Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/37713
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSantos, Erick de Aquino-
dc.date.accessioned2023-08-24T08:44:30Z-
dc.date.available2023-08-24T08:44:30Z-
dc.date.issued2022-08-01-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/37713-
dc.description.abstractThe purpose of this work was to evaluate the ability of the bacterium Pseudomonas sp. in the biotransformation of alkanes in order to propose sustainable solutions that can be applied in advanced oil recovery, in addition to determining strain growth patterns under extreme conditions. For this, the work was carried out under laboratory conditions, initially, with the fractionation of crude oil to obtain the saturated fraction, used in the experiment. The bacteria tolerance test to salinity and temperature was also carried out to determine the conditions for setting up the experiment in relation to these parameters. Additionally, an experiment was set up to produce biosurfactant, through biostimulation. The biotransformation experiment consisted of a triplicate with treatment and a control. For treatments, erlenmeyrs received 100 mL of broth containing the biosurfactant, 10 g (10%) of NaCl, 3% of the strain and 1% of the saturated fraction. Erlenmeyrs were incubated at 40 ºC and 180 rpm for 18 days with periodic analysis. As results were initially observed the tolerance of bacteria that had better performance for the temperature of 40º C and there was no significant change for the different salinities, being a non-limiting parameter. For the final experiment the bacterial growth analyzed by O.D. had a low variation with the lowest point in T18 with absorbance of 0.115 and the highest point in T6 with absorbance of 0.149. For the analysis of the bacterial population through qPCR, the pattern found is similar to the optical density results, with low variation, with the lowest number of copies of the 16S rRNA gene 6.66x 103 being found in T0 and the highest number was in T12 with number of copies 7.86x 103 . For biotransformation analysis, time 6 was observed with the highest rate, being 54% of oil recovery (C30), followed by 52% (C31) and 51% (C29).pt_BR
dc.description.sponsorshipSHELL Centro de serviços compartilhado LTDApt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectMEOR (Microbially Enhanced Oil Recovery)pt_BR
dc.subjectBiotransformaçãopt_BR
dc.subjectBiossurfactantept_BR
dc.subjectAlcanospt_BR
dc.subjectqPCRpt_BR
dc.subjectPseudomonas sppt_BR
dc.subject.otherMEOR (Microbially Enhanced Oil Recovery)pt_BR
dc.subject.otherBiotransfomationpt_BR
dc.subject.otherBiosurfactantpt_BR
dc.subject.otherAlkanespt_BR
dc.subject.otherqPCRpt_BR
dc.titleAvaliação do potencial de Pseudomonas sp. aplicada à recuperação avançada de petróleopt_BR
dc.title.alternativeEvaluation of the potential of Pseudomonas sp. nov. applied to advanced oil recoverypt_BR
dc.typeDissertaçãopt_BR
dc.contributor.refereesLima, Danusia Ferreira-
dc.publisher.programPrograma de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::GEOQUIMICApt_BR
dc.contributor.advisor1Cruz, Manoel Jerônimo Moreira-
dc.contributor.advisor1ID0000-0002-8488-4936pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0904466257879054pt_BR
dc.contributor.advisor2Lima, Danusia Ferreira-
dc.contributor.advisor2ID0000-0002-8412-9148pt_BR
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/3488835911770590pt_BR
dc.contributor.advisor-co1Oliveira, Eddy José Francisco de-
dc.contributor.advisor-co1ID0000-0002-1614-5584pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4575150069494160pt_BR
dc.contributor.referee1Cruz, Manoel Jerônimo Moreira-
dc.contributor.referee1ID0000-0002-8488-4936pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0904466257879054pt_BR
dc.contributor.referee2Chinalia, Fabio Alexandre-
dc.contributor.referee2ID0000-0001-9775-6442pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/2940372015929687pt_BR
dc.contributor.referee3Garcia, Karina Santos-
dc.contributor.referee3ID0000-0003-3575-311Xpt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5195190698719857pt_BR
dc.contributor.referee4Santos, Regina Maria Geris dos-
dc.contributor.referee4ID0000-0002-3773-0336pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4019875942806708pt_BR
dc.contributor.referee5Martins, Marlos Gomes-
dc.contributor.referee5ID0000-0003-1559-6997pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/3087401708940450pt_BR
dc.creator.ID0000-0002-8298-4714pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3967346209704552pt_BR
dc.description.resumoA proposta deste trabalho foi avaliar a capacidade da bactéria Pseudomonas sp. na biotransformação de alcanos a fim de propor soluções sustentáveis que possam ser aplicadas na recuperação avançada de petróleo, além de determinar padrões de crescimento da cepa em condições extremas. Para isso o trabalho foi realizado em condições laboratoriais, inicialmente, com o fracionamento do petróleo bruto para obtenção da fração de saturados, utilizada no experimento. Foi também realizado teste de tolerância das bactérias a salinidade e a temperatura, para determinar as condições de montagem do experimento em relação a estes parâmetros. Adicionalmente, foi montado um experimento para produzir biossurfactante, através de bioestimulação. O experimento de biotransformação foi composto por uma triplicata com tratamento e um controle. Para tratamentos os erlenmeyrs receberam 100 mL de caldo contendo o biossurfactante, 10 g(10%) de NaCl, 3% da cepa e 1% da fração de saturados. Os erlenmeyrs foram incubados a 40 ºC e 180 rpm por 18 dias com análises periódicas. Como resultados foram observados inicialmente a tolerância das bactérias que tiveram melhor desempenho para a temperatura de 40º C e não houve alteração significativa para as diferentes salinidades, sendo um parâmetro não limitante. Para o experimento final o crescimento bacteriano analisado por O.D. teve uma baixa variação com menor ponto no T18 apresentando absorbância de 0,115 e o maior ponto no T6 com absorbância 0,149. Para a análise da população bacteriana através de qPCR o padrão encontrado se mostra similar aos resultados de densidade óptica, com baixa variação sendo encontrado o menor número de cópias do gene 16S rRNA 6,66x 103 no T0 e maior número foi no T12 com número de cópias 7,86x 103 . Para análise da biotransformação o tempo 6 foi observado com maior taxa sendo de 54% de recuperação do óleo (C30), seguida de 52% (C31) e 51% (C29).pt_BR
dc.publisher.departmentInstituto de Geociênciaspt_BR
dc.relation.referencesAITKEN, C. M.; JONES, D. M.; LARTER, S. R. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature, v. 431, n. 7006, p. 291- 294, 2004. ALOMAIR, O. A.; MATAR, K. M.; ALSAEED, Y. H. Nanofluids application for heavy oil recovery. In: SPE Asia Pacific oil & gas conference and exhibition. Society of Petroleum Engineers, 2014. ALVARADO, V.; MANRIQUE, E. Enhanced oil recovery: an update review. Energies, v. 3, n. 9, p. 1529-1575, 2010. ALVES, J. K. P.; MENDES, P.R. S. Estudo sobre a influência da contração do petróleo ao gelificar no reinício do escoamento. 2017. 80 f. Dissertação (Mestrado em Engenharia Mecânica). Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2017. AL-YAARI, Mohammed. Paraffin wax deposition: Mitigation and removal techniques. In: SPE Saudi Arabia section Young Professionals Technical Symposium. Society of Petroleum Engineers, 2011. ASTUTI, Dea Indriani et al. Screening and characterization of biosurfactant produced by Pseudoxanthomonas sp. G3 and its applicability for enhanced oil recovery. Journal of Petroleum Exploration and Production Technology, v. 9, n. 3, p. 2279-2289, 2019. BECKMAN, J. W. Action of bacteria on mineral oil. Ind. Eng. Chem., News Ed., v. 4, n. 21, p. 3, 1926. BROWN, Damon C.; TURNER, Raymond J. Assessing Microbial Monitoring Methods for Challenging Environmental Strains and Cultures. Microbiology Research, v. 13, n. 2, p. 235-257, 2022. CÂMARA, J. M. D. A.; SOUSA, M. A. S. B.; BARROS NETO, E. L.; OLIVEIRA, M. C. A. Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa in microbial-enhanced oil recovery (MEOR). Journal of Petroleum Exploration and Production Technology, v. 9, n. 3, p. 2333-2341, 2019. CAPORASO, J. G.; LAUBER, C. L.; WALTERS, W. A.; BERG-LYONS, D.; LOZUPONE, C. A.; TURNBAUGH, P. J.; KNIGHT, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the national academy of sciences, v. 108, n. supplement_1, p. 4516-4522, 2011. CHAFALE, Ayushi; KAPLEY, Atya. Biosurfactants as microbial bioactive compounds in microbial enhanced oil recovery. Journal of Biotechnology, 2022. COTTO, Ada et al. Quantitative polymerase chain reaction for microbial growth kinetics of mixed culture system. Journal of Microbiology and Biotechnology, v. 25, n. 11, p. 1928-1935, 2015. 44 DUTTA, T. K.; HARAYAMA, S. Time-of-flight mass spectrometric analysis of highmolecular-weight alkanes in crude oil by silver nitrate chemical ionization after laser desorption. Analytical chemistry, v. 73, n. 5, p. 864-869, 2001. GAO, H.; ZHANG, J.; LAI, H.; XUE, Q. Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil. International Biodeterioration & Biodegradation, v. 122, p. 12-22, 2017. GBADAMOSI, Afeez O.; JUNIN, R. An overview of chemical enhanced oil recovery: recent advances and prospects. International Nano Letters, v. 9, n. 3, p. 171-202, 2019. GOODMAN, S. H. Investigation into the Potential Application of Microbial Enhanced Oil Recovery on Unconventional Oil: A Field Specific Approach. 2017. 294 f. Tese de Doutorado. University of Liverpool, Liverpool, 2017. HALIM, A. Y. Application of microorganisms for enhanced oil recovery. 2015. 233 f. Tese de Doutorado (Center for Energy Resources Engineering), Technical University of Denmark, Dinamarca. 2015. HENTATI, Dorra et al. Investigation of halotolerant marine Staphylococcus sp. CO100, as a promising hydrocarbon-degrading and biosurfactant-producing bacterium, under saline conditions. Journal of Environmental Management, v. 277, p. 111480, 2021. KARAN, K.; RATULOWSKI, J.; GERMAN, P. Measurement of waxy crude properties using novel laboratory techniques. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers, 2000. KARIMI, M., MAHMOODI, M., NIAZI, A., AL-WAHAIBI, Y., & AYATOLLAHI, S. Investigating wettability alteration during MEOR process, a micr3333o/macro scale analysis. Colloids and Surfaces B. Biointerfaces, v.95, p. 129-136, 2012. KE, Cong-Yu et al. A pilot study on large-scale microbial enhanced oil recovery (MEOR) in Baolige Oilfield. International Biodeterioration & Biodegradation, v. 127, p. 247-253, 2018. KHADEMOLHOSSEINI, Rasoul et al. Investigation of synergistic effects between silica nanoparticles, biosurfactant and salinity in simultaneous flooding for enhanced oil recovery. RSC advances, v. 9, n. 35, p. 20281-20294, 2019. MOHEBALI, Ghasemali; KAYTASH, Ashk; ETEMADI, Narges. Efficient breaking of water/oil emulsions by a newly isolated de-emulsifying bacterium, Ochrobactrum anthropi strain RIPI5-1. Colloids and Surfaces B: Biointerfaces, v. 98, p. 120-128, 2012. MUSSE, A. P. S.; QUINTELLA, C. M. Recuperação avançada de petróleo. Caderno de prospecção. v. 2, n. 1, p. 12-22, 2009. 45 MUZZAFARUDDIN, K. Enhanced Oil Recovery. International Journal of Petroleum and Petrochemical Engineering. v. 5, n. 4, p. 10-13, 2019. NAZINA, T. N.; GRIGOR’YAN, A. A.; SHESTAKOVA, N. M.; BABICH, T. L.; IVOILOV, V. S.; FENG, Q.; NI, F.; WANG, J.; SHE, Y.; XIANG, T.LUO, Z.; BELYAEV, S. S.; IVANOV, M. V. Microbiological investigations of high-temperature horizons of the Kongdian petroleum reservoir in connection with field trial of a biotechnology for enhancement of oil recovery. Microbiology, v. 76, n. 3, p. 287-296, 2007. NIU, J.; LIU, Q.; LV, J.; PENG, B. Review on microbial enhanced oil recovery: Mechanisms, modeling and field trials. Journal of Petroleum Science and Engineering. p. 107350, 2020. OKORO, Emmanuel E.; EFAJEMUE, E. A.; SANNI, S. E.; OLABODE, O. A.; ORODU, O. D.; OJO, T. Application of thermotolerant petroleum microbes at reservoir conditions for enhanced oil recovery. Petroleum, 2022. PARADA, ALMA E.; NEEDHAM, DAVID M.; FUHRMAN, JED A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental microbiology, v. 18, n. 5, p. 1403-1414, 2016. PATEL, J.; BORGOHAIN, S.; KUMAR, M.; RANGARAJAN, V.; SOMASUNDARAN, P.; SEN, R. Recent developments in microbial enhanced oil recovery. Renewable and Sustainable Energy Reviews, v. 52, p. 1539-1558, 2015. PETERS, K. E.; WALTERS, C. C.; MOLDOWAN, J. M. The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History. 2 ed. Cambridge: Cambridge University Press. 2005. 492 p. PHAN, T.; FAUST, M.; BALSAMO, V.; CHAMPION, N. More Effective Solution to Treat Paraffinic Crude Oil Wells. In: SPE International Conference on Oilfield Chemistry. Society of Petroleum Engineers, 2019. RICOMARTÍNEZ, R., SNELL, T.W., SHEARER, T.L. Synergistic toxicity of Macondo crude oil and dispersant Corexit 9500A® to the Brachionus plicatilis species complex (Rotifera). Environ. Pollut. v. 173, n.173, p. 5-10, 2013. SATTER, A.; IQBAL, G. M. Enhanced oil recovery processes: thermal, chemical, and miscible floods. Reservoir Engineering: The Fundamentals, Simulation, and Management of Conventional and Unconventional Recoveries, p. 313-337, 2016. SAKTHIPRIYA, N.; DOBLE, Mukesh; SANGWAI, Jitendra S. Enhanced microbial degradation of waxy crude oil: a review on current status and future perspective. International Journal of Oil, Gas and Coal Technology, v. 16, n. 2, p. 130-165, 2017 SHE, H.; KONG, D.; LI, Y.; HU, Z.; GUO, H. Recent advance of microbial enhanced oil recovery (MEOR) in China. Geofluids, v. 2019, 2019. SHIBULAL, B.; AL-BAHRY, S. N.; AL-WAHAIBI, Y. M.; ELSHAFIE, A. E.; ALBEMANI, A. S.; JOSHI, S. J. Microbial enhanced heavy oil recovery by the aid of 46 inhabitant spore-forming bacteria: an insight review. The Scientific World Journal, v. 2014, 2014. SHIBULAL, B. et al. Microbial-enhanced heavy oil recovery under laboratory conditions by Bacillus firmus BG4 and Bacillus halodurans BG5 isolated from heavy oil fields. Colloids and Interfaces, v. 2, n. 1, p. 1, 2018. TATAR, A. Microbial Enhanced Oil Recovery: Microbiology and Fundamentals. In: BAHADORI, A. Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs. Austrália: Gulf Professional Publising. p. 291-508. 2018. TIAN, L., BAI, Y.L., ZHONG, J.J. Recent developments in the degradation of toxic organic pollution by microorganisms. J. Ind. Microbl. V. 3, n. 2, p. 46-50, 2000. TISSOT, Bernard P.; WELTE, Dietrich H. Petroleum formation and occurrence. 2 ed. Berlin: Springer Science & Business Media, 1984. 702 p. YERNAZAROVA, A.; KAYIRMANOVA. G.; BAUBEKOVA, A.; ZHUBANOVA, A. Microbial Enhanced Oil Recovery. In: ROMERO-ZERON, L. (Ed.). Chemical Enhanced Oil Recovery (cEOR) - a Practical Overview, InTech, 2016. p. 2006. YOUSSEF, N.; ELSHAHED, M. S.; MCINERNEY, M. J. In: Advances in Applied Microbiology. Microbial processes in oil fields: culprits, problems, and opportunities, v. 66, p. 141-251, 2009.pt_BR
dc.contributor.refereesLatteshttp://lattes.cnpq.br/3488835911770590pt_BR
dc.contributor.refereesIDs0000-0002-8412-9148pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (POSPETRO)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertao_ErickdeAquinoSantos_VersoFinal (1).pdfDissertação de Mestrado de Erick de Aquino Santos1,03 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons