013. p. 91. Dissertação (Mestrado em Meteorologia) - Universidade de São Paulo, São Paulo, 2013. DE DOMINICIS, M. et al. MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting–Part 1: Theory. Geoscientific Model Development, v. 6, n. 6, p. 1851-1869, 2013. DOI: https://doi.org/10.5194/gmd-6-1851-2013 DE DOMINICIS, M. et al. MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting–Part 2: Numerical simulations and validations. Geoscientific Model Development, v. 6, n. 6, p. 1871-1888, 2013. DOI: https://doi.org/10.5194/gmd-6-1871-2013 DE OLIVEIRA SOARES, M. et al. Oil spill in South Atlantic (Brazil): environmental and governmental disaster. Marine Policy, v. 115, p. 103879, 2020. DOI: https://doi.org/10.1016/j.marpol.2020.103879 DOMINGUEZ, J. M. L. et al. Plataforma Continental. In: BARBOSA, J. S. F. et al. Geologia da Bahia: pesquisa e atualização. Salvador: CBPM. 2, 2012. p. 427-496 DUTRA, G. F. et al. Abrolhos: desafios para a conservação e o desenvolvimento sustentável na área com a maior biodiversidade marinha do Atlântico Sul. Field Actions Science Reports. The journal of field actions, n. Special Issue 3, 2011. FERREIRA, A. G.; DA SILVA MELLO, N. G. Principais sistemas atmosféricos atuantes sobre a região Nordeste do Brasil e a influência dos oceanos Pacífico e Atlântico no clima da região. Revista Brasileira de Climatologia, v. 1, n. 1, 2005. DOI: http://dx.doi.org/10.5380/abclima.v1i1.25215 FINGAS, M. The basics of oil spill cleanup. Ed. CRC Press LLC, 2ª edição, 2001.DOI: https://doi.org/10.1201/9781420032598 FINGAS, M. Oil spill science and technology. Gulf professional publishing, 2016. FRENCH MCCAY, D. P. Oil spill impact modeling: development and validation. Environmental Toxicology and Chemistry: An International Journal, v. 23, n. 10, p. 2441-2456, 2004. GARCÊZ, R. W. D. et al. Study of K-40, Ra-226, Ra-228 and Ra-224 activity concentrations in some seasoning and nuts obtained in Rio de Janeiro city, Brazil. Food Science and Technology, v. 39, p. 120-126, 2019. DOI: https://doi.org/10.1590/fst.27717 48 GIN, K. Y. H. et al. An oil spill–food chain interaction model for coastal waters. Marine Pollution Bulletin, v. 42, n. 7, p. 590-597, 2001. DOI: https://doi.org/10.1016/S0025- 326X(00)00205-8 GREGORY, O. A.; FELIX, U. N.; OGHENEVOVWERO, E. E. Assessment of Background Ionization Radiation of Oil Spillage Site at Obodo Creek in Gokana LGA of River State, Nigeria. British Journal of Applied Science & Technology, v. 4, n. 36, p. 5072, 2014. DOI: 10.9734/BJAST/2014/12502 GUIMARÃES, N.A. et al. Monte Carlo simulation for the treatment of male breast cancer. Journal of physics, CONFERENCE SERIES (PRINT), v. 1044, p. 012049, 2018. DOI: 10.1088/1742-6596/1044/1/012049 HAIDVOGEL, D. B. et al. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of atmospheres and oceans, v. 32, n. 3-4, p. 239-281, 2000. DOI: https://doi.org/10.1016/S0377-0265(00)00049- X HALL, C. et al. Hydrocarbons and the evolution of human culture. Nature, v. 426, n. 6964, p. 318, 2003. DOI: https://doi.org/10.1038/nature02130 HASSELMANN, K. F. et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergaenzungsheft zur Deutschen Hydrographischen Zeitschrift, Reihe A, n. 12, 1973. HIGLEY, K. et al. Creation and application of voxelised dosimetric models, and a comparison with the current methodology as used for the International Commission on Radiological Protection’s Reference Animals and Plants. Annals of the ICRP, v. 44, n. 1_suppl, p. 313-330, 2015. ICRP – International Commission on Radiological Protection. The 2007 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP, ICRP Publication 103, v. 37, p. 2-4, 2007. ICRP – International Commission on Radiological Protection. Environmental Protection: The Concept and Use of Reference Animals and Plants. Annals of the ICRP, ICRP 1548 Publication 108, v. 38, p. 4-6, 2008. ICRP – International Commission on Radiological Protection. Dose coefficients for nonhuman biota environmentally exposed to radiation. Annals of the ICRP, ICRP Publication 136. v. 46, n. 2, 2017. ICRP – International Commission on Radiological Protection. Recommendations of the international commission on radiological protection. Annals of the ICRP, ICRP Publication 26, p. 1383-1385, 1977. ICRP – International Commission on Radiological Protection. Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values: ICRP Publication 89. Annals of the ICRP, v. 32, n. 3-4, p. 1-277, 2002. 49 INGOLE, B. et al. Ecotoxicological effect of grounded MV River Princess on the intertidal benthic organisms off Goa. Environment International, v. 32, n. 2, p. 284-291, 2006. DOI: https://doi.org/10.1016/j.envint.2005.08.025 KANTHA, L. H.; CLAYSON, C. Numerical models of oceans and oceanic processes. Elsevier, 2000. KE, L. et al. Fate of polycyclic aromatic hydrocarbon (PAH) contamination in a mangrove swamp in Hong Kong following an oil spill. Marine pollution bulletin, v. 45, n. 1-12, p. 339-347, 2002. DOI: https://doi.org/10.1016/S0025-326X(02)00117-0 KEUM, D. K. et al. Radiation dose to human and non-human biota in the Republic of Korea resulting from the Fukushima nuclear accident. Nuclear Engineering and Technology, v. 45, n. 1, p. 1-12, 2013. DOI: https://doi.org/10.5516/NET.03.2011.063 KOROTENKO, K. A. Effects of mesoscale eddies on behavior of an oil spill resulting from an accidental deepwater blowout in the Black Sea: an assessment of the environmental impacts. PeerJ, v. 6, p. e5448, 2018. DOI: 10.7717/peerj.5448 KRYSHEV, A. I., SAZYKINA, T. G. Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination. Journal of environmental radioactivity, v. 108, p. 9-14, 2012. DOI: https://doi.org/10.1016/j.jenvrad.2011.07.013 LANDSBERGER, S. et al. Disequilibrium in the uranium and actinium series in oil scale samples. Journal of environmental radioactivity, v. 166, p. 126-129, 2017. DOI: https://doi.org/10.1016/j.jenvrad.2016.03.026 LAW, R. J.; HELLOU, J. Contamination of fish and shellfish following oil spill incidents. Environmental Geosciences, v. 6, n. 2, p. 90-98, 1999. DOI: https://doi.org/10.1046/j.1526- 0984.1999.08039.x LEMOS, C. F.; CALBETE, N. O. Sistemas frontais que atuaram no litoral do Brasil (período 1987-1995). Boletim Climanálise, Edição comemorativa, v. 10, p. 131-135, 1996. LEMOS, A. T. et al. Oil spill modeling off the Brazilian eastern coast: the effect of tidal currents on oil fate. Revista Brasileira de Geofísica, v. 27, n. 4, p. 625-639, 2009. LESSA, G. C.; CIRANO, M. On the Circulation of a Coastal Channel within the Abrolhos Coral-Reef System-Southern Bahia (17◦ 40’S). Brazilian Journal Coast Research, v. 2004, p. 450-453, 2006. LI, Q. et al. Determination of 226Ra activity using gamma spectrometry with 226Ra–222Rn disequilibrium. Health physics, v. 109, n. 2, p. 113-116, 2015. DOI: 10.1097/HP.0000000000000302 LOPES, J. M., et al. Committed effective dose due to the intake of 40K, 226Ra, 228Ra and 228Th contained in foods included in the diet of the Rio de Janeiro city population, Brazil. Radiation protection dosimetry, v.181, n. 2, p. 149-155, 2018. DOI: https://doi.org/10.1093/rpd/ncx310 50 LOPES, J. M. et al. Comparison of simulated and experimental values of self-absorption correction factors for a fast and credible adjust in efficiency curve of gamma spectroscopy. Applied Radiation and Isotopes, v. 141, p. 241-245, 2018. DOI: https://doi.org/10.1016/j.apradiso.2018.05.005 LOURENÇO, R. A. et al. Mysterious oil spill along Brazil's northeast and southeast seaboard (2019–2020): Trying to find answers and filling data gaps. Marine Pollution Bulletin, v. 156, p. 111219, 2020. DOI: https://doi.org/10.1016/j.marpolbul.2020.111219 LIUBARTSEVA, S., et al. Model-based reconstruction of the Ulysse-Virginia oil spill, October–November 2018. Marine Pollution Bulletin, v. 154, p. 111002, 2020. DOI: https://doi.org/10.1016/j.marpolbul.2020.111002 MAGRIS, R. A.; GIARRIZZO, T. Mysterious oil spill in the Atlantic Ocean threatens marine biodiversity and local people in Brazil. Marine Pollution Bulletin, v. 153, p. 110961, 2020. DOI: https://doi.org/10.1016/j.marpolbul.2020.110961 MARTIN-SKILTON, R.; SABORIDO-REY, F.; PORTE, C. Endocrine alteration and other biochemical responses in juvenile turbot exposed to the Prestige fuel oil. Science of the Total Environment, v. 404, n. 1, p. 68-76, 2008. DOI: https://doi.org/10.1016/j.scitotenv.2008.06.006 MAZZILLI, B. P.; MÁDUAR, M. F.; CAMPOS, M. P. Radioatividade no meio ambiente e avaliação de impacto radiológico ambiental. São Paulo: Instituto de Pesquisas Energéticas e Nucleares (IPEN), p. 92, 2011. MIGNUCCI-GIANNONI, A. Assessment And Rehabilitation of Wildlife Affected by An Oil Spill In Puerto Rico. Environmental Pollution, v. 104, n. 2, p. 323–333, 1999. DOI: https://doi.org/10.1016/S0269-7491(98)00097-9 MOHRIAK, W. U. Bacias sedimentares da margem continental Brasileira. Geologia, tectônica e recursos minerais do Brasil, v. 3, p. 87e165, 2003. MORAIS, J. M. Petróleo em águas profundas: uma história tecnológica da Petrobras na exploração e produção offshore. Brasília: IPEA/Petrobras, 2013. MOREIRA, F. R., MOREIRA, J. C. Os efeitos do chumbo sobre o organismo humano e seu significado para a saúde. Revista Panamericana de Salud Pública, v. 15, p. 119-129, 2004. MOREIRA, I. T. et al. Chemometrics applied in laboratory study on formation of oil–spm aggregates (OSAs)—a contribution to ecological evaluation. Microchemical Journal, v. 118, p. 198-202, 2015. DOI: https://doi.org/10.1016/j.microc.2014.09.007 MÜLLER, P. J. et al. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60° N-60° S). Geochimica et Cosmochimica Acta, v. 62, n. 10, p. 1757-1772, 1998. DOI: https://doi.org/10.1016/S0016- 7037(98)00097-0 51 NGENE, S. et al. Environmental and economic impacts of crude oil and natural gas production in developing countries. International Journal of Economy, Energy and Environment, v. 1, n. 3, p. 64-73, 2016. DOI: https://doi.org/10.11648/j.ijeee.20160103.13 OLIVEIRA, L. R. et al. Brazil Current surface circulation and energetics observed from drifting buoys. Journal of Geophysical Research: Oceans, v. 114, n. C10006, 2009. DOI: https://doi.org/10.1029/2008JC004900 OLSON, D. B. et al. Temporal variations in the separation of Brazil and Malvinas Currents. Deep Sea Research Part A. Oceanographic Research Papers, v. 35, n. 12, p. 1971–1990, 1988. DOI: https://doi.org/10.1016/0198-0149(88)90120-3 OSUJI, L. C.; ONOJAKE, C. M. Trace heavy metals associated with crude oil: A case study of Ebocha 8 Oil spill polluted site in Niger Delta, Nigeria. Chemistry & biodiversity, v. 1, n. 11, p. 1708-1715, 2004. DOI: https://doi.org/10.1002/cbdv.200490129 OUDOT, J.; MERLIN, F. X.; PINVIDIC, P. Weathering rates of oil components in a bioremediation experiment in estuarine sediments. Marine Environmental Research, v. 45, n. 2, p. 113-125, 1998. DOI: https://doi.org/10.1016/S0141-1136(97)00024-X OVUOMARIE-KEVIN, S. I.; ONONUGBO, C. P.; AVWIRI, G. O. Assessment of radiological health risks from gamma radiation levels in selected oil spill communities of Bayelsa State, Nigeria. Current Journal of Applied Science and Technology, v. 28, n.3, p. 1-12, 2018. DOI: 10.9734/CJAST/2018/42601 PALADINO, E. E. Modelagem Matemática e Simulação Numérica de trajetórias de Derrames de Petróleo no Mar. 2000. Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal de Santa Catarina, Florianópolis, 2000. PARK, I. et al. Calculation of dose conversion coefficients for radioactive cesium in contaminated soil by depth and density. Journal of Radioanalytical and Nuclear Chemistry, v. 316, n. 3, p. 1213-1219, 2018. DOI: https://doi.org/10.1007/s10967-018-5831- 3 PELOWITZ, D.B. MCNPXTM User’s Manual. Los Alamos National Laboratory report LA-CP-05-0369, 2005. PENA, P. G. L. et al. Derramamento de óleo bruto na costa brasileira em 2019: emergência em saúde pública em questão. Cadernos de Saúde Pública, v. 36, p. e00231019, 2020. DOI: https://doi.org/10.1590/0102-311X00231019 PEREIRA, W. D. S., et al. Dose in biota due to alpha radionuclide emitters in a dan associated with a uranium mining. Brazilian Journal of Radiation Sciences, v. 8, n. 1B, 2020. DOI: https://doi.org/10.15392/bjrs.v8i1B.1079 PETERSON, C. H. The “Exxon Valdez” oil spill in Alaska: acute, indirect and chronic effects on the ecosystem. Advances in Marine Biology, v. 39, p. 1-103, 2001. DOI: https://doi.org/10.1016/S0065-2881(01)39008-9 52 PETERSON, C. H. et al. Sampling design begets conclusions: the statistical basis for detection of injury to and recovery of shoreline communities after the Exxon Valdez¹ oil spill. Marine Ecology Progress Series, v. 210, p. 255-283, 2001. DOI: doi:10.3354/meps210255 PETERSON, C. H. et al. Long-term ecosystem response to the Exxon Valdez oil spill. Science, v. 302, n. 5653, p. 2082-2086, 2003. DOI: 10.1126/science.1084282 PHILP, R. P. Composition and Properties of Petroleum. Hydrocarbons, Oils and Lipids: Diversity, Origin, Chemistry and Fate, Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham. 2020. DOI: https://doi.org/10.1007/978-3-319-90569-3_13 p. 269-310 QUEIROZ, S. et al. Simulation of oil spills near a tropical island in the equatorial southwest atlantic. Tropical Oceanography, Recife, v. 47, n. 1, p. 17-37, 2019. RADEMAEKERS, K. et al. Deep-seabed exploitation: Tackling economic, environmental and societal challenges. Brussels (BE), 2015. RESGALLA JR, C.; DE LA ROCHA, C.; MONTÚ, M. The influence of Ekman transport on zooplankton biomass variability off southern Brazil. Journal of plankton research, v. 23, n. 6, p. 641-650, 2001. RIBOTTI, A. et al. An operational marine oil spill forecasting tool for the management of emergencies in the italian seas. Journal of Marine Science and Engineering, v. 7, n. 1, p. 1, 2019. ROBLES, B. et al. Modelos implementados en el código CROM. CIEMAT, Madrid, 2007. ROWLAND, R. E. et al. Current status of the study of 226Ra and 228Ra in humans at the Center for Human Radiobiology. Health physics, v. 35, n. 1, p. 159-166, 1978. RODRIGUES, R. R.; ROTHSTEIN, L. M.; WIMBUSH, M. Seasonal Variability of the South Equatorial Current Bifurcation in the Atlantic Ocean: A Numerical Study. Journal of Physical Oceanography, v. 37, n.1, p. 16–30, 2006. SAHA, S. et al. The NCEP Climate Forecast System Version 2. Journal of Climate, v. 27, n. 6, p. 2185–2208, 2014. SALGADO, C.M. et al. Validation of a NaI(Tl) detector's model developed with MCNP-X code. Progress in Nuclear Energy (New Series), v. 59, p. 19-25, 2012. SANTOS, A. Á. B. et al. Atlas eólico Bahia. Salvador: SECTI - SEINFRA – CIMATEC – SENAI, 2013. 96p. SCHMIDT, A. C. K. et al. Modelo paramétrico analítico para a estrutura de velocidade do sistema corrente do Brasil. Revista Brasileira de Geofísica, v. 25, n.1, p. 75-91, 2007. SHCHEPETKIN, A. F.; MCWILLIAMS, J. C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. 53 Ocean modelling, v. 9, n. 4, p. 347-404, 2005. DOI: https://doi.org/10.1016/j.ocemod.2004.08.002 SHCHEPETKIN, A. F.; MCWILLIAMS, J. C. Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., Journal of Computational Physics 227, p. 3595– 3624. Journal of Computational Physics, v. 228, n. 24, p. 8985-9000, 2009. DOI: https://doi.org/10.1016/j.jcp.2009.09.002 SLUTZ, R. J. et al. Comprehensive ocean-atmosphere data set: release 1. NOAA Environmental Research Laboratories, Climate Research Program, Boulder, CO, 268 pp. 1985. SILVA, C. M. et al. 226 Ra in milk of the dairy cattle from the rural region of Pernambuco, Brazil. Journal of radioanalytical and nuclear chemistry, v. 270, n. 1, p. 237-241, 2006. DOI: https://doi.org/10.1007/s10967-006-0376-2 SILVA, R. C. et al. Radiological evaluation of Ra-226, Ra-228 and K-40 in tea samples: A comparative study of effective dose and cancer risk. Applied Radiation and Isotopes, v. 165, p. 109326, 2020. DOI: https://doi.org/10.1016/j.apradiso.2020.109326 SILVA, M. et al. High resolution regional ocean dynamics simulation in the southwestern tropical Atlantic. Ocean Modelling, v. 30, n. 4, p. 256–269, 2009. DOI: https://doi.org/10.1016/j.ocemod.2009.07.002 SILVEIRA, I. C. A. et al. A Corrente do Brasil ao Largo da Costa Leste Brasileira, Brazil. Journal of Oceanography, v. 48, n. 2, p. 171-183, 2000. SOUZA, E. S.; TRIGUIS, J. A. Degradação do petróleo em derrames no mat— intemperismo e biorremediacão. In: 3◦ Congresso Brasileiro de P&D em Petroleo e Gas, 2006, Salvador. Anais [...]. 2006. SOBEY, R. J.; BARKER, C. H. Wave-driven transport of surface oil. Journal of Coastal Research, v. 13, n.2, p. 490-496, 1997. SOUTELINO, R. G. A origem da Corrente do Brasil. Dissertação (Mestrado em Ciências, área de Oceanografia Física) Instituto Oceanográfico, Universidade de São Paulo IO/USP, São Paulo, 2008. SOUTELINO, R. G. et al. Is the Brazil Current eddy-dominated to the north of 20°S? Geophysical Research Letters, v. 38, n. 3, p. L03607, 2011. DOI: https://doi.org/10.1029/2010GL046276 STRAMMA, L.; IKEDA, Y.; PETERSON, R. G. Geostrophic Transport in the Brazil Current Region North of 20°S. Deep-Sea Research, v. 37, n.12, p. 1875–1886, 1990. DOI: https://doi.org/10.1016/0198-0149(90)90083-8 STRAMMA, L.; ENGLAND, M. On the water masses and mean circulation of the South Atlantic Ocean. Journal of Geophysical Research, v. 104, n. C9, p. 20863–20883, 1999. DOI: https://doi.org/10.1029/1999JC900139 54 STRINGARI, C. E. et al. Modeling an oil spill along the Southern Brazilian Shelf: Forcing characterization and its influence on the oil fate. International Journal of Geosciences, v. 4, n. 2, p. 397-407, 2013. DOI: 10.4236/ijg.2013.42038. TCHAMABI, C. C. et al. A study of the Brazilian Fernando de Noronha island and Rocas atoll wakes in the tropical Atlantic. Ocean Modelling, v. 111, p. 9-18, 2017. DOI: https://doi.org/10.1016/j.ocemod.2016.12.009 THALHOFER, J. L. et al. Equivalent dose calculation in simulation of lung cancer treatment and analysis of dose distribution profile. Applied Radiation and Isotopes, v. 142, p. 227- 233, 2018. DOI: https://doi.org/10.1016/j.apradiso.2018.07.012 TIMMERMAN, M. D.; FULLER, L. G.; BURTON, D. L. The effects of a crude oil spill on microbiological indices of soil biological quality. Canadian journal of soil science, v. 83, n. 2, p. 173-181, 2003. DOI: https://doi.org/10.4141/S01-039 TEIXEIRA, C. E. P. Caracterização e variabilidade da Hidrodinâmica da zona costeira adjacente ao banco de Abrolhos. 2006. Dissertação (Mestrado em Ciências) - Universidade de São Paulo, São Paulo, 2006 ULANOVSKY, A.; PRÖHL, G. A practical method for assessment of dose conversion coefficients for aquatic biota. Radiation and Environmental Biophysics, v. 45, n. 3, p. 203- 214, 2006. DOI: https://doi.org/10.1007/s00411-006-0061-4 VAN CLEEF, D. J. Determination of 226Ra in soil using 214Pb and 214Bi immediately after sampling. Health physics, v. 67, n. 3, p. 288-289, 1994. DOI: 10.1097/00004032-199409000- 00012 WILSON, C. A. et al. Determination of Uranium Series Activity Before Secular Equilibrium Is Established. Health physics, v. 117, n. 4, p. 449-456, 2019. DOI: 10.1097/HP.0000000000001073 WOODHEAD, D. S. The assessment of the radiation dose to developing fish embryos due to accumulation of radioactivity by the egg. Radiation research, v. 43, n.3, p. 582–597, 1970. DOI: https://doi.org/10.2307/3573231 ZHANG, S. et al. Are oil spills an important source of heavy metal contamination in the Bohai Sea, China? Environmental Science and Pollution Research, v. 27, n. 3, p. 3449- 3461, 2020. DOI: https://doi.org/10.1007/s11356-019-06913-1 ZHANG, J. et al. Oil spill detection in quad-polarimetric SAR Images using an advanced convolutional neural network based on SuperPixel model. Remote Sensing, v. 12, n. 6, p. 944, 2020. DOI: https://doi.org/10.3390/rs12060944 WIENDERS, N.; ARHAN, M.; MERCIER, H. Circulation at the western boundary of the South and Equatorial Atlantic: Exchanges with the ocean interior. Journal of Marine Research, v. 58, n. 6, p. 1007-1039, 2000. DOI: https://doi.org/10.1357/002224000763485782pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (POSPETRO)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertacao-Laianne_Protasio_final.pdfDissertação mestrado de Laianne dos Santos Protasio.1,74 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons