Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/34967
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSantos, Tiago Assunção-
dc.date.accessioned2022-03-29T19:30:58Z-
dc.date.available2022-03-24-
dc.date.available2022-03-29T19:30:58Z-
dc.date.issued2022-10-07-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/34967-
dc.description.abstractThe Portland cement production process is responsible for high environmental impacts, with the exploration of deposits of these raw materials and emission of large amounts of CO2. In this context, the main objective of the present work was to analyze the technical feasibility of using granitic rock fines (GRF), waste generated in the process of producing aggregates for civil construction and asbestos cement waste tile (ACW), aimed at making Portland cement. Regarding the GRF, it was observed that there are no studies that aim to use this residue in the production of Portland clinker as a partial substitute for clay. As for the RCA, it was noted that there is a lack of research aimed at analyzing the potential of this residue as a mineralizer. For this, the raw materials were characterized physically, chemically and mineralogically and, based on these results, the production of two types of cement was proposed. First, the reference cement was produced, containing approximately 95% of limestone and 5% of clay, by mass, with clinkerization at a temperature of 1450 °C. Then, the second type of cement was produced, replacing FRG clay, in the contents of 25%, 50%, 75% and 100%, by mass, with clinkerization at a temperature of 1450 °C. In the production of the third type of cement, the limestone and clay mixture was replaced by RCA, at levels of 24%, 49%, 74% and 86%, by mass, with clinkerization at temperatures of 1450 °C, 1400 °C, 1350 °C and 1300 °C. The cements produced were characterized by physical-mechanical and expandability analysis, evaluation of hydration (calorimetry) and phase formation (XRD and Thermogravimetry). For cements produced with GRF it was observed that there was an increase in the alite content (C3S), when compared to the reference cement, and for those with 50% and 100% GRF content in the clinker flour, similar mechanical strengths were observed in the reference cement, although it does not impact CO2 emission. For cements produced with ACW, it was found that those produced at 1350°C and with 74% replacement of the clay-limestone mixture by ACW had mechanical resistance similar to that observed in the reference cement (without the addition of ACW), in addition to lower CO2 emission and energy consumption.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectCimento Portlandpt_BR
dc.subjectClínquer Portlandpt_BR
dc.subjectFinos de rocha granítica (FRG)pt_BR
dc.subjectResíduo de cimento-amianto (RCA)pt_BR
dc.subject.otherPortland cementpt_BR
dc.subject.otherPortland clinkerpt_BR
dc.subject.otherGranitic rock finespt_BR
dc.subject.otherAsbestos cement tile wastept_BR
dc.titleObtenção de clínquer Portland a partir da utilização do fino de rocha granítica (FRG) e do resíduo de telhas de cimento-amianto (RCA) como matérias-primas alternativaspt_BR
dc.title.alternativeObtaining Portland clinker from the use of fine granite rock (FRG) and waste of asbestos cement tiles (RCA) as alternative raw materialspt_BR
dc.typeTesept_BR
dc.contributor.refereesDias, Cléber Marcos Ribeiro-
dc.publisher.programCentro Interdisciplinar de Energia e Ambiente (CIEnAm-PG) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRApt_BR
dc.contributor.advisor1Véras Ribeiro, Daniel-
dc.contributor.advisor1ID0000-0003-3328-1489pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4754562885515304pt_BR
dc.contributor.advisor2Cilla, Marcelo Strozi-
dc.contributor.advisor2ID0000-0001-7984-6620pt_BR
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/8254610220451251pt_BR
dc.contributor.referee1Véras Ribeiro, Daniel-
dc.contributor.referee1ID0000-0003-3328-1489pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4754562885515304pt_BR
dc.contributor.referee2Cilla, Marcelo Strozi-
dc.contributor.referee2ID0000-0001-7984-6620pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8254610220451251pt_BR
dc.contributor.referee3Labrincha, João Antònio Baptista-
dc.contributor.referee3ID0000-0003-4782-1685pt_BR
dc.contributor.referee4Kirchheim, Ana Paula-
dc.contributor.referee4ID0000-0002-8241-0331pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/4014435019322019pt_BR
dc.contributor.referee5Raupp-Pereira, Fabiano-
dc.contributor.referee5ID0000-0002-5724-4669pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/2616924470033117pt_BR
dc.creator.Lattes6399023015120498pt_BR
dc.description.resumoO processo de produção do cimento Portland é responsável por elevados impactos ambientais, com a exploração das jazidas dessas matérias-primas e emissão de grandes quantidades de CO2. Neste contexto, o presente trabalho teve como principal objetivo analisar a viabilidade técnica do uso dos finos de rocha granítica (FRG), resíduo gerado no processo de produção de agregados para a construção civil e da telha de resíduo de cimento-amianto (RCA), visando a confecção de cimento Portland. Em relação aos FRG, observou-se que não há trabalhos que tenham como objetivo utilizar este resíduo na produção de clínquer Portland como substituto parcial da argila. Quanto aos RCA, notou-se que escassez de pesquisas que tenham como objetivo analisar o potencial deste resíduo como mineralizante. Para isto, as matérias primas foram caracterizadas física, química e mineralogicamente e, a partir destes resultados, foi proposta a produção de dois tipos de cimento. Primeiramente foi produzido o cimento referência contendo aproximadamente 95% de calcário e 5% de argila, em massa, com clinquerização na temperatura de 1450 °C. Em seguida, foi produzido o segundo tipo de cimento com substituindo a argila FRG, nos teores de 25%, 50%, 75% e 100%, em massa, com clinquerização na temperatura de 1450 °C. Na produção do terceiro tipo de cimento, a mistura calcário e argila foi substituída pelo RCA, nos teores de 24%, 49%, 74% e 86%, em massa, com clinquerização nas temperaturas de 1450 °C, 1400 °C, 1350 °C e 1300 °C. Os cimentos produzidos foram caracterizados por meio de análise físico-mecânica e da expansibilidade, avaliação da hidratação (calorimetria) e formação de fases (DRX e Termogravimetria). Para os cimentos produzidos com FRG observou-se que houve um aumento do teor de alita (C3S), quando comparado ao cimento referência, sendo que para aqueles com teores de 50% e 100% de FRG na farinha do clínquer foram observadas resistências mecânicas similares à observadas no cimento de referência, apesar de não impactar na emissão de CO2. Para os cimentos produzidos com RCA, verificou-se que aqueles produzidos a 1350 °C e com 74% de substituição da mistura argila-calcário por RCA apresentaram resistência mecânica similar à observada no cimento de referência (sem adição de RCA), além de menores emissão de CO2 e consumo energético.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesABREU, R. F. Caracterização da estrutura de curto alcance de cimentos de cinza de casca de arroz através da espectroscopia por ressonância magnética nuclear de alta resolução. Dissertação de mestrado apresentada para obtenção de título de Mestre em Ciências: Física Aplicada. Universidade de São Paulo, São Carlos, 2002. ABDEL-LATIEF, M. A., EL-SAYED, M. I., SHAHIEN, M. G., ZAYED, A. M. A new insight upon the use of weathered basalt as alternative raw material in Portland clinker production. Ain Shams Engineering Journal. v. 12, p. 885-896, 2021. ALI M.M.; RAINA S.J. Kinetics and diffusion studies in CA2 formation. Cement Concrete Research. v.19, 1989, p.47. ALUJAS, A.; FERNÁNDEZ, R.; QUINTANA, R.; SCRIVENER, K. L.; MAR-TIRENA, F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calci-nation temperature and impact of calcination products on OPC hydration. Applied Clay Science, v. 108, 94-101, 2015. ASSOCIAÇÃO BRASILEIRA DE CIMENTO PORTLAND. Guia básico de utilização do cimento Portland. Boletim Técnico. São Paulo: ABCP, 2002. ABDEL-LATIEF, M. A., EL-SAYED, M. I., SHAHIEN, M. G., ZAYED, A. M. A new insight upon the use of weathered basalt as alternative raw material in Portland clinker productionAin Shams Engineering Journal, v. 12, n. 1, p. 885-896, 2021. ALMEIDA, S. L. M.; SAMPAIO, J. A. Obtenção de areia artificial com base em finos de pedreiras. n: Encontro Nacional de Tratamento de Minérios e Metalurgia Extrativa, XIX, 2002, Recife, p.263-268. AMBROSIUS, S.; GUNDLACH, H.; KIESER, J. Thermische Verwertung von Zementgebundenen Asbestprodukten in Zementöfen. ZKG international, v. 49, n. 8, p. 444-453, 1996. AMERICAN SOCIETY FOR TESTING MATERIALS (ASTM). ASTM C563. Standard Guide for Approximation of Optimum SO3 in Hydraulic Cement, Philadelphia, 2019. _____. ASTM 563-18: Standard Guide for Approximation of Optimum SO3 in Hydraulic Cement. West Conshohocken, USA, 8 p., 2018. _____ ASTM C150 “Standard Specification for Portland Cement,”, West Conshohocken, USA, 8 p., 2018. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT) NBR 16697: Cimento Portland – Requisitos. Rio de Janeiro, 2018. _____. NBR 11582: cimento Portland – determinação da expansibilidade Le Chatelier. Rio de Janeiro, 2016. _____. NBR 11579: Cimento Portland — Determinação do índice de finura por meio da peneira 75 μm (no 200). Rio de Janeiro, 2013. _____ NBR ISO 10004. Resíduos Sólidos – Classificação. Rio de Janeiro. Rio de Janeiro, 2004 _____.NBR 7215. Cimento Portland - determinação da resistência à compressão. Rio de Janeiro, 1997. ANASTASIADOU, K.; AXIOTIS, D.; GIDARAKOS, E. Hydrothermal conversion of chrysotile asbestos using near supercritical conditions. Journal of Hazardous Materials, v. 179, p. 926–932, 2010. ANASTASIOU, C. A., YANNAKOULIA, M., KOSMIDIS, M. H., DARDIOTIS, E., HADJIGEORGIOU, G. M., SAKKA, P., SCARMEAS, N. Mediterranean diet and cognitive health: initial results from the Hellenic Longitudinal Investigation of Ageing and Diet. PloS one, v. 12, p. e0182048, 2017. ANEPAC, Associação Nacional das Entidades de Produtores de Agregados para Construção. ARUNTAS H., GURU M., DAYI M., TEKIN I. Utilization of waste marble dust as an additive in cement production. Materials and Design. v. 31, p. 4039–4042, 2010. BAJAY, S. V. Energy Planning Project Latin-American Organization for Energy (OLADE). 2009. BAQUERIZO, L. G., MATSCHEI, T., SCRIVENER, K. L., SAEIDPOUR, M., WADSÖ, L. Hydration states of AFm cement phases. Cement and Concrete Research, 73, 143-157. BARBOSA, W.; PORTELLA, K. F. Síntese e caracterização das fases minerais C3S, C2S, C3A e C4AF para utilização em cimento tipo Portland. Cerâmica, v. 65, p. 54-62, 2019. BATTAGIN, A. F. Cimento Portland. In: ISAIA, C. G. Concreto Ciência e Tecnologia. São Paulo: IBRACON, v. 1, 2011. Cap. 66. BAUR, I., KELLER, P., MAVROCORDATOS, D., WEHRLI, B., JOHNSON, C. A. Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate. Cement and concrete research, v. 34, n. 2, p. 341-348, 2004. BAUR, I., KELLER, P., MAVROCORDATOS, D., WEHRLI, B., JOHNSON, C. A. Dissolution-precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate. Cement and concrete research, v. 34, n. 2, p. 341-348, 2004. BAZZONI, A. Study of early hydration mechanisms of cement by means of electron microscopy. Tese apresentada para obtenção do título de doutor da EPFL, Lausane, 2014. BEIXING, W.J.Z.M.L.; GUOJU, H.; TUSHENG K. Effects of micro-fines on durability of manufactured sand concrete. Industrial Construction, v. 12, 2007. BELARDI, G.; PIGA, L. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products. Thermochimica Acta, v. 573, p. 220–228, 2013. BERNAL, John Desmond; MEGAW, Helen D. The function of hydrogen in intermolecular forces. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, v. 151, p. 384-420, 1935. BERODIER, E. M. J. Impact of the supplementary cementitious materials on the kinetics and microstructural development of cement hydration. Tese apresentada para obtenção do título de doutor da EPFL, Lausane, 2015. BIANCHI, C.; BIANCHI, T. Asbestos between science and myth. A 6,000-year story. Medicina del Lavoro, v. 106, n. 2, p. 83–90, 2015. BISHOP, M.; BOTT, S.; BARRON, A.R. A New Mechanism for Cement Hydration Inhibition: Solid-State Chemistry of Calcium Nitrilotris (methylene) triphosphonate. Chemistry of Materials, v.15, n. 16, p. 3074-3088, 2003. BLACK, L., BREEN, C., YARWOOD, J., PHIPPS, J., MAITLAND, G. In situ Raman analysis of hydrating C3A and C4AF pastes in presence and absence of sulphate. Journal Advances in Applied Ceramics Structural, Functional and Bioceramics. v. 105, 2006, p. 209-2016. BLOISE, A.; CATALANO, M.; GUALTIERI, A. F. Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment. Minerals, v. 8, n. 4, 2018. BLOISE, Andrea; CATALANO, Manuela; GUALTIERI, Alessandro Francesco. Effect of grinding on chrysotile, amosite and crocidolite and implications for thermal treatment. Minerals, v. 8, n. 4, p. 135, 2018. BOGUE, R. H. Calculation of the Compounds in Portland Cement. Industrial and Engineering Chemistry, v. 1, p. 192, 1929. BOGUSH, A. A., STEGEMANN, J. A., ZHOU, Q., WANG, Z., ZHANG, B., ZHANG, T., WEI, J. Co-processing of raw and washed air pollution control residues from energy-from-waste facilities in the cement kiln. Journal of Cleaner Production, 254, 119924, 2020. BRANDŠTETR, J.; HAVLICA, J.; ODLER, I. Properties and use of solid residue from fluidized bed coal combustion In: CHANDRA, S. Waste Materials Used in Concrete Manufacturing. Noyes Publications. Westwood, USA, 1997. BRITISH BROADCASTING CORPORATION (BBC). Climate change: The massive CO2 emitter you may not know about. 2018. Disponível em: <www.bbc.com/news/science-environment-46455844> Acesso em: mai. 2020. BULLARD, J. W.; JENNINGS, H. M.; LIVINGSTON, R. A.; NONAT, A. SCHERER, G. W.; SCHWEITZER, J. S.; SCRIVENER, K, L.; THOMAS, J. J. Mechanisms of cement hydration. Cement & Concrete Research. Elsevier Ltd, vol. 41. p. 1208-1223, 2011. BURUBERRI, L. H., SEABRA, M. P., LABRINCHA, J. A. Preparation of clinker from paper pulp industry wastes. Journal of Hazardous Materials. v. 286, 2015, p. 252-260. BUSING, William R.; LEVY, Henri A. High-speed computation of the absorption correction for single-crystal diffraction measurements. Acta Crystallographica, v. 10, n. 3, p. 180-182, 1957. BUTTLER, A. M. Concreto com agregados graúdos reciclados de concreto: influência da idade de reciclagem nas propriedades dos agregados e concretos reciclados. 2003. Tese de Doutorado. Universidade de São Paulo. CALMON, J.L; TRISTÃO, F.A; LORDÊLLO, F.S.S; SILVA, S.A. Aproveitamento do resíduo do corte de granit para produção de argamassas de assentamento. In: II Simpósio Brasileiro de Tecnologia das argamassas, Anais. Salvador, BA: ANTAC, p. 64-75. 1997. CAO, Liu et al. Process to utilize crushed steel slag in cement industry directly: Multi-phased clinker sintering technology. Journal of Cleaner Production, v. 217, p. 520-529, 2019. CARBON BRIEF CHATHAM HOUSE. Q&A: Why cement emissions matter for climate change. 2018. Disponível em: <https://www.carbonbrief.org/qa-why-cement-emissions-matter-for-climate-change>. Acesso em: 17 junho. 2020. CARLES-GIBERGUES, A., CYR, M., MOISSON, M., RINGOT, E. A simple way to mitigate alkali-silica reaction. Materials and Structures, v. 41, n. 1, p. 73-83, 2008. CARNEIRO, G.O; SANTOS, T. A.; SIMONELLI, G; CILLA, M. S.; RIBEIRO, D. V. DIAS, C. M. R. Thermal Treatment Optimization of Asbestos Cement Waste (ACW) Potentializing its use as alternative binder. Journal of Cleaner Production, p. 128801,2021. CARRIJO, Priscila Meireles. Análise da influência da massa específica de agregados graúdos provenientes de resíduos de construção e demolição no desempenho mecânico do concreto. 2005. Tese de Doutorado. Universidade de São Paulo. CAVALLO, A.; RIMOLDI, B. Chrysotile asbestos in serpentinite quarries: a case study in Valmalenco, Central Alps, Northern Italy. Environmental Science Processes & Impacts, v. 15, n. 7, p. 1293–1468, 2013. CENTURIONE, S. L. Influência das Características das Matérias-Primas no Processo de Sinterização do Clínquer Portland. São Paulo, 1993. Dissertação (Mestrado em Engenharia Civil) – Instituto de Geociências, Universidade de São Paulo, São Paulo, 1993. CHATTERJEE, A. K. Chemistry and engineering of the clinkerization process — Incremental advances and lack of breakthroughs. Cement and Concrete Research. v.41, p. 624-641, 2011. CHEN, I. A.; JUENGER, M. C. G. Incorporation of Waste Materials into Portland Cement Clinker Synthesized from Reagent-Grade Chemicals. International Journal of Applied Ceramic Technology, v. 6, p. 2617-2627, 2009. CHOUDHURY, S. HASHM. Encyclopedia of Renewable and Sustainable Materials. 1ª ed. Austrália: Elsevier, 2020, 481 p. CLAVERIE, J., KAMALI-BERNARD, S., CORDEIRO, J. M. M., BERNARD, F. Assessment of mechanical, thermal properties and crystal shapes of monoclinic tricalcium silicate from atomistic simulations. Cement and Concrete Research, v. 140, 106269, 2021. COLANGELO, F., CIOFFI, R., LAVORGNA, M., VERDOLOTTI, L., & DE STEFANO, L. Treatment and recycling of asbestos-cement containing waste. Journal of Hazardous Materials, v. 195, p. 391–397, 2011. COLVILLE, A. A.; GELLER, S. The crystal structure of brownmillerite, Ca2FeAlO5. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, v. 27, p. 2311-2315, 1971. CONSTANTINIDES, G.; ULM, F. J. The nanogranular nature of C-S-H. Journal of the Mechanics and Physics of Solids. v. 55, p. 64 - 90, 2007. CORINALDESI, V., MORICONI, G., NAIK, T. Characterization of marble powder for its use in mortar and concrete. Construction and building materials, v. 24, p. 113-117, 2010. CORINALDESI, V., MORICONI, G., NAIK, T. R. Characterization of marble powder for its use in mortar and concrete. Construction and building materials, v. 24, n. 1, p. 113-117, 2010. COSTA, E. B., NOBRE, T. R. S., GUERREIRO, A. Q., MANCIO, M., KIRCHHEIM, A. P. Clínquer Portland com reduzido impacto ambiental. Ambiente Construído. v. 13, p. 75-86, 2013. COSTA, E. B.; RODRÍGUEZ, E. D.; BERNAL, S. A.; PROVIS, J. L.; GOBBO, L. A.; KIRCHHEIM, A. P. Production and hydration of calcium sulfoaluminate-belite cements derived from aluminium anodising sludge. Construction and Building Materials, v. 122, p. 373-383, 2016. COSTA, F. N.; RIBEIRO, D. V. Reduction in CO2 emissions during production of cement, with partial replacement of traditional raw materials by civil construction waste (CCW). Journal of Cleaner Production, v. 276, p. 123302, 2020. CUESTA, A.; LOSILLA, E. R.; ARANDA, M. A. G.; SANZ, J.; DE LA TORRE, A. Reactive belite stabilization mechanisms by boron-bearing dopants. Cement and Concrete Research, v. 42, p. 598–606. 165, 2012. CUESTA, A.; SANTACRUZ, I.; SANFÉLIX, S. G.; FAUTH, F.; ARANDA, M. A. G.; DE LA TORRE, A. G. Hydration of C4AF in the presence of other phases: A synchrotron X-ray powder diffraction study. Construction and Building Materials. v. 101, p. 818–827, 2015. D’AGOSTINO, L. Z.; SOARES, L. O uso de finos de pedreira de rocha graníticognáissica em substituição às areias naturais na elaboração de argamassa. Geociências, v. 22, p. 65–73, 2003. DA, Y., HE, T., SHI, C., LIN, Y. Utilizing titanium-containing pickling sludge to prepare raw meal for clinker production. Construction and Building Materials, v. 268, 121216, (2021). DAL MOLIM, D. C.; KIRCCHEIM, A. P. Técnicas experimentais para avaliar microestrutura. In: Materiais de construção civil e princípios de ciência e engenharia dos mateiais: conceitualização, ciência dos materiais, rochas e solos, aglomerantes minerais. São Paulo, 2017. DE LA TORRE AG, MORSLI K, ZAHIR M, ARANDA M.A.G. In situ synchrotron powder diffraction study of active belite clinker. Journal Applie Crystallogry. v. 40,p. 999, 2007 DE LA TORRE, M.A. Estudo de cimentos por meio do método de Rietveld. Tese apresentada a Universidade de Málaga para obtenção do título de doutor, 2003. DE LENA, E., SPINELLI, M., GATTI, M., SCACCABAROZZI, R., CAMPANARI, S., CONSONNI, S., ROMANO, M. C. Techno-economic analysis of calcium looping processes for low CO2 emission cement plants. International Journal of Greenhouse Gas Control, v. 82, p. 244-260, 2019. DEHWAH, H. A. F. Mechanical properties of self-compacting concrete incorporating quarry dust powder, silica fume or fly ash. Construction and Building Materials, v. 26, n. 1, p. 547-551, 2012. DEPARTAMENTO NACIONAL DE PRODUÇÃO MINERAL. Sumário Mineral. 2015. DIAMOND, S. The microstructure of cement past and concrete - a visual primer. Cement and Concrete Research, v. 266, p. 919-933, 2004. DIAS, C.M.R. Fibrocimentos com gradação funcional. 2011. 156 p. Tese (Doutorado em Engenharia Civil). Universidade de São Paulo (USP), São Paulo, 2011. DONALDSON, K. TRAN, L. An introduction to the short-term toxicology of respirable industrial fibres. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, v. 553, p. 5-9, 2004. DUBINA, E., PLANK, J., BLACK, L. Impact of water vapour and carbon dioxide on surface composition of C3A polymorphs studied by X-ray photoelectron spectroscopy. Cement and Concrete Research. v. 73, p. 36-41, 2015. DURDZIŃSKI, P. T.; BEN HAHA, M.; ZAJAC, M.; SCRIVENER, K. L. Phase assemblage of composite cements. Cement and Concrete Research. v. 99, p. 172-182, 2017. EL-SAYED, H. A.; FARAG, A. B.; KANDEEL, A. M.; YOUNES, A. A., YOUSEF, M. M. Characteristics of the marble processing powder waste at Shaq El-Thoaban industrial area, Egypt, and its suitability for cement manufacture. HBRC Journal. v. 14, p. 171-179, 2018. EMOTO, T.; BIER, T. A. Rheological behavior as influenced by plasticizers and Hydration kinetics. Cement and Concrete Research, v. 37, p. 647-654, 2007. EMPRESA DE PESQUISA ENERGÉTICA - EPE. Balanço Energético Nacional 2017: Ano base 2016. Rio de Janeiro: EPE, 2017. 296p. ENGELSEN, C.J. Advanced cementing materials Reduced CO2 – emissions – Effect of mineralizers in cement production. Building and Infrastructure. Série Texto Técnico, COIN/P1/SO1.1F. Noruega: SINTEF, 2007. 25 p. FELDMAN, R. F.; SEREDA, P. J. A new model for hydrated portland cement and is practical implications. Research Officer, 1970. FELEKOGLU, B. Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resources, Conservation and Recycling, v. 51, n. 4, p. 770–791, 2007. FLANAGAN, D. M. Asbestos. Science for a changing world, p. 26–27, s/n, 2019. FRENCH, W. J. Quarterly Journal of Engineering Geology, Vol. 24 – Concrete petrography: A review. The Geological Society: 17-48. 2004. FUKUDA, K.; INOUE, S.; YOSHIDA H. Cationic substitution in tricalcium aluminate. Cement and Concrete Research. v. 33, p. 1771-1775. 2003. GALBENIS, C. T., TSIMAS, S. Use of construction and demolition wastes as raw materials in cement clinker production. China Particuology, v. 4, p. 83-85, 2006. GARCÍA-MATÉ, M., ÁLVAREZ-PINAZO, G., LEÓN-REINA, L., DE LA TORRE, A. G., ARANDA, M. A. G. Rietveld quantitative phase analyses of SRM 2686a: A standard Portland clinker. Cement and Concrete Research, v. 115, p. 361-366, 2019 GARTNER, E. HIRAO, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cement and Concrete research, v. 78, p. 126-142, 2015. GARTNER, E. M. A proposed mechanism for the growth of C-S-H during the hydration of tricalcium silicate. Cement e Concrete Resarch. v. 27, p. 665-672, 1998. GARTNER, E. M. Use of precalciners to remove alkali from raw materials in the cement industry. Final report, July 1978-July 1980. Portland Cement Association, Skokie, IL (USA), 1980. GHOSH, S. N. IR Spectroscopy. In: Handbook of analytical techiniques in the concrete science technology: principles, techniques and applications. Otawa: Noyes Publications, 2000. GHOSH, S.N.; HANDOO S.K. Infrared and Raman spectral studies in cement and concrete (review). Cement and Concrete Research. v. 10, p. 771-782. 1980 GIANTOMASSI, F., GUALTIERI, A. F., SANTARELLI, L., TOMASETTI, M., LUSVARDI, G., LUCARINI, G., PUGNALONI, A. Biological effects and comparative cytotoxicity of thermal transformed asbestos-containing materials in a human alveolar epithelial cell line. Toxicology in vitro. v. 214, p. 1521-1531, 2010 GOBBO, L. A. Os Compostos do Clínquer Portland: sua caracterização por difração de raios-x e quantificação por refinamento Rietveld. São Paulo, 2003. Dissertação (Mestrado em Engenharia Civil) – Escola de Engenharia, Universidade de São Paulo, São Paulo, 2003. GOBBO, L.; SANT’AGOSTINO, L.; GARCEZ, L. C3A polymorphs related to industrial clinker alkalies content. Cement and Concrete Research, v. 34, p. 657-664, 2004. GOMES, A. G.; SANTOS, T. A.; ANDRADE NETO, J. S.; RIBEIRO, D. V. Mineralogical analysis of Portland clinker produced from the incorporation of granitic rock fines (GRF). Key Engineering Materials, v. 803, p. 309-313, 2019. GONÇALVES, J. P.; TOLEDO FILHO, R. D.; FAIRBAIRN, E. M. Study of he hydration of Portland cement pastes containing ceramic waste thermal analysis. Ambiente Construído, Porto Alegre, v. 4, p. 83-94, 2006. GUALTIERI, A. F.; BOCCALETTI, M. Recycling of the product of thermal inertization of cement-asbestos for the production of concrete. Construction and BuildingMaterials, v. 25, n. 8, p. 3561–3569, 2011. GUALTIERI, A. F.; TARTAGLIA, A. Thermal decomposition of asbestos and recycling in traditional ceramics. Journal of the European Ceramic Society, v. 20, p. 1409– 1418, 2000. GUPTA, D; NATARAJAN, N. Prediction of uniaxial compressive strength of rock samples using density weighted least squares twin support vector regression. Neural Computing and Applications, p. 1-8, 2021. HAO, J., CHENG, G., HU, T., GUO, B., LI, X. Preparation of high-performance building gypsum by calcining FGD gypsum adding CaO as crystal modifier. Construction and Building Materials, v. 306, p. 124910, 2021. Harris, L. V., & Kahwa, I. A. (2003). Asbestos: old foe in 21st century developing countries. HARRIS, L. V.; KAHWA, I. A. Asbestos: Old foe in 21st century developing countries. Science of the Total Environment, v. 307, p. 1–9, 2003. HERNANDEZ, N.; LIZARAZO-MARRIAGA, J.; RIVAS, M.A. Petrographic characterization of Portlandite crystal sizes in cement pastes affected by different hydration environments. Construction and Building Materials, v. 182, s/n, p. 541-549, 2018. HERRMANN, C. Manual de Perfuracao de Rocha, Ed. Poligono, Sao Paulo, pp 416, 1972. HOLTEN, C. L. M.; STEIN, H. N. Influence of quartz surfaces on the reaction C3A+CaSO4.2H2O. Cement and Concrete Research, v. p. 291-296, 1977. HOUSE, GLADA LAHN CHATHAM. Energy in situations of displacement. 2018. HUNTZINGER, D. N.; EATMON, T. D. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production, v. 17, p. 668-675, 2009. IACOBESCU, R. I., ANGELOPOULOS, G. N., JONES, P. T., BLANPAIN, B., & PONTIKES, Y. Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility for industrial symbiosis. Journal of Cleaner Production, v. 112, p. 872-881, 2016. IACOBESCU, R. I., KOUMPOURI, D., PONTIKES, Y., SABAN, R., & ANGELOPOULOS, G. N. Valorisation of electric arc furnace steel slag as raw material for low energy belite cements. Journal of hazardous materials. v. 196, p. 287-29, 2011 IKAI, S., REICHERT, J. R., RODRIGUES, A. V., ZAMPIERI, V. A. Asbestos-free technology with new high toughness polypropylene (PP) fibers in air-cured Hatschek process. Construction and building materials, v. 24, n. 2, p. 171-180, 2010. IRASSAR, E. F., BONAVETTI, V. L., MENÉNDEZ, G., CARRASCO, M. F. Hidratación y propiedades de cemento ternarios con filler calcáreo y escoria. Revista Alconpat, v. 5, p. 84-96. 2015. ISHIDA, H.; YAMAZAKI, S. SASAKI. K.; OKADA, Y. MITSUDA T. α‐Dicalcium Silicate Hydrate: Preparation, Decomposed Phase, and Its Hydration. Journal of the American Society. v. 76, p. 1707-1712, 1993. IWASZKO, J. Making asbestos-cement products safe using heat treatment. Case Studies in Construction Materials, v. 10, paper e00221, 2019. IWASZKO, J.; ZAWADA, A.; LUBAS, M. Influence of high-energy milling on structure and microstructure of asbestos-cement materials. Journal of Molecular Structure, v. 1155, p. 51–57, 2018. JAWED, I.; SKALNY, J.; YOUNG, J. F. Hydration of portland cement. In: Structure and performance of cement. p. 237-318. 1983. JEHNG, J.Y., SPRAGUE, D.T. HALPERIN, W.P. Pore structure of hydrating cement paste by magnetic resonance relaxation analysis and freezing. Magnetic Resonance Imaging. v. 14, 1996, p. 785-791. JENNINGS, H. M.; PRATT, P. L. An experimental argument for the existence of a protective membrane surrounding Portland cement during the induction periods. Cement and Concrete Research, v. 9, p. 501-506, 1979. JESIONOWSKI, T. Modification and characterization of titanium dioxide surface, Pigment & Resin Technology. v. 30, p.287 - 295, 2001. JO, H., JANG, Y. N., JO, J. H. A low temperature detoxification method for treatment of chrysotile-containing waste roofing slate. Minerals, v. 7, p. 144, 2017 JOHN, E.; MATSCHEI, T. STEPHAN, D. Nucleation seeding with calcium silicate hydrate – A review. Cement and Concrete Research. v. 113, p. 74–85, 2018. JOSEPH, S; SKIBSTED, J; CIZER, Ö. A quantitative study of the C3A hydration. Cement and Concrete Research, v. 115, p. 145-159, 2019. JUENGER M.C.G, WINNEFELD F., PROVIS J.L, IDEKER J.H. Advances in alternative cementitious binders. Cement and Concrete research v 41, p.1232-1243, 2011. JUILLAND, P.; GALLUCCI, E.; FLATT, R.; SCRIVENER, K. Dissolution theory applied to the induction period in alite hydration. Cement and Concrete Research. v. 40, p. 831-844, 2010. KADRI, E. H.; DUVAL, R. Effect of ultrafine particles on heat of hydration of cement mortars. ACI Materials Journal, v. 99, p. 138-142, 2002. KAKALI G, TSIVILIS, S. The effect of intergrinding and separate grinding of cement raw mix on the burning process. Cement and Concrete Research, v.23, p. 651-662, 1993 KANCHANASON, V.; PLANK, J. Role of pH on the structure, composition and morphology of CSH–PCE nanocomposites and their effect on early strength development of Portland cement. Cement and Concrete Research, v. 102, p. 90-98, 2017. KARAKUŞ, A. Investigating on possible use of Diyarbakir basalt waste in Stone Mastic Asphalt. Construction and Building Materials, v. 25, n. 8, p. 3502-3507, 2011. KATYAL, N. K., AHLUWALIA, S. C., PARKASH, R., & SHARMA, R. N.. Rapid estimation of free magnesia in OPC clinker and 3CaO: 1SiO2 system by complexometry. Cement and concrete research. v. 28, p. 481-485, 1998. KAZAN-ALLEN, L. Current Asbestos Bans. Disponível em: http://ibasecretariat.org/alpha_ban_list.php. Acesso em: 25 mai. 2020. KIHARA, Y. Estudo mineralógico de clínquer de cimento Portland. Dissertação (Mestrado) – Instituto de Geociências da Universidade de São Paulo, São Paulo, 1973. KIM, Y. J.; CHOI, Y. W. Utilization of waste concrete powder as a substitution material for cement. Construction and building materials, v. 30, p. 500-504, 2012. KIRCHHEIM, A. P.; FERNÀNDEZ-ALTABLE, V.; MONTEIRO, P. J. M.; DAL MOLIN, D. C. C.; CASANOVA, I. Analysis of cubic and orthorhombic C3A hydration in presence of gypsum and lime. Journal of Material Science, v. 44, p. 2038-2045, 2009. KNAPEN, E. Microestructure in Cement Mortars Modified With Water-soluble Polmers. Katholieke Universiteit Leuven. Leuven. 2007. KOLOVOS, K. G.; TSIVILIS, S.; KAKALI, G. Study of clinker dopped with P and S compounds. Journal of thermal analysis and calorimetry, v. 77, p. 759-766, 2004. KOLOVOS, K.; LOUTSI, P.; TSIVILIS, S.; KAKALI, G. The effect of foreign ions on the reactivity of the CaO–SiO2–Al2O3–Fe2O3 system. Cement and Concrete Research, v. 31, p. 425-429, 2001. KREMPEL, A. F.; CREVILARO, C. C.; PAULON, V. A. Adição de pó ao concreto como fator econômico e de durabilidade. In: 34° Anais em Congresso Brasileiro do Concreto – IBRACON. Curitiba, 1992. KRISHNAN, S.; KANAUJIA, S.wadesh K.; MITHIA, S., BISHNOI, S. Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay. Construction and Building Materials, v. 164, p. 265-27410, 2018. KUNTHER, W., FERREIRO, S., SKIBSTED, J. Influence of the Ca/Si ratio on the compressive strength of cementitious calcium silicate hydrate binders. Journal of Materials Chemistry A, 5, 17401–17412, 2017. KUSIOROWSKI, R.; ZAREMBA, T.; PIOTROWSKI, J. Influence of the type of pre-calcined asbestos containing wastes on the properties of sintered ceramics. Construction and Building Materials, v. 106, p. 422–429, 2016. KUSIOROWSKI, R.; ZAREMBA, T.; PIOTROWSKI, J. Influence of the type of pre-calcined asbestos containing wastes on the properties of sintered ceramics. Construction and Building Materials, v. 106, p. 422–429, 2016. LAUGESEN, J. K. Density functional calculations of elastic properties of portlandite, Ca (OH) 2. Cement and Concrete Research, v. 35, p. 199-202, 2005. LAWRENCE, P.; CYR, M.; RINGOT, E. Mineral admixtures in mortars: effect of inert materials on short-term hydration. Cement and concrete research, v. 33, n. 12, p. 1939-1947, 2003. LE SAOÛT, G.; KOCABA, V.; SCRIVENER, K. Application of the Rietveld method to the analysis of anhydrous cement. Cement and concrete research, v. 41, p. 133-148, 2011. LEE, F. C.; BANDA, H. M.; GLASSER, F. P. Substitution of Na, Fe and Si in tricalcium aluminate and the polymorphism of solid solutions. Cement and Concrete Research, v. 12, p. 237-246, 1982. LEONELLI, C.; VERONESI, P.; BOCCACCINI, D. N.; RIVASI, M. R.; BARBIERI, L., ANDREOLA, F.; PELLACANI, G. C. Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics. Journal of Hazardous Materials, v. 135, n. 1–3, p. 149–155, 2006. LETELIER, V.; TARELA, E; MORICONI, G. Mechanical properties of concretes with recycled aggregates and waste brick powder as cement replacement. Procedia Engineering, v. 171, p. 627-632, 2017. LI, H., WANG, Z., SUN, R., HUANG, F., YI, Z., YUAN, Z., WEN, J. LU, L. YANG, Z. Effect of different lithological stone powders on properties of cementitious materials. Journal of Cleaner Production, v. 289, p. 125820, 2021. LI, X., SHEN, X., TANG, M., LI, X. Stability of tricalcium silicate and other primary phases in Portland cement clinker. Industrial & Engineering Chemistry Research, v. 53, p. 1954-1964, 2014. LI, X., XU, W., WANG, S., TANG, M.,SHEN, X. Formation of clinker phases and alite polymorphism. Construction and Building Materials, v. 58, p. 182-192, 2014. LIN, K. L.; CHIANG, K. Y.; LIN C. Y. Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers. Cement and Concrete Research. v. 35, p. 1074-1081, 2005. LIN, K. L.; LO K. W.; HUNG, M. J.; CHENG, T. W.; CHANG, Y. M. Recycling of spent catalyst and waste sludge from industry to substitute raw materials in the preparation of Portland cement clinker. Sustainable Environment Research. v. 27, p. 251-257, 2017. LOTHENBACH, B.; DURDZIŃSKI, P.; WEERDT, K. De. Thermogravimetric analysis, in: Scrivener, K., Snellings, R., Lothenbach, B. (Eds.), Practical Guide to Mi-crostructural Analysis of Cementitious Materials. Taylor & Francis Group, New York, p. 178-208, 2016. LUDWIG, H., ZHANG, W. Research review of cement clinker chemistry. Cement and Concrete Research, v. 78, p. 24-37, 2015. MA, X.; CHEN, H.; WANG, P. Effect of TiO2 on the Formation of Clinker with High C3S. Journal of Wuhan University of Technolotgy-Material Science, v. 4, p. 830-833, 2009. MACIEL, M. H.; SOARES, G. S.; ROMANO, R. C.O.; CINCOTTO, M. A. Monitoring of Portland cement chemical reaction and quantification of the hydrated products by XRD and TG in function of the stoppage hydration technique. Journal of Thermal Analysis and Calorimetry, v. 136, p. 1269–1284, 2019. MACPHEE, D., E.; LACHOWSKI, E., E. Cement Components and Their Phase Relations. In: HEWLETT, P., C. Lea’s Chemistry of Cement and Concrete. ELSEVIER, 4 ed., Burlington, USA, 1998. MADLOOL, N. A., SAIDUR, R., HOSSAIN, M. S., & RAHIM, N. A. A critical review on energy use and savings in the cement industries. Renewable and sustainable energy reviews, v. 15, p. 2042-2060, 2011. MAKI, H. HABA, S. TAKAHASHI. Effect of recrystallization on the characters of alite in Portland cement clinker. Cement and Concrete Research. v. 13, p. 689-695, 1983. MAKI, I., ITO, S., TANIOKA, T., OHNO, Y., & FUKUDA, K. Clinker grindability and textures of alite and belite. Cement and concrete research, v. 23, p. 1078-1084, 1993. MAKI, I.; GOTO, K. Factors influencing the phase constitution of alite in Portland cement clinker. Cement and Concrete Research, v. 12, p. 301-308, 1982. MANHÃES, J. P. V. T.; HOLANDA, J. N. F. D. Caracterização e classificação de resíduo sólido pó de rocha granítica gerado na indústria de rochas ornamentais. Química Nova, v. 31, p. 1301-1304, 2008. MARIAN, N. M., GIORGETTI, G., MAGRINI, C., CAPITANI, G. C., GALIMBERTI, L., CAVALLO, A., VITI, C. From hazardous asbestos containing wastes (ACW) to new secondary raw material through a new sustainable inertization process: A multimethodological mineralogical study. Journal of Hazardous Materials, v. 413, p. 125419, 2021. MARIANI, B. B. Produção de clínquer Portland com baixa emissão de CO2 a par-tir da incorporação de minério não reagido (MNR) proveniente da produção de TiO2. Dissertação (mestrado). Universidade Federal da Bahia. Escola Politécnica. Programa de Pós-Graduação em Engenharia Civil. Salvador, 2018. MARIANI, B. B., ANDRADE NETO, J. S., AMORIM JÚNIOR, N. S., RIBEIRO, D. V., 2019. Efeito da incorporação de resíduo de TiO2 (MNR) na formação das fases mineralógicas de clínquer Portland. Ambiente Construído, Porto Alegre, 19, p. 57-71, 2019. MARINGOLO, V. Clínquer Co-Processado: produto de tecnologia integrada para sustentabilidade e competitividade da indústria de cimento. São Paulo, 2001. Tese (Doutorado em Mineralogia e Petrologia) – Programa de Pós-Graduação em Mineralogia e Petrologia, Universidade de São Paulo, São Paulo, 2001. MEHTA, P. K.; GJORV, O. E. A new test for sulfate resistance of cements. Journal of Testing and Evaluation, v. 2, p. 510-515, 1974. MEHTA, P. K.; MONTEIRO, J. M. Concreto: Estrutura, Propiedades e Materiais. 3. ed. São Paulo: Pini, 2014. MELLMANN J. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technology.,v. 118, p. 251. 2001. MELLO. R. Z. Avaliação do Ciclo de Vida da Utilização do Resíduo do Beneficiamento de Rochas Ornamentais em Materiais de Construção Civil à Base de Cimento. Dissertação apresentada ao Programa de Pós-Graduação em de Engenharia Civil do Centro Tecnológico da Universidade Federal do Espírito Santo, como requisito parcial para a obtenção do título de Mestre em Engenharia Civil. MENDES, R. Asbestos and disease: state-of-the-art review and a rationale for urgent change in current Brazilian polic. Cadernos de Saúde Pública, v. 17, n. 1, p. 7–29, 2001. MINARD, H.; GARRAULT, S.; REGNAUD, L.; NONAT, A. Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cement and Concrete Research, v. 37, p. 1418-1426, 2007. MINARD, H.; S. GARRAULT. Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cement and Concrete Re-search, v. 37, n. 10, p.1418-1426, 2007. MINISTÉRIO DAS MINAS E ENERGIA. Plano Decenal de Expansão de Energia 2008/2017. Brasília: MME, 2009. MOHAMED, A. K., PARKER, S. C., BOWEN, P., GALMARINI, S. An atomistic building block description of CSH-Towards a realistic CSH model. Cement and Concrete Research, v. 107, p. 221-235, 2018. MONDAL, P.; JEFFERY, J. W. The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6. Acta Cristallographica B, v. 31, p. 689-697, 1975. MTARFI, N. H.; RAIS, Z.; TALEB, M. Effect of clinker free lime and cement fine-ness on the cement physicochemical properties. Journal of Materials and Environmental Sciences, v. 8, p. 2541-2548, 2017. MUAN, A.; OSBORN, E. F. Phase Equilibria Among Oxides in Steelmaking. American Iron and Steel Institute. 1965. MUMME, W. G.; HILL, R. J.; BUSHNELL-WYE G.; SEGNIT, E. R. Rietveld crys-tal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrb Mineral Abh, v. 169, p. 35-68, 1995. MYERS, R. H.; MONTGOMERY, D. C.; ANDERSON-COOK, C. M. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons, 2016. NAM, S. N.; JEONG, S.; LIM, H. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid. Journal of Hazardous Materials, v. 265, p. 151–157, 2014. NEERAJ, J. Effect of nonpozzolanic and pozzolanic mineral admixtures on the hydration behavior of ordinary Portland cement. Construction and Building Materials. v 27, p 39–44. 2012. NEWHOUSE, M. L.; THOMPSON, H. Mesothelioma of pleura and peritoneum following exposure to asbestos in the London area. Occupational and Environmental Medicine, v. 22, n. 4, p. 261-269, 1965. NICOLEAU, L.; NONAT, A. A new view on the kinetics of tricalcium silicate hydration. Cement and Concrete Research. v. 86, p. 1–11, 2016. NICOLEAU, L.; NONAT, A.; PERREY, D. The di- and tricalcium silicate dissolutions. Cement and Concrete Research. v.47, p. 14-30, 2013. NISHI, F.; TAKEUCHI, Y.; MAKI, I. Tricalcium Silicate, Ca3O(SiO4): the monoclinic superstruture. Zeitschrift fuer Kristallographie, v. 172, p. 297-314, 1985. NOIRFONTAINE, M. N.; COURTIAL, M.; DUNSTETTER, F.; GASECKI, G.; FREHEL, M. S. Tricalcium silicate Ca3SiO5 superstructure analysis: a route towards the structure of the M1 polymorph. Zeitschrift für Kristallographie, v. 227, p.102-112, 2012. ODLER, I, ABDUL‐MAULA, S. Structure and properties of Portland cement clinker doped with CaF2. Journal of the American Ceramic Society, v. 63, p. 654-659, 1980. OLARU, A. M. O.; WEICHOLD, A. A. The hydration of reactive cement-in-polymer dispersions studied by nuclear magnetic resonance. Cement and Concrete Research. Volume 41, 2011, p.1123-1129. OLDER, H. ZHANG. Investigation on high SO3 Portland cement clinkers, World Cement Research and Development, p. 73-77,1997. ORGANIZATION WORLD HEALTH. Asbestos: elimination of asbestos-related diseases. World Health Organization, p. 1-4, 2006. OSTROWSKI C., J. ŻELAZNY. Solid solutions of calcium aluminates C3A, C12A7 and CA with sodium oxide. Journal of thermal analysis and calorimetry. v.75, p.867-885., 2004. PARK, E. K., TAKAHASHI, K., JIANG, Y., MOVAHED, M., & KAMEDA, T. Elimination of asbestos use and asbestos-related diseases: An unfinished story. Cancer Science, v. 103, p. 1751–1755, 2012. PAULON, V.; KIRCHHEIN, A. P. Nanoestrutura e Microestrutura do Concreto endurecido. In: Materiais de construção civil e princípios de ciência e engenharia dos mateiais: conceituaização, ciência dos materiais, rochas e solos, aglomerantes minerais. São Paulo, 2017. PAWEŁCZYK, A., BOŽEK, F., GRABAS, K., & CHĘCMANOWSKI, J. Chemical elimination of the harmful properties of asbestos from military facilities. Waste Management, v. 61, 377-385, 2017. PECCHIO, M. A influência de fósforo, enxofre e estrôncio na mineralogia do clínquer Portland. 2013. 100 p. Dissertação (Mestrado em Mineralogia e Petrologia). Universidade de São Paulo (USP), São Paulo, 2013. PELISSER, F., GLEIZE, P. J. P., MIKOWSKI, A. Effect of the Ca/Si molar ratio on the micro/nanomechanical properties of synthetic CSH measured by nanoindentation. The Journal of physical chemistry C, v. 116, p. 17219-17227, 2012. PELLENQ, R. J. M.; VANDAME, H. Why does concrete set? The nature of cohesion forces in hardened cement based material. Material Research Society Bulletin, v. 29, p. 319-323, 2004. PEREIRA, F.R., BALL, R.J., ROCHA, J., LABRINCHA, J.A., ALLEN, G.C. New waste based clinkers: belite and lime formulations. Cement and Concrete Research. v. 38, p. 511-521, 2008. PETCH, H. E.; MEGAW, H. D. Crystal Structure of Brucite (MgOH 2) and Portlandite (CaOH 2) in Relation to Infrared Absorption. JOSA, v. 44, p. 744-745, 1954. POPPE, A. M.; DE SCHUTTER, G. Cement hydration in the presence of high filler contents. Cement and Concrete Research, v. 35, n. 12, p. 2290-2299, 2005. POTGIETER, J. H.; GRANDIN, K. A.; POTGIETER, S. S.; WIRTH, W. An Evaluation of the Incorporation of a Titatium Dioxide Producer’s Waste Material in Portland Cement Clinker. Materials Letters, v. 75. p. 157 – 163, 2002. POZO-ANTONIO, J. S.; FIORUCCI, M. P.; RAMIL, A.; LÓPEZ, A. J.; RIVAS, T. Evaluation of the effectiveness of laser crust removal on granites by means hyperspectral imaginf techniques. Appl. Surf. Scienc., v. 347, p. 832-838, 2015. PRIMAK, W., KAUFMAN, H., WARD, R. X-ray diffraction studies of systems involved in the preparation of alkaline earth sulfide and selenide phosphors1. Journal of the American Chemical Society, v. 70, p. 2043-2046, 1948. PUERTAS, F.; BARBA, A.; GAZULLA, M. F.; GÓMEZ, M. P.; PALACIOS, M.; MARTÍNEZ-RAMÍREZ, S. Ceramic wastes as raw materials in Portland cement clinker fabrication: characterization and alkaline activation. Materiales de Construcción, v. 56, p. 73-84, 2006. PUERTAS, F.; GARCÍA-DÍAZ, I.; PALACIOS, M.; GAZULLA, M. F.; GÓMEZ, M. P.; ORDUÑA, M. Clinkers and Cements Obtained From Raw Mix Containing Ceramic Waste as a Raw Material: characterization, hydration and leaching studies. Cement and Concrete Composites, v. 30, p. 798-805, 2010. PUERTAS, F.; GARCÍA-DÍAZ, I; BARBA, A.; GAZULLA, M. F.; PALACIOS, M.; GÓMEZ, M. P.; MARTÍNEZ-RAMÍREZ, S. Ceramic wastes as alternative raw materials for Portland cement clinker production. Cement and Concrete Composites, v. 30, p. 798–805, 2008. QOMI, A., KRAKOWIAK, M. J., BAUCHY K. J., STEWARt M., SHAHSAVAR, K. L., i, JAGANNATHAN R., PELLENQ, R. J. M. Combinatorial molecular optimization of cement hydrates. Nature communications, v. 5, p. 1-10, 2014. QUENNOZ, A.; SCRIVENER, K. L. Interactions between alite and C3A-gypsum hydrations in model cements. Cement and Concrete Research, v. 44, p. 46-54, 2013. RAHHAL, V.; TALERO, R. Early hydration of portland cement with crystalline mineral additionsCement and Concrete Research. v. 35, p. 1285-1291, 2005. RAINA, K.; JANAKIRAMAN, L. K. Use of mineralizer in black meal process for improved clinkerization and conservation of energy. Cement and Concrete Research, v. 28, p. 1093-1099, 1998. RAJPUT S. P. S. An Experimental study on Crushed Stone Dust as Fine Aggregate in Cement Concrete. Materials Today: Proceedings. v. 5, p. 17540-17547, 2018. RANA, A., KALLA, P., VERMA, H. K., MOHNOT, J. K. Recycling of dimensional stone waste in concrete: A review. Journal of cleaner production, v. 135, p. 312-331, 2016. REN X.; ZHANG W.; OUYANG S. Journal of the Chinese Ceramic Society. v. 40, p. 664-670, 2012. REN, X.; ZHANG, W.; YE, J. FTIR study on the polymorphic structure of tricalcium silicate. Cement and Concrete Research, v. 99, p. 129-136, 2017. RIBEIRO, D. V.; MORELLI, M. R. Effect of calcination temperature on the pozzolanic activit of brazillian sugar cane bagasse ash (SCBA). Materials Research, São Carlos, v. 17, 2013. RICHARDSON, IG. The nature of C-S-H in hardened cements natureza da CSH. Cemente and Concrete Research. v. 29, p. 1131 – 1147, 1999. ROBATI, M, MCCARTHY, T. J.; KOKOGIANNAKIS, G. Incorporating environmental evaluation and thermal properties of concrete mix designs. Construction and Building Materials, v. 128, p. 422-435, 2016. ROCHA, S. D. F.; LINS, V. F. C.; SANTO, B. C. E. Aspectos do coprocessamento de resíduos em fornos de clínquer. Engenharia Sanitária Ambiental. v. 16, 2011, p. 1-10. RODRIGUES, G. L.; MANTOVANI, L. E.; LOPES, K. Um estudo da poeira respirável de basalto , na produção de brita , e sua influência para o sistema respiratório do 169 trabalhador. XXIV Encontro Nacional de Engenharia de Produção, p. 2586– 2592, 2004. RODRÍGUEZ, N.H.; RAMÍREZ, S.M.; VARELA, M. T. B.; DONATELLO, S.; GUILLEM, M.; PUIG, J.; FOS, C.; LARROTCHA, E.; FLORES, J. The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. Journal of Cleaner Production, v. 52, i. 1, p. 94-102, 2013. RODRÍGUEZ, N.H.; RAMÍREZ, S.M.; VARELA, M. T. B.; DONATELLO, S.; GUILLEM, M.; PUIG, J.; FOS, C.; LARROTCHA, E.; FLORES, J. The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. Journal of Cleaner Production, v. 52, i. 1, p. 94-102, 2013. RONCERO, J. Effect of superplasticizers on the behavior of concrete in the fresh and hardened states: implications for high performance concretes. Tese de doutorado apresentado na Politécnica da Catulunia. Espanha, 2000. SABOYA JR, F.; XAVIER, G. C.; ALEXANDRE, J. The use of the powder marble by-product to enhance the properties of brick ceramic. Construction and Building Materials, v. 21, n. 10, p. 1950-1960, 2007. SAHU, A., VISHWAKARMA, N., SINGH, Y., VERMA, C. B. Mineral chemistry of high-Al chromian spinel from ultramafic rocks of the Babina–Prithvipur transect, Bundelkhand Craton, central India: Implication for petrogenesis and tectonic setting. Journal of Earth System Science, v. 129, p. 1-19, 2020. SANTOS, B. S; RIBEIRO, D. V. Influência dos finos de rocha granítica (FRG) nas propriedades físico-mecânicas e na reação álcali-agregado (RAA) de argamassas. Revista IBRACON de Estruturas e Materiais, v. 14, n. 2, 2021. SCALENGHE, R., MALUCELLI, F., UNGARO, F., PERAZZONE L., N. FILIPPI, EDWARDS, A.C. Influence of 150 years of land use on anthropogenic and natural carbon stocks in Emilia-Romagna region (Italy). Environmental Science & Technology. v. 45, 2011, p.5112-5117. SCARLETT, N. V. Y.; MADSEN I. C. Quantification of Phases with Partial or No Known Crystal Structures. Powder Diffraction. v. 21, p. 278-284, 2006. SCHEPPER, M.; BUYSSER, K.; DRIESSCHE, I. V.; BELIE, N. The regeneration of cement out of Completely Recyclable Concrete: Clinker production evaluation. Construction and Building Materials, v. 38, p.1001–1009, 2013. SCHÖLER, A., LOTHENBACH, B., WINNEFELD, F., HAHA, M. B., ZAJAC, M., LUDWIG, H. M. Early hydration of SCM-blended Portland cements: A pore solution and isothermal calorimetry study. Cement and Concrete Research, v. 93, p. 71-82, 2017. SCHOON, J.; DE BUYSSER, K., DRIESSCHE V.; BELIE N. Feasibility study on the use of cellular concrete as alternative raw material for Portland clinker production. Construction and Building Materials. v. 48, p. 725-733, 2013. SCHOON, J.; DE BUYSSER, K.; DRIESSCHE, V.; BELIE, N. Fines extracted from recycled concrete as alternative raw material for Portland cement clinker production. Cement and Concrete Composites. v. 58, p. 70-80, 2015. SCHOON, J.; HEYDEN, L. V.; ELOY, P.; GAIGNEUX, M.; BUYSSER, K.; DRIESSCHE, I.; BELIE, N. Waste fibrecement: An interesting alternative raw material for a sustainable Portland clinker production. Construction and Building Materials, v. 36, p. 391-403, 2012. SCHOON, J.; VERGARI, A.; DE BUYSSER, K., DRIESSCHE V.; BELIE N Fines extracted from porphyry and dolomitic limestone aggregates production: MgO as fluxing agent for a sustainable Portland clinker production. Construction and Building Materials. v. 43, p. 511-522, 2013. SCRIVENER, K. L.; JUILLAND, P.; MONTEIRO, J. M. M. Advances in under-standing hydration of Portland cement. Cement and Concrete Research, v. 78, p. 38-56, 2015. SCRIVENER, K. L.; NONAT, A. Hydration of cementitious materials, present and future. Cement and Concrete Research, v. 41, p. 651-665, 2011. SCRIVENER, Karen L.; PRATT, P. L. Backscattered electron images of polished cement sections in the scanning electron microscope. In: Proceedings of the International Conference on Cement Microscopy,p. 145-155. 1984 SEGATA, M.; MARINONI, N.; GALIMBERTI, M.; MARCHI.; M. CANTALUPPI, M., A. PAVESE, A. G. DE LA TORRE. The effects of MgO, Na2O and SO3 on industrial clinkering process: phase composition, polymorphism, microstructure and hydration, using a multidisciplinary approach. Materials Characterization. v.155, p. 109809, 2019. SEGHIR, N. T.; MELLAS, M.; SADOWSKI, Ł.; ŻAK, A. Effects of marble powder on the properties of the air-cured blended cement paste. Journal of Cleaner Production. v. 183, p. 858-868, 2018. SHIMOSAKA, K., INOUE, T., TANAKA, H., KISHIMOTO, Y. Influence of Minor Elements in Clinker on the Properties of Cement: A New Approach for Application to Commercial Cement Manufacturing. Transactions of the Materials Research Society of Japan, v. 32, p. 647-652, 2007. SHIMOSAKA, K., INOUE, T., TANAKA, H., KISHIMOTO, Y. Influence of Minor Elements in Clinker on the Properties of Cement: A New Approach for Application to Commercial Cement Manufacturing. Transactions of the Materials Research Society of Japan, v. 32, p. 647-652, 2007. SILVA, M. A.; PAES JR, H. R.; HOLANDA, J. N. F. Reuse of ornamental rock-cutting waste in aluminous porcelain. Journal of Environmental Management, v. 92, n. 3, p. 936-940, 2011. SIMÃO, L.; JIUSTI, J.; LÓH, N. J.; HOTZA, D.; RAUPP-PEREIRA, F.; LABRINCHA, J. A.; MONTEDO, O. R. K. Waste-containing clinkers: Valorization of alter-native mineral sources from pulp and paper mills. Process Safety and Environmental Protection, v. 109, p. 106-116, 2017. SINGH, GVP B.; SUBRAMANIAM, K.VL. Production and characterization of low-energy Portland composite cement from post-industrial waste. Journal of Cleaner Production, v. 239, p. 118024, 2019. SIQUEIRA, T. P. L. Uso de finos de rocha granítica (FRG) e areia de britagem, produzidos na região metropolitana de Salvador (RMS), para a produção de concreto autoadensável. Tese apresentada a Universidade Federal da Bahia para obtenção do título de mestre, 2020. SJOSTROM, C.; LLEWELLY, J. W.; DAVIES, H. Durability and sustainable use of building materials. In: Sustainable use of materials. Londres. 1992. SNIC Sindicato Nacional da Indústria do Cimento, 2013. Relatório Anual.http://www.snic.org.br/pdf/RelatorioAnual2013final.pdf (Acessado em 25/04/2018). SONG, T. H.; LEE, S. H.; KIM, S. H. Recycling of crushed stone powder as a partial replacement for silica powder in extruded cement panels. Construction and Building Materials, v, 52, p. 105-115, 2018. SPASIANO, D.; PIROZZI, F. Treatments of asbestos containing wastes. Journal of Environmental Management, v. 204, p. 82–91, 2017. STANĚK, Theodor; SULOVSKÝ, Petr. The influence of the alite polymorphism on the strength of the Portland cement. Cement and Concrete Research, v. 32, n. 7, p. 1169-1175, 2002. STANĚK, Theodor; SULOVSKÝ, Petr. The influence of the alite polymorphism on the strength of the Portland cement. Cement and Concrete Research, v. 32, n. 7, p. 1169-1175, 2002. STAYNER, L., WELCH, L. S., LEMEN, R., 2013. The worldwide pandemic of asbestos-related diseases. Annual review of public health, Annual review of public health. v. 34, p. 205-216, 2013 STEIN, H. N.; STEVELS, J. M. Influence of silica on the hydration of 3CaO.SiO2. Journal of Applied Chemistry, v. 14, p. 338-346, 1964. STEPKOWSKA, E. T., BLANES, J. M., FRANCO, F., REAL, C., PÉREZ-RODRIGUEZ, J. L. Phase transformation on heating of an aged cement paste. Thermochimica Acta, v. 420, p. 79-87, 2004. TAKEUCHI, Yoshio; NISHI, Fumito. Crystal-chemical characterization of the 3CaO· Al2O3—Na2O solid-solution series. Zeitschrift für Kristallographie-Crystalline Materials, v. 152, n. 1-4, p. 259-308, 1980. TALERO, R. PEDRAJAS, C.; GONZÁLEZ, M.; ARAMBUROD, A.; BLÁZQUEZ, C.; RAHHAL,V. Role of the filler on Portland cement hydration at very early ages: Rheological behaviour of their fresh cement pastes. Construction and Building Materials. v. 151, p. 939-949, 2017. TAVAKOLI D., TARIGHAT A. Molecular dynamics study on the mechanical properties of Portland cement clinker phases. Computational Materials Science. v.119, p.65–73. 2016. TAYLOR, H.F.W. Cement chemistry. 2a ed. Londres: Thomas Telford Publishing, 1997, 102 p. TELSCHOW, S. Clinker Burning Kinetics and Mechanism. 2012. 169 p. Thesis (PhD on Chemical and Biochemical Engineering). Technical University of Denmark, Copenhagen, 2012 TENNIS, P. D.; JENNINGS, H. M. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement and concrete research, v. 30, p. 855-863, 2000. TIMASHEV, V. V. The Kinetics of Clinker Formation The Structure and Composition of Clinker and its Phases. in 7th ICCC, v. 1, 1980. TOBÓN, J.L. Adaptation of Bogue´s Equations to mineralogical estimate of the clinker for a colombian cement factory. Dyna, v. 74, p. 53-60, 2007. TOMASSETTI, L.; DI GIUSEPPE, D., ZOBOLI, A., PAOLINI, V., TORRE, M., PARIS, E.; GUALTIERI, A. F. Emission of fibres and atmospheric pollutants from the thermal treatment of asbestos containing waste (CW). Journal of Cleaner Production. v. 268, 122179, 2020. TSAKIRIDIS, P. E., PAPADIMITRIOU, G. D., TSIVILIS, S., C. K. Utilization of steel slag for Portland cement clinker production. Journal of Hazardous Materials. v. 152, p. 805-811, 2008. UCHIKAWA, H., HANEHARA, S., HIRAO, H. Influence of microstructure on the physical properties of concrete prepared by substituting mineral powder for part of fine aggregate. Cement and Concrete Research, v. 26, p. 101-111, 1996. UDA, M., NAKAMURA, A., YAMAMOTO, T., & FUJIMOTO, Y. Work function of polycrystalline Ag, Au and Al. Journal of electron spectroscopy and related phenomena, v. 88, n. 643-648, 1998. UN ENVIRONMENT; SCRIVENER, K.L.; JOHN, V.M.; GARTNER, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cement and Concrete Research, v. 114, p. 2-26, 2018. UYSAL, M.; YILMAZ, K. Effect of mineral admixtures on properties of self-compacting concrete. Cement and Concrete composites, v. 33, n. 7, p. 771-776, 2011. VALENTIM, I. B. Dissolução da crisotila brasileira na presença de dodecilsufato de sódio e dipalmitoifosfatidilcolina. Tese (Doutorado). Universidade Estadual de Campinas (UNICAMP), Campinas, 2006. VAZZOLER, J.; VIEIRA, L.; TELES R.; DEGEN, M; TEIXEIRA, R. Investigation of the potential use of waste from ornamental stone processing after heat treatment for the production of cement-based paste. Construction and Building Materials, v. 20, p. 314-321, 2018. VIANI, A., GUALTIERI, A. F. Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes. Cement and Concrete Research, v. 58, p. 56-66, 2014. VIANI, A., GUALTIERI, A. F. Recycling the product of thermal transformation of cement-asbestos for the preparation of calcium sulfoaluminate clinker. Journal of Hazardous Materials, v. 260, p. 813–818, 2013. VICENTE-RODRÍGUEZ, M. A., SUAREZ, M., BAÑARES-MUÑOZ, M. A., DE DIOS LOPEZ-GONZALEZ, J. Comparative FT-IR study of the removal of octahedral cations and structural modifications during acid treatment of several silicates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 52 p. 1685-1694, 1996. VIGNESHPANDIAN, G. V.; SHRUTHI, E. A.; VENKATASUBRAMANIAN, C.; MUTHU, D. Utilization of Waste Marble Dust as Fine Aggregate in Concrete. IOP Conf. Series: Earth and Environmental Science. v. 80, p. 012007, 2017. VILAPLANA, A. S.G.; FERREIRA, V. J.; SABIRÓN, A.M.L.; ARANDA-USÓN, A.; LAUSÍN-GONZÁLEZ; BERGANZA-CONDE, C.; FERREIRA, G. Utilization of Ladle Furnace slag from a steelwork for laboratory scale production of Portland cement. Construction and Building Materials, v. 94, p. 837-843, 2015. VINCO, L. G. F., OLIVEIRA, J. D. D., TRISTÃO, F. A., VIEIRA, G. L. Viabilidade técnica e econômica de argamassas de revestimento produzidas com incorporação de resíduos de rochas ornamentais. Ambiente Construído, v. 17, p. 165-182, 2017. VIRTA, R. L. Worldwide Asbestos Supply and Consumption Trends from 1900 through 2003. Science for a changing world, Virginia, p. 46, 2006. VOGT, C. Ultrafine particles in concrete‐influence of ultrafine particles on concrete properties and applications to concrete mix design. Tese de Doutorado apresentada ao Concrete Structures, Royal Institute of Technology, TRITA‐BKN, Stockholm, 2010. WANG, Q., LI, J., YAO, G., ZHU, X., HU, S., QIU, J., LYU, X. Characterization of the mechanical properties and microcosmic mechanism of Portland cement prepared with soda residue. Construction and Building Materials, v. 241, 117994, 2020. WINTER, N. B. Understanding Cement. WHD Microanalysis Consultants Ltd. Woodbridge, United Kingdom, 2012. WITEK, J.; KUSIOROWSKI, R. Neutralization of cement-asbestos waste by melting in an arc-resistance furnace. Waste Management, v. 69, p. 336–345, 2017. YAMASHITA, M., HARADA, T., SAKAI, E., TSUCHIYA, K. 2020. Influence of sulfur trioxide in clinker on the hydration heat and physical properties of Portland cement. Construction and Building Materials., v. 250, p. 118844, 2020. YAMASHITA, M., HARADA, T., SAKAI, E., TSUCHIYA, K. Mineralogical study of high SO3 clinker produced using waste gypsum board in a cement kiln. Construction and Building Materials, v. 217, p. 507-5171 2019. YOUNG, G.; YANG, M. Preparation and characterization of Portland cement clinker from iron ore tailings. Construction and Building Materials, v. 197, p. 152-156, 2019. YVON, Y. SHARROCK, P. Characterization of thermochemical inactivation of asbestos containing wastes and recycling the mineral residues in cement products. Waste and Biomass Valorization, v. 2, p. 169-181, 2011. ZHANG, T.; GAO, P.; LUO, R.; GO, YIQUN, G., WEI, J.; YU. Q. Measurement of chemical skrinkage of cement paste: Comparison study of ASTM C 1608 and na improvedo method. Constuction and Building Materials. v. 48, p. 662-669, 2013. ZHANG, Y., WANG, L., CHEN, L., MA, B., ZHANG, Y., NI, W., & TSANG, D. C. Treatment of municipal solid waste incineration fly ash: State-of-the-art technologies and future perspectives. Journal of Hazardous Materials, p. 125132, 2021 ZHOU, H., GU, X., SUN, J., YU, Z., HUANG, H., WANG, Q., SHEN, X. Research on the formation of M1-type alite doped with MgO and SO3—A route to improve the quality of cement clinker with a high content of MgO. Construction and Building Materials. v. 182, p. 156-166, 2018.pt_BR
dc.contributor.refereesLatteshttp://lattes.cnpq.br/2747640535642870pt_BR
dc.contributor.refereesIDs0000-0001-5104-9240pt_BR
Aparece nas coleções:Tese (PPGEnAm)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese_Tiago Assunção_Final_pdf.pdfTese - Tiago A. Santos7,77 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.