
Shared Resources in Multiprocessor 
Real-Time Systems Scheduled by RUN

Ricardo Brasil Teixeira

A hard real-time system can be defined as the one that at least one of its tasks must 

meet its deadlines whenever the system is running. This requirement makes the 

scheduling algorithm a key element for system correctness. Ideally, the scheduling 

algorithm employed must both exhibit low overhead (efficiency) and ensure that no 

task deadline is missed whenever this can be ensured by some scheduling algorithm 

(optimality). RUN (Reduction to Uniprocessor) is an algorithm capable of efficiently 

and optimally scheduling a set of strictly periodic tasks on a multiprocessor platform 

when tasks do not share any resources but processors. Although it has already been 

shown that RUN is compatible with resource sharing, the only existing solution 

prevents preemptive access to shared resources. Unlike this approach, which can be 

considered too restrictive due to its poor schedulability, we used MrsP 

(Multiprocessor resource sharing Protocol) as a more flexible resource sharing 

mechanism. Making the rules of both RUN and MrsP compatible to each other was 

thus our main goal. The derived solution was implemented on Linux Textbed for 

Multiprocessor Scheduling in Real-Time systems (Litmus-RT), namely a Linux-based 

real-time operating system. We proposed a new task packaging heuristic and 

performed experimental evaluations comparing our solution with the existing one. 

The results showed that the proposed solution presented better results in terms of 

schedulability, total overhead and number of migrations and preemptions.
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RESUMO

Um sistema de tempo real crítico é aquele para o qual ao menos uma de suas tarefas
deve cumprir os prazos de execução (deadlines) enquanto o sistema estiver executando.
Este requisito faz do algoritmo de escalonamento um elemento chave para a correção do
sistema. Idealmente, o algoritmo de escalonamento deve ser e�ciente, para não causar
sobrecargas adicionais, e ótimo, garantindo que nenhum deadline de suas tarefas seja
perdido sempre que isso puder ser assegurado por algum algoritmo de escalonamento.
RUN (Reduction to Uniprocessor) é um algoritmo capaz de escalonar e�cientemente e de
maneira ótima um conjunto de tarefas periódicas em uma plataforma com múltiplos pro-
cessadores, quando as tarefas não compartilham outros recursos que não os processadores.
Embora já tenha sido demonstrado que o RUN é compatível com o compartilhamento de
recursos, a única solução existente impede preempções no acesso aos recursos compartil-
hados. Ao contrário desta abordagem, que pode ser considerada muito restritiva devido
à sua baixa escalonabilidade, utilizamos o MrsP (Multiprocessor resource sharing Proto-
col) como um mecanismo de compartilhamento de recursos mais �exível. Fazer as regras
do RUN e MrsP compatíveis entre si foi, portanto, nosso principal objetivo. A solução
derivada foi implementada no Linux Textbed for Multiprocessor scheduling in Real-Time
systems (LitmusRT), um sistema operacional de tempo real baseado em Linux. Propuse-
mos uma nova heurística para empacotamento das tarefas e realizamos avaliações experi-
mentais comparando nossa solução com a existente. Os resultados obtidos mostraram que
a solução proposta apresentou melhores resultados em escalonabilidade, overhead total e
número de migrações e preempções.

Palavras-chave: SISTEMAS DE TEMPO REAL HARD, ESCALONAMENTO DE
TAREFAS, COMPARTILHAMENTO DE RECURSOS, RUN, MrsP, LITMUS
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ABSTRACT

A hard real-time system can be de�ned as the one that at least one of its tasks must
meet its deadlines whenever the system is running. This requirement makes the schedul-
ing algorithm a key element for system correctness. Ideally, the scheduling algorithm
employed must both exhibit low overhead (e�ciency) and ensure that no task deadline
is missed whenever this can be ensured by some scheduling algorithm (optimality). RUN
(Reduction to Uniprocessor) is an algorithm capable of e�ciently and optimally schedul-
ing a set of strictly periodic tasks on a multiprocessor platform when tasks do not share
any resources but processors. Although it has already been shown that RUN is com-
patible with resource sharing, the only existing solution prevents preemptive access to
shared resources. Unlike this approach, which can be considered too restrictive due to its
poor schedulability, we used MrsP (Multiprocessor resource sharing Protocol) as a more
�exible resource sharing mechanism. Making the rules of both RUN and MrsP compat-
ible to each other was thus our main goal. The derived solution was implemented on
Linux Textbed for Multiprocessor Scheduling in Real-Time systems (LitmusRT), namely
a Linux-based real-time operating system. We proposed a new task packaging heuris-
tic and performed experimental evaluations comparing our solution with the existing
one. The results showed that the proposed solution presented better results in terms of
schedulability, total overhead and number of migrations and preemptions.

Keywords: HARD REAL TIME SYSTEMS, TASK SCHEDULING, RESOURCE
SHARING, RUN, MrsP, LITMUS
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Chapter

1
INTRODUCTION

This research project looks into the topics of Resource Sharing and Scheduling Algo-
rithms for hard real-time systems. In this chapter we give an overview of the problem we
investigated, show the current state of the research in this �eld, present the motivation
for this work and summarize our research goals.

1.1 REAL-TIME SYSTEMS

A Real Time System (RTS) requires that its services be completed within well de�ned
time limits and it is called a Hard Real Time System (HRTS) when its malfunction may
lead to serious consequences. Given its criticality, it is necessary to show that a HRTS
works correctly through rigorous demonstrations that its temporal behavior is predictable.

A process controller can be considered an example of an HRTS if it is employed
as a critical application, in industry or avionics, for instance. It performs monitoring
and control functions to keep the controlled variable at the set point (LIU; W. Layland,
1973). The system usually is comprised of a set of tasks (sequence of instructions to be
executed). Each task is recurrent released one or more (possibly in�nity) times. Each
task instance, usually called job, must be executed from its release time until its deadline.
This kind of system is present in our lives without us noticing this. Some examples, with
di�erent degree of criticality, are systems applied to telecommunication, vehicle braking,
electronic fuel injection, �ight control, event monitoring, heart rate monitoring. In any
case, at least some service of this kind of systems recurrently obtains the current state of
what is monitored through the sensors, performs a processing and, if necessary, triggers
actuators to reach the planned state. Sampling period, chosen at design time, is ruled
by the application needs, it can refer to the time interval between two consecutive data
collections of what is sensed. The state of the monitored object is given by several
variables (e.g., the rotation speed, frequency, temperature, pressure, etc). Associating
tasks to system functions is the role of system designers.

As may have been noticed, some systems contain highly critical functions. Liu (LIU,
2000) gave an example of an automatically controlled train, which cannot stop instanta-
neously after receiving a stop signal. The controller calculates the time required for the
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2 INTRODUCTION

train to travel the braking distance in a safe condition, which imposes a restriction on the
response time of tasks that process the stop signal and activate braking. The deadlines
of the tasks �are typically derived from the required responsiveness of the sensors and
actuators monitored and controlled by it� (LIU, 2000). Considering several tasks, with
their own speci�ed deadlines, there must be a means of feasibly execute all of them. This
is the role of real-time scheduling.

1.1.1 Scheduling Algorithms

A task can release a possible in�nity set of jobs and a job is a piece of code which
should be executed between its release time and deadline. Each job requires a number of
processor cycles to �nish. In HRTS one must know the upper limit of execution time for
all its tasks. That is, each job of a task is known to require no more than its Worst Case
Execution Time (WCET). As for the recurrent release of jobs, Aloysius Mok introduced
the sporadic task model (MOK, 1983; BRANDENBURG, 2011) as a generalization of
the earlier periodic task model (LIU; W. Layland, 1973). In the periodic task model,
jobs are released at a regular time interval. In the sporadic task model, jobs are released
at intervals not smaller than speci�ed, allowing tasks to become inactive if there are no
triggering events. Given a set of tasks implementing an HRTS, their scheduling must
preserve their timing constraints and should be carried out as e�cient as possible.

An optimal scheduling algorithm is the one which always �nds a valid schedule for
any system for which some valid schedule exists. A valid schedule is one according to
which no task deadline is missed. The Earliest Deadline First (EDF) (LIU; W. Layland,
1973) is an outstanding optimal scheduling algorithm originally designed for uniprocessor
systems. At any scheduling instant it selects for execution the job with the earliest
deadline. Unfortunately, EDF performs poorly in systems with multiple processors in
terms of schedulability.

Although there are many optimal scheduling algorithms for multiprocessor real-time
systems, most of them either do not achieve optimality or do so at the expense of high
runtime overheads. Low overhead approaches usually partition the system tasks onto
di�erent processors forbidding task migrations between processors. However, these par-
titioned scheduling approaches do not achieve optimality and exhibit low schedulability
(KOREN; AMIR; DAR, 1998). In contrast, global approaches, which do not impose
any restrictions on task migration, may achieve optimality. However, most of optimal
global scheduling algorithms excessively chop o� the tasks' execution causing uneces-
sary runtime overhead. More recently, better approaches in terms of reduced overheads
have been proposed, namely Reduction to UNiprocessor (RUN) (REGNIER et al., 2011),
Quasi-Partitioned Scheduling (QPS) (MASSA et al., 2016) and Unfair Earliest Dead-
line First (U-EDF) (NELISSEN et al., 2012). These achieve optimality without causing
too many preemptions and task migrations between processors as compared to previous
algorithms. From these, RUN seems to be the best in terms of generated overhead. In-
deed, the authors of an implementation of the RUN algorithm over the Linux Textbed
for Multiprocessor Scheduling in Real-Time systems (LitmusRT) (MPI-SWS, Max Planck
Institute for Software Systems, 2018) state that �RUN can be e�ciently implemented
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on top of standard operating system primitives incurring modest overhead and interfer-
ence, also supporting much higher schedulable utilization than its partitioned and global
counterparts� (COMPAGNIN; MEZZETTI; VARDANEGA, 2014). This opens roads for
using RUN to support new real-time applications running on multiple processors, which
is the current trend in the area.

Indeed, Di Natale (NATALE; SANGIOVANNI-VINCENTELLI, 2010) mentions that
�Cost pressure, �exibility, extensibility and the need for coping with increased functional
complexity are changing the fundamental paradigms for the de�nition of automotive and
aeronautics architectures�. Microprocessors with poor processing power was previously
used for Eletronic Control Units (ECU) to support few embedded HRTS applications.
With a growing demand for more features with more complexity, there has been a trend
to integrate multiple applications into a single processing units and making use of a
multiprocessor platform.

In this context, real-time scheduling becomes of paramount importance. Advances in
computer architectures have raised the demand for simultaneous applications execution,
which increases the concurrency for shared resources (e.g., , processor, memory, peripheral
devices and others). Scheduling tasks that share such resources requires extra e�orts for
ensuring temporal isolation in the system. A resource shared by two or more tasks must
be locked before modi�cation, possibly causing blocking of other tasks. This kind of
interference increases as more software components are executing at the same platform,
with possible impact on the system performance, as a consequence of lengthy block chains
on shared resources. Designing suitable real-time scheduling algorithms compatible with
resource sharing in multiprocessor platforms is an actual need.

1.1.2 Resource Sharing

Race conditions occur when multiple tasks can access and modify the same data item
concurrently. The result of these operations will depend on the order in which the oper-
ations take place. The critical section of a task is a code segment where it can modify
shared objects, such as variables, �les, queues, bu�ers, among others. In order to avoid
inconsistencies, a protocol that synchronizes concurrent access to shared resources there
must be in place.

Common synchronization primitives (locks, semaphores, and monitors) protect the
consistency of shared objects and ensure uninterrupted use of logical or physical resources
through mutually exclusive execution of tasks' critical sections. The direct application
of these primitives can, however, �lead to uncontrolled priority inversion, a situation in
which a high priority job is indirectly preempted by lower priority jobs for an inde�nite
period of time� (SHA; RAJKUMAR; LEHOCZKY, 1990). This reduces the possibility
of obtaining valid schedules and decreases system predictability. Prolonged duration of
blocking can lead to missed deadlines even at low system utilization levels.

The most common approaches to ensuring synchronized accesses to shared resources
in real-time environments are busy wait (also known as spinning) and suspension. Both
are blocking-based implementations and do not allow concurrent access to objects. As
stated in (BRANDENBURG et al., 2008), �suspension-based locking never resulted in
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better schedulability than spin-based locking (on the other hand, more processor time
may be available to background jobs if suspension locking is used)�.

Note that disabling interruptions during critical sections is a possible approach but
this can lead to blocking of higher priority jobs that do not compete for the locked
resource, increasing the likelihood of deadline misses. In the context of multiproces-
sor real-time systems, this may mean a too constrained solution. Standard reference
protocols created for uniprocessor systems, such as Priority Ceiling Protocol (Priority
Ceiling Protocol (PCP)) (SHA; RAJKUMAR; LEHOCZKY, 1990) or Stack Resource
Policy (Stack Resource Policy (SRP)) (BAKER, 1990), do not work properly for multi-
processors. Many other solutions have been described recently. Notably, Multiprocessor
resource sharing Protocol (MrsP) (BURNS; WELLINGS, 2013) preserves many charac-
teristics found on PCP and SRP and has been implemented and evaluated in di�erent
contexts (CATELLANI et al., 2015; ZHAO et al., 2017).

1.2 MOTIVATION

As previously mentioned, RUN is a low overhead optimal scheduling algorithm for multi-
processor real-time system that has already been implemented and evaluated on an actual
operating system (COMPAGNIN; MEZZETTI; VARDANEGA, 2014). This makes RUN
a natural choice for scheduling even when tasks share resources. Indeed, Server Based
Locking Protocol (SBLP) (BONATO; MEZZETTI; VARDANEGA, 2014) is a resource
sharing protocol resulted from this research line. It uses RUN as a baseline scheduler and
manages critical sections as non-preemptive regions inside servers. However, this kind of
solution o�ers potential disadvantages in terms of system schedulability since higher pri-
ority tasks must wait for unrelated lower priority tasks during time periods with disabled
preemptions. The use of better resource sharing protocols in line with RUN should thus
be investigated.

MrsP is a recently proposed resource sharing protocol for multiprocessor real-time sys-
tems, which was inspired by the classical uniprocessor protocols PCP and SRP (BURNS;
WELLINGS, 2013). Unlike SBLP, which exhibits a non-preemptive nature, MrsP may of-
fer better system usage, potentially outperforming SBLP in this respect. Although Burns
(BURNS; WELLINGS, 2013) states that MrsP works for both �xed- and dynamic-priority
scheduling algorithms, to the best of our knowledge MrsP has been only implemented
in the context of �xed priority partitioned scheduling (ZHAO et al., 2017; GARRIDO
et al., 2017a; BURNS; WELLINGS, 2013; GARRIDO et al., 2017b; CATELLANI et al.,
2015). As �xed-priority partitioned systems are not able to fully utilize the processing
capacity of a multiprocessor system, as opposed to global dynamic-priority scheduling
algorithms like RUN, integrating RUN and MrsP may well improve the state of art. This
observation has motivated our research whose goals are described next.

1.3 THIS WORK

Although RUN and MrsP are well de�ned algorithms, both proved correct in di�erent
contexts, putting them together in a single system requires some e�ort. Both algorithms
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establish their own rules for selecting the tasks that must execute at a given time. Their
task selecting criteria may be in con�ict. For example, the scheduling decisions by RUN
are intend to meeting deadlines and do not consider which task should execute for the
sake of keeping consistency during resource sharing. The main step of our work was to
derive adapting rules to make the co-existence of both RUN and MrsP possible.

Once MrsP running over RUN is proved correct, our secondary goal was to provide
an implementation of our solution on LitmusRT (MPI-SWS, Max Planck Institute for
Software Systems, 2018), a Linux-based operating system designed for evaluating and
testing real-time scheduling algorithms and resource sharing protocols. As there are
already implementations of RUN (COMPAGNIN; MEZZETTI; VARDANEGA, 2014)
and MrsP (ZHAO et al., 2017; CATELLANI et al., 2015) on LitmusRT, experimentally
comparing our solution to previous ones (BONATO; MEZZETTI; VARDANEGA, 2014)
was a natural choice.

Resource-sharing protocols in general require an increased reserve of processor capac-
ity to handle blocking times that tasks su�er. Some heuristics have been proposed in
previous work to minimize the increase in demand for processor capacity. We have seen
in this reseach project the opportunity to obtain better results than existing heuristics,
so we also present Ordered Blocking Time (OBT), which obtained signi�cant advantage
over other heuristics.

In the remainder of this text we will provide more detailed information to base the de-
�ned research goals. Chapter 2 gives background information on scheduling and resource
sharing protocols in real-time systems. Chapter 3 explains the model of the proposed
system and proves its correctness. Chapter 4 describes the experiment performed to eval-
uate the performance of SBLP and MrsP in relation to the demand for processor time
reservation. Chapter 5 explains the implementation of the MrsP protocol in the RUN
plugin. Chapter 6 presents and analyzes the results of the experiments to measure the
overhead produced by each protocol. Our �nal comments are given in Chapter 7.





Chapter

2
BACKGROUND

The purpose of this chapter is to give an overview of the work that gave support to
this research project, so as to better contextualize it. In the following sections we will
introduce the task scheduling for real-time systems and give a brief overview on optimal
scheduling algorithms and on resource sharing protocols for RTS. Then we will show work
related to the RUN algorithm and the MrsP protocol, which were the chosen algorithms
in the context of this work.

2.1 SCHEDULING ALGORITHMS

Real-time scheduling for uniprocessor real-time systems usually follows two classic ap-
proaches, based on assigning either �xed or variable (i.e., dynamic) priorities to tasks
according to some criteria. In both cases, the scheduler selects, at each scheduling in-
stant, the highest priority task/job to execute. Well known priority assignments are Rate
Monotonic (RM) and EDF for �xed- and dynamic-priority scheduling, respectively (LIU;
W. Layland, 1973). According to the former, the lower the period of the tasks, the higher
their priorities. This means that di�erent jobs of same task have the same priority. EDF
assigns priority to jobs instead. The earlier the deadline of a job, the higher its EDF
priority. Although �xed-priority scheduling is simpler to implement, it usually leads to
lower bounds on utilizing the system. For example, a set of n independent preemptive
periodic tasks scheduled by EDF can use 100% of the processor without jeopardizing any
of their deadlines. The bound for RM is close to 69%. Most approaches seeking better
utilization of the system tend to use rely on dynamic-priority scheduling. In this work,
we follow this trend.

Scheduling can also be designed for a system hierarchically using the concept of server.
Servers work like bandwidth reservation schemes according to which their processing
demands are con�ned within speci�c periods. For example, a server can be speci�ed for
reserving C processing cycles at every time period of T , meaning that C/T of a processor
is reserved to this server. This reserve can be used to schedule a sub-set of tasks in
the system, providing a hierarchical scheduling mechanism. This server-based scheme

7
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is usually applied to control the execution of some tasks, protecting the system against
possible overruns, for instance. If a task executes in the context of a server and its budget
is depleted, the task must wait for resuming its execution later on, when its server budget
is replenished. Task overruns, if any, do not a�ect the timeliness of other tasks in the
system, a property known as temporal isolation (BIONDI et al., 2014). Servers, in turn,
may use their own scheduling criteria, based on �xed or dynamic priorities.

Real-time scheduling on multiprocessor platforms is more challenging. Even EDF
performs poorly when more than one processor is considered. For example, let three
identical tasks requiring 1 + ε time units out of 2 time units (deadlines equal to 2) with ε
a small positive constant. If all tasks released their jobs at the same instant t, they would
have the same priority by EDF and two of them would be selected to execute. After their
execution, there will be only 1−ε time unit left to be used from time t+1+ε. This is not
enough to complete the remainder job. This approach applies EDF in a global manner
since tasks are being scheduled globally (a unique priority queue) in the system. Another
attempt would be to statically allocate the system tasks onto processors and apply EDF
independently on each of them. This approach, called partitioned, would also fail in the
given example since any two out of three tasks jointly require more than one processor.
Note that under the partitioned approach, a valid schedule does not exist in this case.
That is, if one is interested in optimality, applying a global scheduling policy is necessary.

There are a number of optimal priority scheduling algorithms for multiprocessor real-
time systems, e.g., Pfair (BARUAH et al., 1996), PD (BARUAH; GEHRKE; PLAXTON,
1995), PD2 (ANDERSON; SRINIVASAN, 2000), DP-wrap (LEVIN et al., 2010). Most of
them are based on implementing some notion of fairness during the scheduling (BARUAH
et al., 1996). The idea is to divide time into slots across the processors and assign such
slots to all tasks in the system proportional to their required execution rate. The slot sizes
depend on the distance between consecutive deadlines in the system; job deadlines are
taken as synchronization points by these approaches. Optimality is thus obtained at the
expense of possibly generating too many preemption points and forcing task migration too
often during execution. This is because, when consecutive deadlines are too close to each
other, the generated time slots may be too small. Due to this side e�ects, fairness-based
approaches will not be further considered in this work. Readers can refer to other sources
for an overview on the subject (LIMA; REGNIER; MASSA, 2019; DAVIS; BURNS,
2011).

More recently, three non-fairness-based scheduling approaches have been described
as a means of obtaining optimality with reduced runtime overheads, namely Reduction
to UNiprocessor (RUN) (REGNIER et al., 2011), Quasi-Partitioning Scheduling (QPS)
(MASSA et al., 2016), and Unfair EDF (U-EDF) (NELISSEN et al., 2012). RUN trans-
forms the problem of multiprocessor scheduling into an equivalent series of uniprocessor
scheduling problems. EDF-based servers is the basis for solving each of them, whose
solutions are transformed back at runtime into a multiprocessor schedule. Only peri-
odic tasks are dealt with by RUN. QPS resembles RUN in some aspects (MASSA; LIMA;
REGNIER, 2014) but uses a set of more complex mechanisms to deal with sporadic tasks.
U-EDF is a modi�cation of global EDF. It assigns jobs to processors at each scheduling
instant. When a set of jobs is not feasible on a processor, a job is split into two pieces
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and the pieces are suitably scheduled by EDF on each processor so that their execution
does not overlap in time. Although U-EDF does not generate too many preemptions and
task migrations, it requires O(n ×m) operations per scheduling instants, with n and m
denoting the numbers of task and processors respectively. This may be a point of concern
for some large systems in terms of runtime overhead.

In this work we will focus on the RUN algorithm. This choice is to avoid both the
extra complexity of QPS as well as keeping a low runtime overhead. RUN will be better
explained in Section 2.3.

2.2 RESOURCE SHARING PROTOCOLS

Actual real-time applications make access to resources that need to be shared among
di�erent tasks. Resources can be memory, �les, devices, queues, bu�ers etc.. Usual
solutions designed to general purpose systems do not apply in the real-time domain due
to the timeliness requirements. Possible problems to be avoided are

� Uncontrolled priority inversion, which occurs when a low priority job accesses re-
sources that are used by a high priority one. The latter can be blocked by both the
locking lower priority job and all other jobs that may preempt it.

� Deadlocks, possibly caused when two or more jobs need to lock a di�erent set of
resources and they do so concurrently and in a reversed order. One job can be
forced to wait for another inde�nitely.

� Lengthy blocking chains, formed when a high priority job J su�ers successively
priority inversions by several lower priority jobs which had locked resources accessed
by J but before J started its execution.

These problems are avoided by resource sharing protocols. In general, they work by
accelerating the execution of low priority jobs that lock resources shared with high priority
jobs. A common mechanism to do so is via temporally increasing the priority of the lock-
ing job. There are a number of solutions to do so. For example, in uniprocessor systems,
solutions like Priority Ceiling Protocol (PCP) (SHA; RAJKUMAR; LEHOCZKY, 1990),
designed for �xed-priority scheduling, work as follows. Each resource has a ceiling prior-
ity, which is equal to the priority of the highest priority task that can access this resource.
When a job accesses a shared resource, its priority is raised to the priority ceiling of that
resource, returning to its previous priority upon unlocking the corresponding resource.
Also, any job can lock any of its resources at time t only if its priority is higher than
the ceiling priority of all blocked resources at t. Stack Resource Policy (SRP) (BAKER,
1990) is an extension of the same principles but aiming at EDF-scheduled systems.

The aforementioned solutions do not apply to the multiprocessor case since raising
priorities on a processor does not necessarily cause any interference on the scheduling
decisions taken on another processor. For partitioned scheduled systems, when a resource
can be referenced by tasks allocated to more than one processor, it is labeled as global.
Otherwise, it is a local resource. If a task/job accesses only local resources, interferences
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due to possible lockings are con�ned to the processor this resources is associated with.
The e�ects of accessing global resources may be propagated on other processors. For
systems scheduled by global algorithms, there are only global resources. Multiprocessor
resource sharing protocols must take into consideration which type of resource is being
required, local or global.

Another source of complication for resource sharing protocols in multiprocessor is
whether or not the scheduling algorithm is hierarchical, employing some server-based
scheme. In this case, a task (or server) may hold resources between server budget re-
plenishments possibly causing too much blocking for other tasks requesting the same
resources.

Resource sharing protocols that are based on blocking tasks that require access to re-
sources already locked by other tasks may use two types of blocking schemes, suspension
or busy-waiting (i.e., spinning). In both schemes, an ordered (by some criteria) queue
is associated with each shared resource and blocked tasks (or servers in a hierarchically
scheduled system) are kept in the queue while waiting for their required resources. The
suspension scheme blocks the task that cannot gain access to a locked resource by re-
leasing the processor on which it was executing. The busy-waiting scheme, on the other
hand, executes a dummy code on the processor the blocked task was executing dur-
ing the time it is waiting for the requested resource. Both schemes can also apply to
servers. Busy-waiting may result in an extended blocking period for the waiting tasks on
others processors if the task which is locking resources undergoes preemption (BURNS;
WELLINGS, 2013).

The following two subsections give some brief information about the protocols most
related to this work. Some of them were designed for hierarchically scheduled systems
whereas others do not o�er any special mechanism for server-based scheduling.

2.2.1 Non-Hierarchically Scheduled Systems

MSRP - Multiprocessor Stack Resource Policy. MSRP (GAI; LIPARI; Di Na-
tale, 2001) is a busy-waiting-based resource sharing protocol that can be used for par-
titioned �xed-priority scheduling or EDF. Its non-preemptive characteristic can lead to
long blocking time for high priority tasks, which may make the protocol unacceptable for
some workloads. MSRP limits the cost of accessing global shared resources by restricting
cumulative requests per processor. In order to do this the protocol raises the priority
of the task requesting the resource and the global resources are served through a FIFO
queue. The task that cannot gain access to the resource is blocked and busy-waits until
the access is granted. When the accessed resource is local the task can only be blocked
once for that resource and the blocking will occur before the task starts executing.

DPCP - Distributed Priority Ceiling Protocol. Rajkumar (RAJKUMAR; SHA;
LEHOCZKY, 1988) presented the Distributed Priority Ceiling Protocol (DPCP) that
does not use shared memory for synchronizing access to shared resources, so the protocol
can be used in multiprocessor real-time systems and in distributed systems. DPCP
provides local agents, located on the processors where the resources will be served, to take
care of synchronization in accessing shared resources. A job makes a request to the agent
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and suspends itself while waiting for the agent to respond, after receiving the response,
it resumes its execution (BRANDENBURG; ANDERSON, 2008). The protocol was
originally proposed considering that each resource is assigned to a single synchronization
processor, a processor which controls the accesses to shared resources. This constraint
has been removed to allow for multiple synchronization processors (BURNS; WELLINGS,
2013).

MPCP - Multiprocessor Priority Ceiling Protocol. MPCP, described in (RA-
JKUMAR, 1990), uses semaphores to synchronize access to shared resources and uses
suspension when the requested resource is locked. By the MPCP rules, a job runs at
the highest priority on its processor when it is accessing global resources. Deadlocks are
avoided by not allowing global resources to be accessed in a nested way (BRANDEN-
BURG; ANDERSON, 2008).

FMLP - Flexible Multiprocessor Locking Protocol. FMLP, as described in
(BLOCK et al., 2007), is a resource sharing protocol that can be used for systems sched-
uled by partitioned or global approaches. It uses busy-waiting or suspension for blocking
tasks. Resources are classi�ed as short or long and are grouped into these classes ac-
cordingly. The short resource group is accessed through a non-preemptive FIFO queue
and tasks spin when blocked. The long resource group is accessed through a semaphore
and task undergoes suspension in a FIFO queue when blocked. Non-nested resources are
individually grouped.

MrsP - Multiprocessor resource sharing Protocol. MrsP has been designed
in (BURNS; WELLINGS, 2013) to be a very �exible protocol in terms of which type of
scheduling mechanism is employed. Although the protocol is similar to MSRP in some
aspects, according to the authors, MrsP is �applicable to partitioned, semi-partitioned, or
global scheduling with �xed priority, EDF or other form of urgency designation�. MrsP
exhibits the same properties of the uniprocessor protocols PCP (SHA; RAJKUMAR;
LEHOCZKY, 1990) and SRP (BAKER, 1990). Like SRP, it can also be used by any
system whose priority ceilings can be assigned o�-line. Although MrsP has originally not
targeted at hierarchically scheduled systems neither is there up to now any implementa-
tion of the protocol for dynamic-priority systems, we believe that its �exibility allows for
applying the protocol to systems scheduled by RUN. This observation has motivated us
to choose MrsP for our research. Section 2.4 will give more details about the protocol.

2.2.2 Hierarchically Scheduled Systems

HSRP - Hierarchical Stack Resource Policy. Davis (DAVIS; BURNS, 2006) have
proposed HSRP, an extension of SRP for hierarchical systems. According to HSRP, the
SRP rules are applied to local resources, and the ceiling level is given by the highest
priority task of the same server that can request the resource. While accessing a local
resource, the priority of the task is increased. However, when the server's budget is
exhausted, its execution is suspended. The authors have also de�ned a ceiling priority for
each global resource, which is given by the highest priority server that can use it. A task
will execute non-preemptively while blocking a global resource and its server will have
the priority increased. The server will continue its execution on budget exhaustion only if
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this occurs within a critical section (optionally the budget exceeded can be compensated).
The use of non-preemptive access to global resources limits the excess of budget that
the server can request. Prolonged access to shared resources in hierarchically scheduled
systems reduces schedulability. The reimbursement mechanism can help schedulability,
but increases the complexity of the solution.

BROE - Bounded-Delay Resource Open Environment. This is another ex-
tension to SRP, described by Biondi (BIONDI; BUTTAZZO; BERTOGNA, 2013). The
protocol uses servers for employing a reservation mechanism. When the critical section
of the running task does not �t into the budget of the its active server, there is an antici-
pated budget replenishment. This is done without jeopardizing schedulability. According
to the rules of the protocol, each resource receives, per server, a static ceiling level, which
equals the highest priority level of the tasks allocated to the server that use it. A task can
only preempt another task of the same server if its level is greater than the server ceiling
level. The system's ceiling level (dynamic) is the highest ceiling level of the resources
that are being used at any given time and a server is allowed to preempt another server
only when its preemption level is greater than the system's ceiling level.

SBLP - Server Based Locking Protocol Bonato et al. (BONATO; MEZZETTI;
VARDANEGA, 2014) implemented SBLP based on RUN using servers to group and
manage collaborative tasks (i.e., tasks which share logical resources) with the intention
to decrease the maximum degree of parallelism at resource usage. Their work generalized
the properties of PCP and SRP protocols to multiprocessor systems embedding pessimism
needed to accommodate blocking situations not foreseen by the precursor protocols, which
were designed for single processor systems. They also produced a simple scheduling test
that takes into consideration the e�ects of SBLP on the schedule.

An important feature of this protocol is that SBLP critical sections are non-preemptive
from the point of view of a server. From the moment a task requests a resource until it
completes its critical section, the task cannot be preempted by another task of the same
server. However, a task may undergo preemption even within its critical section if its
server is preempted.

Resources that can be accessed by tasks belonging to di�erent servers are called global
resources. To prevent a task from being inde�nitely waiting for a global resource blocked
by another server that is not running, SBLP servers can give way part of their budgets
to the server whose task is locking a resource under dispute (BONATO; MEZZETTI;
VARDANEGA, 2014).

A dedicated FIFO queue is allocated for each global resource. The maximum size
of the queue of a global resource corresponds to the number of servers containing tasks
which can access such a resource. Under SBLP the maximum time a task can wait for
resources accessed by two or more servers is bounded by the size of the queue and the
maximum size of the resource critical section. If a task requests a resource, it must busy
wait while it is not at the head of the FIFO queue.
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2.3 THE RUN SCHEDULING ALGORITHM

RUN is an optimal scheduling algorithm originally designed for independent implicit
deadline periodic tasks. That is, it is assumed that tasks are strictly periodic, their
deadlines are equal to the respective periods, and they do not share any resource but
the processors. According to (COMPAGNIN; MEZZETTI; VARDANEGA, 2014), �the
algorithm represents an original approach to multiprocessor scheduling that exhibits the
prerogatives of both global and partitioned algorithms without incurring the respective
drawbacks�.

Instead of formally explaining RUN, we will illustrate how it works with a simple
example. Let Γ be a set of 5 tasks to scheduled on 3 identical processors. Each task
τi requires Ci time units of execution at each period of Ti. This means that each task
requires a processor execution rate of Ci/Ti. The utilization of τi, de�ned as Uτi = Ci/Ti
represents this requirement. In our illustrative example, the set of Γ's tasks utilization is
[0.7; 0.6; 0.7; 0.5; 0.5], for i = 1, 2, . . . , 5 and their periods are as follows: [60; 40; 60; 40; 60].
These tasks can be represented as tuples τi(Uτi , TiN+) meaning that the τi requires Ci =
UτiTi at every multiple of Ti.

RUN �rst performs a sequence of operations to transform the set of tasks into a set of
servers to be scheduled in single processor systems. This is carried out o�-line. Then the
information generated o�-line is used on-line to schedule the original system via scheduling
the transformed systems. For the given example, during the o�-line phase, RUN packs
the set of 5 tasks into servers. This is called pack operation. As each server cannot deal
with a set of clients requiring more than one processor, only one task can be packed into a
single server for the tasks τ1, τ2 and τ3, while tasks τ4 and τ5 can be grouped into a single
server. Thus the �rst pack operation returns 4 servers in the format: σ1(0.7, 60N+);
σ2(0.6, 40N+); σ3(0.7, 60N+); σ4(1.0, 60N+, 40N+). Note that severs in RUN are denoted
by its utilization, which equals the sum of its clients utilizations, and the instants it
releases a job, which corresponds to when its clients releases a job. Not also that σ4 is
a unit server, i.e., its utilization equals to one and will require one virtual processor for
scheduling its tasks. σ4 will not be considered in subsequent operations as it is a unit
server and will be scheduled separately as on a semi-partitioned clustered system.

In the second step, RUN carries out the dual operation on the set of generated
servers. Let {TσiN+} be the set of release times of σi. A dual server of σi(Uσi , {TσiN+})
is one with complementary utilization and the same release instants in {TσiN+}, i.e.,
σ∗i (1−Uσi , {TσiN+}). In the illustration, this operation will give rise to three new servers,
denoted as σ∗1(0.3, 60N+); σ∗2(0.4, 40N+) and σ∗3(0.3, 60N+). Each σ∗i is called the dual
of its primal counterpart σi. RUN aims at reaching sets of servers that require a single
processor. In this case, another phase is not necessary, as indicated in Table 2.1. As
can be seen, each set of servers identi�ed as Γj corresponds to the set of packed servers
produced by previous dual operation, j > 0. Also, note that the set of release instants of
a server is the union of the release instants sets of its clients. The reduce operator is a
combination of the operations pack and dual. It is also worth noticing that the o�-line
phase of RUN produces one or more trees, called reduction tree with the root de�ned to
be the single processor system, σ5 and σ4 in the example.
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Table 2.1 The result of the o�-line phase in RUN. The original set of tasks is transformed into

a system to be scheduled on a single processor.
Γ τ1(0.7, 60N+) τ2(0.6, 40N+) τ3(0.7, 60N+) τ4(0.5, 60N+) τ5(0.5, 40N+)

Γ0 = pack(Γ) σ1(0.7, 60N+) σ2(0.6, 40N+) σ3(0.7, 60N+) σ4(1.0, 60N+, 40N+)
Γ0∗ = dual(Γ0) σ∗1(0.3, 60N+) σ∗2(0.4, 40N+) σ∗3(0.3, 60N+)
Γ1 = pack(Γ0∗) σ5(1.0, 40N+, 60N+)

Servers in RUN use EDF to schedule their clients. That is, when a server σ is scheduled
to execute, it selects the earliest deadline client to execute. Only one client can execute
at a given time within a server. If d is the earliest deadline of a client, the budget of
a server σ is de�ned at its release instant r as Uσ(d − r). If the budget of a server is
depleted, the server, and hence its clients, cannot be selected to execute until the budget
is replenished.

The on-line phase of RUN makes use of the reduction tree, the server behavior and
the duality principle, which states that a server runs if and only if its dual does not run.
Hence, RUN selects �rst the server to execute at the root of the tree. In the example
σ∗2 would be assigned to a virtual processor identi�ed as V1. This server has the earliest
deadline of its unit server (σ5) at time 0. After having its budget depleted, another server
is selected via EDF and so on. These servers actually do not execute since they are
virtual servers. The processors they are assigned to in fact do not exist. De�ning virtual
processors for executing all servers generated after the �rst dual operation provides a
useful abstraction, though. Figure 2.1 illustrates how the set of dual servers could be
scheduled by RUN, all of these servers belong to the σ5 unit server.

Figure 2.1 RUN schedules servers at the root of the reduction tree by applying EDF. Time

scale is indicated at the bottom.

By applying the duality principle, RUN decides which server must run at the second
level of the reduction tree. For example, while σ∗2 runs within time interval [0, 16) σ2

must not run. This means that during this interval, both σ1 and σ3 should be scheduled.
The same reasoning applies to all time instants. RUN thus would produce the following
schedule at the second reduction level, as illustrated in Figure 2.2. It can be seen from the
�gure that virtual processor V1 is related to virtual processors V3 and V4 after performing
the dual operation. σ4 now appears as it is the second unit server in the system and its
level in the tree is reduced compared to the level of unit server 5. It must also execute
at time 0 in a virtual processor identi�ed as V2.
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Figure 2.2 RUN schedules the servers at the second level of the reduction tree by applying

the dual operation. Time scale is indicated at the bottom.

Based on the servers running at the second reduction level, RUN selects the tasks to
be scheduled at the next level by applying EDF. The result is shown in Figure 2.3. Recall
that servers σ1, σ2 and σ3 contain only one task each, so the association is straightforward.
Server σ4, in turn, has two tasks, so EDF scheduling was applied, as can be seen from
�gure 2.3, where task τ5, which is the closest deadline at time 0, comes �rst. Note that
virtual processors have been replaced by physical processors P1, P2, and P3, indicating
that this is the �nal scheduling step.

Figure 2.3 RUN schedules tasks at the �nal level of the reduction tree by applying EDF.

Physical processors are present in place of virtual processors. Time scale is indicated at the

bottom.

We note that RUN starts by scheduling a virtual system at the root of the reduction
tree. It needs that this system has utilization equal to 1. This means that there is always
some server running at the last level in the reduction hierarchy. Fully utilized systems at
the root of the tree are produced when the original system is also fully utilized. In the
example of this section, the �ve tasks jointly utilize 100% of the 3 processors. When this
is not the case, one needs to create dummy tasks to complete the system, as described in
(REGNIER et al., 2011).
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2.4 THE TARGET MULTIPROCESSOR RESOURCE SHARING PROTOCOL

In this section we will describe MrsP, giving the necessary information to justify the
choice made in this project. Although this protocol was not speci�cally designed for hier-
archically scheduled systems and RUN makes use of servers, they can be made compatible
as will be seen in the next chapter. This section is to give some intuition on this goal.

MrsP was based on MSRP (GAI; LIPARI; Di Natale, 2001). The main di�erence
between them is that MrsP uses what is known as the helping mechanism. Other protocols
also make use of this mechanism, e.g., SPEPP (TAKADA; SAKAMURA, 1997) and
SBLP protocol (BONATO; MEZZETTI; VARDANEGA, 2014). This mechanism is to
allow a task τi to give away its processor in favor of another task τj (allocated to a
di�erent processor) if τj is locking a resource ψ and τi is busy-waiting for ψ while τj is
being preempted by higher priority tasks on its processor. Task τi in this case gives way
its processor so that its busy-waiting time can be used for accelerating the execution of
preempted tasks. By helping other tasks in this, way τi is actually helping itself since the
resources it waits for will be released earlier. Recall that all tasks requesting an already
locked resource are enqueued in the waiting FIFO queue of that resource. The helping
mechanism decreases the total waiting time τi waits in the queue.

According to Burns (BURNS; WELLINGS, 2013), when it comes to local resources,
the following properties are inherited from PCP/SRP: a job can be blocked at most
once after release; the blocking will happen before the job starts executing; once a job
is running it will have access to all required resources; and deadlocks are prevented. In
addition to meeting the properties related to resource sharing for uniprocessor systems,
MrsP also provides bounded duration of blocking on multiprocessors and consequently
bounded response time for the system tasks. To show this, the authors used Response
Time Analysis (RTA) (JOSEPH; PANDYA, 1986), technique commonly used for �xed-
priority uniprocessor systems. In the MrsP context with tasks being scheduled in a
partitioned �xed-priority basis, they have shown that by increasing the resource access
cost to account for parallel resource accesses (global resources), RTA is kept almost the
same as in the case of uniprocessor system.

These statements by Burns (BURNS; WELLINGS, 2013) summarize the de�nition of
MrsP:

� Each resource is associated to a set of ceiling priorities, one priority per resource
for each processor that uses it.

� A request for a resource access by a task raises its priority to the local resource
ceiling.

� Resource accesses are treated in First In First Out (FIFO) order in the resource
global queue.

� While busy-waiting for (or using) a resource, a task remains active and executes
with priority equal to the local resource ceiling.
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� A busy-waiting task τi blocked for the resource ψ must give away its processor to
another task which is locking ψ but has been preempted.

� A collaborative task (which gives way its processor) must do so and allowing for
execution of other tasks following the FIFO order of requests.

Figure 2.4 gives a visual representation of the MrsP protocol for systems scheduled
by some partitioned policy. Each processor Pi, 1 6 i 6 m, has a set of tasks statically
assigned to it. There is a FIFO queue for each resource ψ. The length of the FIFO
queue is equal to the number of processors having tasks accessing ψ. When a task τy is
executing on the processor Pm and tries to access ψ, if the resource is already locked by
a task assigned to other processor, then τy will spin at the local ceiling of ψ on processor
Pm.

Figure 2.4 Visual Representation of MrsP (CATELLANI et al., 2015)

For minimizing the number of global resources, Burns (BURNS; WELLINGS, 2013)
have suggested that mappings could be used by assigning tasks that access the same
resources to the same processor cluster. Although this practice has been suggested in the
context of partitioned scheduling, it is not di�cult to imagine this strategy being used
in global scheduling. For example, Huang (HUANG; YANG; CHEN, 2017) have shown
that �the proposed resource-oriented partitioned scheduling using PCP combined with a
reasonable allocation algorithm can achieve a non-trivial speedup factor guarantee�.

Interestingly, despite the fact that RUN is a global scheduling algorithm, integrating
RUN and MrsP could be thought similarly to applying MrsP in systems scheduled by
some partitioned approach. The set of servers generated by the �rst pack operation
works as if each server was a processor with reduced capacity. Thinking of these servers
as �processors� is the base of our research. More details of idea will be given in Chapter
3.





Chapter

3

SYSTEM MODEL AND NOTATION

We assume a system composed of a set Γ of periodic real-time tasks with implicit deadlines
to be scheduled on a multiprocessor platform comprised of m identical processors. Period
and computation time of task τi ∈ Γ is denoted by Ti and Ci, respectively. Utilization
of task τi is de�ned as Uτi = Ci

Ti
and the initial system utilization is obtained through∑

τi∈Γ Uτi . Each task τi ∈ Γ has a preemption level, denoted Πτi . This is a value de�ned
such that for any two tasks τi and τj in Γ, if Ti < Tj, then Πτi > Πτj .

A server σ is an execution entity that can serve (i.e., schedules) one or more tasks
when it executes. A task τi, if served by a server σ, is said to belong to the client set of
σ, denoted Γσ. Rules governing the server behavior will be detailed shortly. The server
σ on which a task τi is allocated is denoted as δτi .

A special server set is referenced as Γ0 which corresponds to the set of servers generated
after the �rst RUN pack operation. For short, all references to σ denote a server in the
set Γ0, except when explicitly said otherwise.

The system contains a resource set Ψ, which can be shared by the system tasks. The
set of tasks in Γ that may access some resource ψ is denoted as Γψ. Servers in Γ0 which
have some task in Γψ is denoted as the set δψ. We refer to Γψσ as the task set served by σ
that may access resource ψ. More precisely, Γψσ = Γσ ∩ Γψ. We also identify the resource
set used by a task τi as Ψτi whereas the resource set that may be accessed by some client
tasks of a server σ is denoted as Ψσ. More formally, Ψσ = {ψ ∈ Ψ|∃τi ∈ Γψσ}. The local
task set with preemption level greater than that of task τi is given by hpl(τi). Formally
stated,

hpl(τi) =
⋃

τj∈Γδτi
|Πτj>Πτi

{τj}.

We de�ne predicates to indicate whether at a given instant t some resource ψ is locked
or there is some task or server awaiting locking it. Locking predicate for a task is de�ned
as

lock(ψ, τi, t) = true⇔ ψ is locked by τi at time t

19
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For a server, the predicate is cast as

lock(ψ, σ, t) = true⇔ ∃τi ∈ Γσ such that lock(ψ, τi, t)

Similarly,
wait(ψ, τi, t) = true⇔ τi waits for locking ψ at time t

and
wait(ψ, σ, t) = true⇔ ∃τi ∈ Γσ such that wait(ψ, τi, t).

In this work we do not address nested resources and assume that the maximum ex-
ecution cost of a critical section on a shared resource ψ is known and represented as
Cψ.

For convenience, we say the maximum of elements in a set is null if the set is empty,
i.e., max{} = 0.

3.1 INTEGRATING MrsP AND RUN

This section states the properties that should hold in a correct integration of MrsP and
RUN. We �rst observe that, according to Baker (BAKER, 1990, 1991), SRP can be used
by any system which accepts a static way to de�ne task eligibility, i.e., task's preference
to execute can be de�ned o�-line. This is a crucial question to determine the MrsP
compatibility with a global scheduling algorithm like RUN. Tasks priorities in RUN's
servers are determined by EDF, which is dynamic, and thereby cannot be determined
o�-line. Thus, as suggested by Baker (BAKER, 1990) for SRP, for each task τi we intend
to make use of its preemption level Πτi , gathered o�-line, in combination with its EDF
priority. Combining both properties is necessary because EDF is a dynamic-priority
policy and SRP-like systems have to provide a static eligibility criterion for de�ning an
order of preference in resource sharing.

The second observation on which this work is based is related to the servers in Γ0,
created by the �rst step of packing in the o�-line phase of RUN. These servers can be
seen as �logical� processors and they can have an analogous role the physical processors
have from the MrsP's perspective. Interestingly, this interpretation is not original, as
it has been explored in the design of SBLP, a protocol speci�cally designed for RUN
(BONATO; MEZZETTI; VARDANEGA, 2014).

By interpreting servers in Γ0 as logical processors, we can start modifying MrsP
original rules accordingly. MrsP treats a resource as global when it is used by tasks
allocated to di�erent processors. Here we intend to treat a resource as global when it
is used by tasks allocated to di�erent servers. According to this approach, the system
composed of servers in set Γ0 can be thought of as similar to a system scheduled by the
partitioned EDF policy.

Although the analogy between servers and processors is very intuitive, the integration
of MrsP and RUN must be formally proved as correct. Some subtle di�erences between
servers and processors exist and must be accounted for in such a proof. For example, the
interference tasks may su�er due to blocking di�er from the original scenarios MrsP has
been designed for. Indeed, servers can be preempted during their execution, as previously
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Table 3.1 Notations Summary

Γ Task set or server set
Γ0 Packed server set generated by the �rst packing phase of RUN
τi Task with index i
σ, σi Generic server, server with index i
Ci, Ti WCET and period of τi
Ĉi In�ated WCET of τi
Uτi = Ci/Ti Utilization of τi
Uσ Utilization of σ
Πτi Preemption level of τi
Γσ Client set of σ
δτi Server τi is assigned to
Ψ System's resource set
ψ, ψi Generic resource, resource with index i
Γψ Task set that may access a resource ψ
Γψσ Tasks served by σ that may access a resource ψ
δψ Servers containing some client in Γψ

Ψτi Resource set used by τi
Ψσ Resource set that may be accessed by some client of σ
Πψ
σ ψ's ceiling level for σ

Πσ(t) σ's ceiling level at a given instant t
Cψ Maximum execution cost of a critical section on ψ
Bψ Maximum blocking time for an attepmpt to access ψ
Nψ
τi

Number of times a task τi can use ψ
hpl(τi) Set of tasks in the same server as τi and with preemption level

greater than or equal to that of τi
lpl(τi) Set of tasks in the same server as τi and with preemption level lower

than that of τi
lock(ψ, τi, t) True if and only if ψ is being locked by τi at a given time instant t
lock(ψ, σ, t) True if and only if ψ is being locked by a client of σ at a given time

instant t
wait(ψ, τi, t) True if and only if τi is waiting for ψ at a given time instant t
wait(ψ, σ, t) True if and only if a client of σ is waiting for ψ at a given time

instant t
lblock(τi) Maximum local blocking time τi can be exposed
gblock(τi) Maximum global blocking time τi can be exposed
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mentioned. If some of their clients hold resources during intervals the respective servers
are not running, extra blocking interferences can be in place. Moreover, RUN selects
which servers are to run using duality from one reduction level to another. This behavior,
not present in partitioned scheduling algorithms, must be taken into consideration when
integrating MrsP and RUN. First, we list the main properties that should hold so as to
make MrsP and RUN compatible with each other and then we present the de�nitions
and rules necessary to substantiate the proof of the correctness of the proposed solution.

1. A task only can start executing if all resources it needs are not locally blocked by
another task of the same server. See Lemma 1 and Rule 1.

2. A higher priority task τi can only preempt another task, client of the same server,
if τi's preemption level is higher than the server's ceiling. This property is speci�ed
in Rule 1.

3. After starting execution, a task cannot be locally blocked by another task of the
same server. Lemma 2 de�nes this property.

4. The local blocking time (i.e., the time during which a task is blocked by another
task client of the same server) on resource ψ can be bounded and the bound is
known. This is related to Lemma 2.

5. The maximum potential blocking cost a task can experience in one attempt to
access a shared resource is upper bounded and can be derived. Lemma 3 proves it.

6. Priority inversion may occur but its e�ect is bounded. This property has its de�-
nition given by Lemma 2.

7. As global resource access is controlled by one FIFO queue per resource, then no
server is able to interfere more than once in another server in a dispute over a shared
global resource. One can see Rule 2 and Lemma 3.

3.2 RESOURCE SHARE PROTOCOL AND ITS PROPERTIES

De�nition 1 (Resource Ceiling Level). Each resource ψ ∈ Ψ has a ceiling level associated
with each server σ, denoted Πψ

σ , which corresponds to the maximum of the preemption
levels of σ's clients that have access to resource ψ. More formally,

Πψ
σ = max

τi∈Γψσ

Πτi

De�nition 2 (Server Ceiling). At a given instant t, the ceiling level of a server σ repre-
sents the maximum ceiling level of resources either locked or being required by some of
σ's clients at t. If no resources are being locally locked or requested by any client of σ,
its ceiling level is null. That is,

Πσ(t) = max{Πψ
σ |ψ ∈ Ψσ, lock(ψ, σ, t) ∨ wait(ψ, σ, t)}
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De�nition 3 (Locally Available Resource). A resource is said to be locally available
within a server at some instant t when none of its clients is locking or is waiting for such
a resource at t.

De�nition 4 (Globally Available Resource). A resource ψ is said to be globally available
at some instant t when none of the tasks τi ∈ Γψ is locking or is waiting for ψ at t.

Lemma 1. Let σ be a server and consider some task τi ∈ Γσ. If at a given instant t,
Πτi > Πσ(t), then all resources in Ψτi are locally available at t.

Proof. By contrapositive. Suppose that ψ ∈ Ψτi is a resource requested or locked by
another task τj ∈ Γσ at some time t. From De�nition 1, it is known that Πψ

σ > Πτi .
De�nition 2 tells that Πσ(t) > Πψ

σ at instant t, implying that Πτi 6 Πσ(t).

From Lemma 1 it is clear that a task can have access to its required resources if its
preemption level is greater than its server ceiling, leading to the following rule:

Rule 1 (Local Blocking). Whenever a server σ in Γ0 runs, it schedules its client tasks by
EDF but a client τi may only be scheduled to execute at a given time t if Πτi > Πσ(t).

Rule 1 establishes a simple blocking criterion and comes from classical protocols such
as SRP (BAKER, 1990) and is also present in MsrP (BURNS; WELLINGS, 2013). The
only di�erence here is that instead of real processors, the concept of logical processors
(i.e., servers) are being used. When a task is blocked due to Rule 1, we say that it su�ers
a local blocking or equivaletly is locally blocked.

Lemma 2. A job of any task is locally blocked due to at most one critical section and
the local blocking period occurs before the job starts its execution.

Proof. For a job J of a task τi ∈ Γσ to start its execution and then be locally blocked
at some time t, it is necessary that some other job from a client of the same server as
τi requests a resource at time t′ before t and this resource has a ceiling higher than or
equal to the preemption level of τi. However, this scenario is prevented by Rule 1 since
the server preemption level would be increased at t′ to at least Πτi (recall De�nitions 1
and 2).

In order to see that the local blocking period su�ered by J is due to a single critical
section note that J would su�er more than one local blocking only if lower priority jobs
must have requested at least two resources used either by τi or by higher preemption level
tasks, i.e., tasks in hpl(τi). However, Lemma 1 (i.e., its contrapositve statement) implies
that the �rst request of such a kind of resource by any of these lower priority jobs makes
σ's preemption level raise to at least Πτi . As other lower priority jobs do not start their
execution until σ's preemption level is decreased accordingly and J has a higher priority,
no other local blocking of J will be possible.

Rule 2 (Global resource FIFO service). If a resource can be accessed by clients of di�erent
servers then it is called a global resource. There is one queue associated with each global
resource and resources are served in FIFO order. When a task τi ∈ Γσ requests a global
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resource ψ and ψ is locked by a task τj /∈ Γσ, the request is enqueued in ψ's FIFO queue
and τi busy-waits whenever its server σ schedules τi for execution. If the resource is not
locked, ψ is immediately locked by τi. The request at the �rst position of the FIFO queue
is dequeued when the task which is locking the corresponding resource unlocks it.

Lemma 3. Any job that requests access to a global resource ψ su�ers at most |δψ| − 1
global blockings before accessing ψ.

Proof. A server cannot issue two concurrent requests for a resource. Indeed, consider two
jobs by tasks τi and τj, clients of the same server, and assume that they share ψ. Further,
assume that one of them requests ψ before the other. Upon the �rst request, their server
ceiling level rises to at least max(Πτi ,Πτj). Rule 1 then prevents a second request from
happening until at least the job that locked ψ �rst releases the corresponding lock. As
by Rule 2 a request is removed from the queue upon unlocking, the two requests cannot
be in the queue at the same time. Thus, the queue has at most |δψ| requests at any given
time. Since it is a FIFO queue, i.e., new requests are always enqueued at the end of the
queue, there are at most |δψ| − 1 requests to be serviced before the last one is processed.
This leads to the maximum number of global blockings stated in the lemma.

Lemma 4. Under Rules 1 and 2, there can be no deadlock during concurrent access to
resources provided that no nested resources are allowed.

Proof. From Rule 1 and Lemma 2 we know that any job that does not access global
resources is blocked at most once and this blocking occurs before the job starts its exe-
cution. In this case, deadlock cannot occur as the local resources for each executing job
are not blocked by other jobs.

As for global resource sharing, let τ and τ ′ be tasks of distinct servers sharing global
resources. According to Rule 2, their jobs are put in the global queue of the resources
upon their request. Without loss of generality, asume that at a given instant in time
the job by τ comes before that of τ ′ in the queue of some of the resources they share,
namely ψ. Let these jobs be J and J ′, respectively. Since both jobs are in the queue of
ψ, they have released all resources they have locked before requesting ψ as there is no
nested resource. Hence, when J gains access to ψ, J ′ is kept awaiting accessing ψ while
J is allowed to execute in the critical region of ψ. Thus, no resource waiting cycle takes
place for any two jobs and so no deadlock can occur.

Avoiding the use of nested resources is a decision that prevents the formation of dead-
locks. Instead of prohibiting nested resources, deadlocks could be avoided by grouping
resources or ensuring that resources were always accessed in a given order. The main
advantage in avoiding the use of nested resources is to simplify the application of MrsP
protocol, since nested resources increase the complexity of the solution, as discussed in
Garrido et al (GARRIDO et al., 2017b).

Rule 3 (Helping Mechanism). This mechanism acts on accelerating the execution of
client jobs served by distinct servers. Let J and J ′ be jobs released by client tasks of
two distinct servers, σ and σ′, respectively, and assume that J and J ′ share a (global)
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resource ψ. Whenever J requests ψ and ψ is being locked by J ′, if J ′ is not running (due
to preemption, for example), then J ′ is brought to execute in the context of server σ as
long as σ is executing and J is its highest priority job. In this case J and J ′ are called
helping and helped jobs, respectively. Any job busy-waiting for ψ may be selected to
execute as a helping job on behalf of the locking job J ′ but there is at most one helping
job on the same resource at a given time.

Lemma 5. Provided that there is no nested accesses to resources, the maximum blocking
time before accessing a global resource ψ is given by

Bψ =
(∣∣δψ∣∣− 1

)
Cψ , (3.1)

and any job of a task τi cannot be globally blocked for more than

gblock(τi) =
∑
ψ∈Ψτi

Nψ
τi
Bψ , (3.2)

with Nψ
τi
representing the number of times τi requests resource ψ.

Proof. The maximum number of global blocking comes directly from Lemma 3. As by
Lemma 4 no deadlock occurs, each global blocking may make the job which is requesting
a global resource ψ wait for bounded amount of time. Let J be a job requesting the
already locked resource ψ. Two scenarios may occur at the time J requests ψ, depending
on whether or not the blocking job is executing. If it is, it takes at most Cψ time units
for the resource be released since Cψ is the maximum length of the critical sections of ψ.
If it is not executing, due to the helping mechanism, the server where J executes starts
executing the locking job and this also takes at most Cψ time units. In other words,
each job that locks ψ before J interferes at most Cψ time units on J 's execution due to
blocking. Therefore, the maximum blocking time due to global resource access cannot
exceed Bψ.

Furthermore, since Bψ is the maximum blocking time on resource ψ and considering
that a job of task τi accesses resource ψ at most Nψ

τi
times, the maximum interference

each job of τi may su�er due to global blocking is Nψ
τi
Bψ. Summing this interference for

all resources in Ψτi yields the maximum blocking time gblock(τi).

Lemma 5 is not valid when nested resources are allowed. The research done by Garrido
et al. (GARRIDO et al., 2017b) explored the issue of nested resources for MrsP protocol
in depth, although that work has been limited to �xed priority partitioned scheduling.

The stated results up to here imply that a task waits for resources a bounded amount
of time. However, this does not su�ce to prove that the whole system works correctly.
For example, a task may spin while waiting for resources and this spinning time should
be accounted for in the budget its server provides. Lemma 6 bounds the maximum time
a task may take to �nish its execution, called in�ated execution time. Another aspect is
related with the utilization that must be set to a server to account for both the in�ated
execution time and the local blocking its client tasks may su�er. This aspect is addressed
in Lemma 6 and Theorem 1.
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Lemma 6 (Task execution time in�ation). Consider a set of shared resources Ψ and a
set of tasks Γ that are packed into a set of servers Γ0. Each task τi in Γ executes for at
most

Ĉi = Ci + gblock(τi) (3.3)

and its in�ated utilization is Ûτi = Ĉi
Ti
.

Proof. The lemma follows from the fact that task τi executes for its worst-case execution
time Ci but according to Rule 2 may busy-wait when globally blocked. By Lemma 5 the
maximum global blocking time is given by gblock(τi), leading to the maximum time of
Ĉi and the corresponding in�ated utilization Ûτi .

Note that when a job of task τi is locally blocked, this blocking can be direct or
indirect since condition Πτi 6 Πσ(t) can be true due to the execution of lower priority
jobs independently of whether their tasks share resources with τi. For example, consider
a job of a task τj such that Πτj > Πτi , i.e., τj ∈ hpl(τi). In this case, the jobs of tasks that
access resources in Ψτj but do not access those in Ψτi may indirectly block τi's jobs since
their execution may make Πτi 6 Πσ(t). Direct blocking, on the other hand, concerns tasks
that share the same resources. In any case, the local blocking of τi, denoted lblock(τi),
can be de�ned as the maximum blocking time (direct or indirect) su�ered by τi due to
tasks of lower preemption levels accessing resources whose preemption level is higher than
or equal to that of τi. More formally,

lblock(τi) = max{Bψ + Cψ|ψ ∈ Ψδτi
,∃τk ∈ Γψδτi

,Πτk < Πτi ,Π
ψ
δτi

> Πτi}.

Theorem 1 (In�ated server utilization). If any server σ ∈ Γ0 has its utilization set to

Ûσ =
∑
τi∈Γσ

Ûτi + max
τi∈Γσ

(
lblock(τi)

Ti

)
, (3.4)

then no client of σ misses any of its deadlines provided that Ûσ 6 1 and that σ meets all
of its own deadlines.

Proof. We show the theorem by proving that if there is a client of σ that misses a deadline,
then σ's utilization must be lower than what is given by (3.4).

Since σ is a server, its utilisation must be necessarily set to a value not greater than
1. It is thus convenient to think of σ being scheduled on a single processor even if in
the actual schedule σ migrates between processors. This does not restrict the proof. The
single processor schedule can be taken as a projection of the system schedule on a single
processor. Apart from context-switches and migrations, σ' timeliness is not compromised
in this uniprocessor schedule of σ. Hence, at any time, the processor is idle in the
uniprocessor schedule either when σ does not execute or when it does but selects no job
to execute. And when the processor is not idle, σ is executing some job.

Assume that some client of σ misses its deadline at instant d. Without loss of gen-
erality, let d be the �rst missed deadline. Let r > 0 be the latest instant before d such
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that no job by σ's clients released before r with deadline by d is waiting for execution.
By construction, r and d are also release time and deadline of σ, respectively. This is
because every client of σ is an implicit-deadline periodic task and the deadline of σ is the
minimum deadline of its clients.

By the de�nitions of r and d, there is always some pending job by clients of σ to
execute during [r, d). None of these pending jobs could be left awaiting execution leaving
the processor idle when σ executes during [r, d). Recall from Rules 2 and 3 that jobs
globally blocked busy-waits and so occupy the processor. And if there are locally blocked
jobs at some time t, Rule 1 tells us that the preemption level Πσ(t) is higher than that of
the locally blocked job. This means that some other job by a client of σ is executing and
locking a resource as stated in De�nition 3. Thus, there is no idle time during intervals
σ executes in [r, d). As σ meets all its deadlines, it provides a total of

(d− r)Ûσ (3.5)

time units during [r, d) to execute its clients. We now compute all demand by the clients
of σ whose jobs have deadlines up to d. Jobs with deadlines greater than d cannot be
scheduled by σ within [r, d) due to EDF order. The number of relevant jobs of τi ∈ Γσ is
bounded by bd−r

Ti
c. Thus, the maximum demand of such jobs is bounded by

∑
τi∈Γσ

⌊
d− r
Ti

⌋
(Ci + gblock(i)) 6 (d− r)

∑
τi∈Γσ

Ûτi , (3.6)

since we know from Lemma 6 that each task τi ∈ Γσ requires at most Ĉi = Ci+gblock(i).
If some client of σ is locally blocked during [r, d), σ executes low priority jobs J holding

a local resource in some interval during [r, d). We need to determine the computation
demand caused by the execution of blocking jobs J . Shortly we will see that only one
such a blocking job J is relevant to be considered.

By the de�nition of r, no blocking job J with deadline less than d could start its
execution before r. Also, from the EDF priority order and from the fact that there are
pending jobs with deadlines less than or equal to d, no blocking job J with deadline
greater than d can start its execution at or after r. Further, (3.6) already accounts for
every blocking job J that starts its execution at or after r and have deadlines no later
than d. Therefore, only blocking jobs that start their execution before r and �nish their
execution after r are relevant for increasing the demand to be executed within [r, d).
However, there can be only one such a job. If there were more than one job J requesting
resources at some time before r, Lemma 2 tells that only one of them would be able to
lock the resources and so the others would not be able to start execution within [r, d) due
to EDF priority order. From r until the moment J releases the resources, σ executes J
and the maximum blocking due to J within [r, d) is bounded from above by

max
τi∈Γσ

( lblock(τi) ) (3.7)

Since d is a missed deadline, this service time, given by (3.5), must be lower than the
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total demand by clients of σ (3.6) summed with maximum local blocking (3.7),

(d− r)Ûσ < (d− r)
∑
τi∈Γσ

Ûτi + max
τi∈Γσ

( lblock(τi) )

Dividing by d− r,

Ûσ <
∑
τi∈Γσ

Ûτi + max
τi∈Γσ

(
lblock(τi)

d− r

)
As d− r > Ti for any τi ∈ Γσ, the above relation contradicts (3.4).

Theorem 1 determines the server's in�ated utilization to accommodate its tasks, as
well as the time reserves required for the worst case global and local blocking. The
theorem also ensures that all server client tasks will meet their deadlines. It's possible to
see that the RUN theorem 3.1, transcribed below and adapted to the notations of this
work, applies perfectly to this solution.

The EDF server σ = PACK(Γ) of a set of servers Γ produces a valid schedule
of Γ when UΓ 6 1 and all jobs of σ meet their deadlines. (REGNIER et al.,
2011)

In order to adapt the RUN theorem 3.1 to the solution proposed in this work, the
utilization of the servers of Γ0 must be in�ated according to (3.4). After we have de�ned
the in�ated utilization of each of the servers σ, being σ ∈ Γ0, the RUN rules for building
the reducing tree remains the same as in RUN. Since it has been ensured that each server
will respect its processor time reservation limits, it is possible to apply the dual and
pack operations leading to the construction of the RUN reduction tree. For every server
σ ∈ Γ0 we can create a σ′ server with utilization equal to Ûσ and use σ′ for the application
of the RUN rules, instead of considering σ. Thus, there is a valid application of RUN
theorems 4.1 and 4.3, transcribed below and adapted to the notations of this work. Let
Σ be a schedule of a set of tasks or servers and {∆i} the i-th REDUCE operation, then

Let Γ be a set of n = m + k servers on m processors, scheduled by Σ, with
k > 1 and UΓ = m. Let Γ∗ and Σ∗ be their duals. Then UΓ∗ = k, and so
Γ∗ is feasible on k processors. Further, Σ is valid if and only if Σ∗ is valid.
(REGNIER et al., 2011)

If Γ is a proper set under the reduction sequence {∆i}i6p, then the RUN
algorithm produces a valid schedule Σ for Γ. (REGNIER et al., 2011)

The proof for these theorems can be found in the RUN paper (REGNIER et al., 2011).
Since the RUN algorithm can be considered perfectly adapted to the MrsP protocol, let us
look at the Algorithm 1 which allows us to get an overview of RUN adapted to incorporate
the resource sharing approach. An illustration involving also the on-line phase is given
in the next section.
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Algorithm 1: RUN o�-line phase
Require: Γ; {Set of tasks}
1: i← 0;
2: Generate Γi servers for Γ tasks according to some suitable package strategy;
3: ÛΓ ←

∑
σ∈Γi Ûσ {Calculate the total in�ated utilization of the system}

4: if (ÛΓ − bÛΓc) > 0 then
5: Generate dummy task τ ; {Uτ = (1− (ÛΓ − bÛΓc))}
6: Γ← Γ ∪ {τ};
7: end if
8: repeat
9: i← i+ 1;
10: Γi ← PACK(Γi−1);
11: Γi∗ ← DUAL(Γi);
12: until @σ ∈ Γi|σ is not unit server;
13: return Γ0..i; {The RUN reduction tree}

3.3 ILLUSTRATION OF THE PROPOSED IDEAS

This section provides some illustration on how MrsP and RUN could jointly be used to
support resource sharing in HRTS. Consider a system with 2 processors, composed of a
set Γ with 4 tasks, as speci�ed in Table 3.2. Resources are shared as indicated in the
table. Task τ1 shares ψ1 with τ3 and ψ3 with τ2 whereas resource ψ2 is shared by τ3 and
τ4. Note that Table 3.2 also shows the in�ated utilization of the tasks. For example, the
nominal value of Uτ1 = 0.50 but upon packing this value goes to 0.60. The maximum
execution time for the critical section of each resource is represented in the table by Cψi .

Table 3.2 Example to illustrate how MrsP and RUN would work.

Γ Ci Ti Uτi Ûτi Accesses

τ1 15 30 0.50 0.60 ψ1, ψ3

τ2 22 40 0.55 0.60 ψ3

τ3 04 20 0.20 0.25 ψ1, ψ2

τ4 59 120 0.49 0.49 ψ2

Cψ1 = 1, Cψ2 = 1.2, Cψ3 = 2

As there is no constraint on how RUN selects tasks in Γ to pack them, assume that
this pack operation produces three servers in Γ0, namely σ1, σ2 and σ3, as indicated in
Fig. 3.1. Servers σ1 and σ2 have a single client each, respectively, τ1 and τ2 whereas tasks
τ3 and τ4 are clients of σ3. Due to this packing, resources ψ1 and ψ3 are global while
resource ψ2 is local as can be seen in Fig. 3.1.

Lets see how the in�ation of the tasks was calculated. For example, τ1 can be blocked
by ψ1 and ψ3, so its utilization must be increased considering these global blocking times.
τ4 on the other hand does not access global resources, so its in�ated utilization is equal
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Figure 3.1 Illustration of the Proposed Ideas

to its original utilization. Bellow are the formulas for the in�ated utilization of the tasks
of our example:

Ûτi = (Ci + gblock(τi))/Ti ,

Ûτ1 = (15 + 3)/30 = 0.60

Ûτ2 = (22 + 2)/40 = 0.60

Ûτ3 = (4 + 1)/20 = 0.25

Ûτ4 = (59 + 0)/120 = 0.49

Server utilization in�ation should consider the local blocking time. Only τ3 can be
locally blocked in our example. Although τ4 can also access a local resource, it cannot be
locally blocked due to its low preemption level. τ1 and τ2 do not access local resources,
so σ1 and σ2 utilizations are equal to the sum of the in�ated utilizations of its clients.
Next are the formulas to calculate the in�ated utilization of the servers.

Ûσ =
∑
τi∈Γσ

Ûτi + max
τi∈Γσ

(
lblock(τi)

Ti

)
,

Ûσ1 = 0.60

Ûσ2 = 0.60

Ûσ3 = 0.25 + 0.49 + 1.2/20 = 0.80

In particular, note that task τ1 requests two global resources. Thus, it could be blocked
twice (once per resource) according to MrsP rules. Task τ3, on the other hand, shares
ψ2 with τ4, which is a local resource. The maximum local blocking τ3 may experience is
bounded by Cψ2 , since it is the only local resource of σ3 which is also used by another lower
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priority task. Task τ3 must also account for a possible blocking time on the global resource
ψ1. It is important to note in Table 3.3 that tasks τ1, τ2 and τ3 show in�ated utilizations
due to the application of Lemma 6, while task τ4 has its �nal utilization unchanged.
Another noteworthy observation is that the utilization of server σ3 corresponds to the
sum of the utilization of its client tasks plus the sum of the longest local blocking time
that the tasks of this server can su�er, by applying (3.4)1.

After producing a packing result Γ0, the remainder procedure to reduce the system
into a virtual uniprocessor system follows the same original rules of RUN, as can be
seen in Table 3.3. The scheduling steps by RUN are also kept unchanged. From RUN's
perspective, it is as if a set of in�ated tasks are to be scheduled.

Table 3.3 RUN Schedule Example

Γ τ1(0.6, 30N+) τ2(0.6, 40N+) τ3(0.25, 20N+) τ4(0.49, 120N+)
Γ0 = pack(Γ) σ1(0.6, 30N+) σ2(0.6, 40N+) σ3(0.8, 20N+)

Γ0∗ = dual(Γ0) σ∗1(0.4, 30N+) σ∗2(0.4, 40N+) σ∗3(0.2, 20N+)
Γ1 = pack(Γ1) σ4(1.0, 20N+, 30N+)

The schedule produced by RUN for the illustrative example is shown in Figure 3.2.
The EDF schedule generated by σ4 was omitted since it is irrelevant for the discussion
here. The �gure shows only the schedules for Γ0 (packed servers) and Γ (system tasks).
Note that all tasks are preempted during execution at some time in the schedule, illus-
trating that the proposed solution is not based on disabling interruptions. Even τ3, which
has the highest preemption level, is prevented from execution because its server hands
over the processor at time 84. Such a characteristic of our solution favors schedulability
as compared to SBLP, which is the only resource sharing protocol that deals with RUN
scheduled systems.

Some relevant observations regarding the behavior of the proposed solutions are high-
lighted in Figure 3.3 and commented below.

1. E�ects due to the helping mechanism. Figure 3.3(a) illustrates how the helping
mechanism would work in the proposed solution. Task τ1 blocks global resource
ψ1 at time 4 just before its server σ1 releases the processor, as indicated in Figure
3.2(a). At time 8, when task τ3 attempts to access ψ1, it gets blocked. Since τ1

is not executing, τ3 will give way the �logical� processor (i.e., server) in favor of
τ1 so as to accelerate its execution during its critical section. This is indicated
in the �gure 3.3(a) by the grey area within the context of σ3's execution, which
is shown as a green area. At the end of the τ1's critical section, τ3 will resume
the execution. This means that σ3's budget is being used to execute part of τ1

(a non-client task). However, this extra execution σ3 is taking care of has been

1We used rounded values for illustration purposes, but this example would not be schedulable on two
processors without rounding.
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(a) Servers at the �rst reduction level

(b) Tasks scheduling

Figure 3.2 RUN Schedule Example for Table 3.3

already taken into consideration by the blocking term gblock(τi). As consequence,
the utilization of σ3 has been in�ated accordingly. Since the o�-line phase of RUN
has �nished successfully, the rules of RUN hold and system schedulability is thus
ensured.

2. E�ects due to local blocking. As illustrated in Figure 3.3(b), task τ4 is holding ψ2

at time 20. At this point in time, the ceiling of server σ3 is equal to the preemption
level of τ3, which is the highest of the preemption levels of the σ3's client tasks that
access ψ2. When τ3 attempts to start its execution at time 20 it will get blocked,
because its preemption level is not greater than the σ3's ceiling level. Then τ4 will
continue to execute. The blocking will be maintained as long as τ4 executes its
critical section. Immediately after the end of the critical section of τ4, τ3 can start
to execute. Again, the blocking su�ered by τ3 has been already account for when
computing Ûσ3 (3.4) and so this case does not impair system schedulability.

3. E�ects due to global blocking. Task τ1 locks the global resource ψ3 at time 69, as
showed in the Figure 3.3(c). When τ2 attempts to access the same global resource
at time 70, it gets blocked. Since τ1 is executing at this moment, τ2 busy-waits for
the releasing of ψ3, represented in the �gure as a black area. At the end of the
critical section of τ1, τ2 can resume its execution.

Form these three scenarios in the illustrative example, it is clear that WCET of tasks
and utilization of servers must be increased to accommodate possible blocking. In short,
the scenarios have highlighted that: a task may give way its processor in favor of a
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(a) The helping mechanism (b) Blocking a local resource (c) Blocking a global resource

Figure 3.3 Resource Sharing Examples

task from another server, through the helping mechanism; before starting to execute, a
task may get blocked if a local resource it needs is already locked; and while attempting
to access a global resource, a task may get blocked and stay in busy waiting on its
processor/server.

We demonstrated how MrsP works in combination with RUN proving the correctness
of this solution. We will present in the next chapter the results of the schedulability
testing experiments.





Chapter

4
PROCESSOR DEMAND EVALUATION

The experiments carried out in this work had as objective to demonstrate the viability
of the proposed solution and to evaluate the bene�ts of applying MrsP to the RUN
algorithm in comparison to SBLP (BONATO; MEZZETTI; VARDANEGA, 2014). In
addition, di�erent heuristics for task allocation to servers were evaluated. The most
important aspects observed here were (i) the processor time demand that each solution
requires for the tasks to be scheduled under the worst-case resource sharing condition
and (ii) the overhead that each solution presented in the execution of the basic primitives
of scheduling and resource sharing. We will explore the �rst aspect in this chapter and
in the next chapters, the second.

The hypothesis which motivated this work is that MrsP o�ers advantages in terms
of schedulability, since the protocol is based on SRP, which has the clear bene�t of not
preventing the execution of highest priority tasks if the resources demanded by these had
not been blocked inside their respective servers. This premise allowed this work to explore
new possibilities of aggregation of tasks into servers that had not been exploited by the
precursor work (BONATO; MEZZETTI; VARDANEGA, 2014), because our solution is
not signi�cantly a�ected if unrelated tasks are grouped together into the same server. In
the following subsections, we will detail the protocol used for comparison, explain how
the amount of processor time required by each protocol was measured and evaluated and
analyze the results.

4.1 THE PROTOCOL FOR COMPARISON - SBLP

In order to adapt RUN to SBLP, the o�-line phase of RUN (when the reduction tree is
created) was modi�ed so that the worst-case execution times of the tasks are increased in
order to account for the need to serialize parallel access to shared resources. Consider that
task τi can access a resource ψ at most Nψ

τi
times and that this resource can be accessed

by at most |δψ| servers. Let Cψ be the maximum execution cost of a critical section for
this resource. The maximum global blocking time, de�ned as the maximum time a task
τi waits in ψ's queue is thus Nψ

τi
Bψ (3.1) as τi's request can be the last one in the queue.

35
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Taking into consideration all resources accessed by τi, denoted by Ψτi , it waits at most
gblock(τi) (3.2) time units in resources' queues. This also implies that τi's execution time
must be in�ated, accounting for gblock(τi) since during this time it busy-waits, that is,
it occupies the processor while waiting for resources. Hence, its in�ated execution time
can be expressed as Ĉi (3.3).

There must also be an increase in servers' utilization. This increase comes from two
aspects. The �rst is the need to incorporate the in�ated tasks' execution times. The
second is related with the time that a high-priority task may have to wait before starting
its execution if a resource is locally blocked by another task of the same server. RUN
servers are modi�ed in SBLP so as to implement non-preemptive execution of tasks
requiring resources. The �rst aspect is accounted for by summing up all in�ated task
utilization, ∑

τi∈Γσ

Ĉi
Ti
,

with Γσ representing the set of σ's client tasks. A bound for accounting for the second
aspect has been derived in (BONATO; MEZZETTI; VARDANEGA, 2014) by considering
that the highest frequent task in the server may be waiting for the maximum time a lower
priority task can be in a resource queue, including its own critical section and limited by
only one attempt to access a resource (BAKER, 1991). Summing up the e�ect of the two
aforementioned aspects yields

Ûσ =
∑
τi∈Γσ

Ĉi
Ti

+
maxψ∈Ψσ

(
|δψ|Cψ

)
minτj∈Γσ(Tj)

(4.1)

with Ψσ denoting the resources accessed by tasks that are clients of σ. Although pes-
simistic, the bound expressed by (4.1) serves to the purpose of preserving schedulability
within each server.

4.2 SCHEDULABILITY

As is in the SBLP de�nition, our solution also requires increasing the tasks' WCET
and servers' utilization. This modi�cation occurs during the o� line phase of RUN. The
increments are necessary to avoid deadline misses for the scenarios in which a task may
su�er global or local blocking. The detailed calculation of the increment factors for tasks'
WCET and servers' utilization can be observed in the Section 3.2. We observed that the
formula for dealing with global blocking is similar in both protocols, however, there is
a di�erence in the calculation formula for increasing the server utilization to deal with
local blocking that confers a advantage to the MrsP protocol. This advantage is due to
the fact that MrsP allows preemption within the server while there are blocked resources.
SBLP does not o�er this possibility, so it introduce a more pessimistic increase in the
server's utilization rate.

To carry out the experiments, we generated synthetic task sets using the same pro-
cedures as the ones used for evaluating SBLP (BONATO; MEZZETTI; VARDANEGA,



4.2 SCHEDULABILITY 37

2014)1. This allowed us to precisely mimic the experiments originally published for a fair
comparison. The di�erence in performance of the used packing heuristics and protocols
are given in the necessary processor utilization in�ation demanded by each generated
task set, that is by how much the values given by (4.1) (for SBLP) or (3.4) (for MrsP)
are higher when compared to the original task set utilization. The utilization in�ation
obtained for each protocol is the main evaluation parameter.

Before this work, two heuristics were proposed for packing tasks into servers (BON-
ATO; MEZZETTI; VARDANEGA, 2014), named Fine Grained (FG) and Coarse Grained
(CG). The former distributes tasks to servers so that the tasks of the same server uses
exactly the same combination of resources. It is intended to reduce the local blocking
time avoiding unrelated contentions. However, it may increase the waiting time for global
resources due to the potential increase in the size of the resources' queues as there will be
more servers in a race for the resources. The following example illustrates the application
of this heuristic.

Example 1. Let Γ be a set of 3 tasks indicated by τi, i = 1, 2, 3. The system has two
resources, ψ1 and ψ2, with ψ1 being accessed by τ1 and τ2 whereas ψ2 can be accessed by
τ2 and τ3. According to FG, the tasks must be packed into 3 distinct servers, σj, where
j = 1, 2, 3, since {ψ1}, {ψ1, ψ2} and {ψ2} are distinct subsets. As can be seen, the queue
sizes of both ψ1 and ψ2 are equal to 2 because each of these resources can be accessed by
two servers.

The CG packing heuristic seeks to reduce the size of the resource queues with a possible
side e�ect of increasing local blocking time due to unrelated contentions within the same
server. The heuristic speci�es that �Servers for collaborative tasks are created upon the
connected components of the graph in which the tasks are the nodes, and the edges
represent the fact that two tasks share at least one resource� (BONATO; MEZZETTI;
VARDANEGA, 2014), but is not clear about the criterion of distribution. Example 2
illustrates the CG heuristic.

Example 2. Consider exactly the same system de�ned in Example 1. CG would pack
the tasks into 2 distinct servers, σ1 and σ2. Server σ1 may contain tasks τ1 and τ2 or
only τ1 and σ2 would server the tasks not contemplated by the other server. It can be
seen that the queue size of one resource would be 1, contrasting with the FG heuristic in
Example 1 where both resources queues have sizes of 2.

From Examples 1 and 2, it can be seen that the interference between tasks in di�erent
servers tend to be lower in CG when compared to FG if collaborative tasks cannot be all
packed together. CG, however, does not take into account the size of the critical section
of each resource or the number of servers that can be generated during the packing of
the tasks. We next describe a new heuristic that takes these factors into account.

1The Python scripts were handed to us by Dr. Enrico Mezzetti, one of the authors of SBLP.
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4.2.1 Ordered Blocking Time Packing

In this section we describe the packing heuristic proposed for the protocols used in this
work, named Ordered Blocking Time (OBT). This heuristic takes the demand for pro-
cessor time to obtain better results when compared to the original heuristics previously
presented. OBT groups tasks into servers according to the following steps:

1. Build an ordered list Ψ of resources. In this step, all available resources are stored in
the list Ψ sorted in descending order of maximum size of resources' critical sections
multiplied by the number of tasks that can use it minus 1, i.e., the ordering factor
of each resource ψ is given by Cψ(Lψ − 1), with Lψ denoting the number of tasks
that can use ψ. More formally,

∀ψi, ψj ∈ Ψ, (i) < (j)⇒ Cψi (Lψi − 1) > Cψj (Lψj − 1) ,

with (i) hereafter representing the position a resource ψi appears in the list Ψ. Note
that for resources ψ for which Lψ = 1, Cψ (Lψ − 1) = 0 independently of the value
of Cψ. Hence, such resources, if any, will be in the last positions in Ψ representing
the fact that there is no collaborative tasks using them.

2. Set up task groups according to the resource list Ψ. To do so, for each resource
ψi ∈ Ψ, create a task group g(i) containing all tasks that use ψi but does not use
any resource ψk with (k) < (i). The de�nition of g(i) can be stated as

g(i) = {τ ∈ Γ|∀(k) < (i), τ 6∈ g(k) ∧ ψi ∈ res(τ)}

Note that a task belongs to only a group and that if a group contains more than one
task, they are collaborative. Groups with a single task is possible when a resource
is accessed by only a task.

Unlike FG and CG, grouping tasks according to the order in Ψ tends to isolate
collaborative tasks su�ering highest interference in the same group. These groups
are then used to set up the servers.

3. Create servers for collaborative tasks. For each de�ned group gi, create ki servers
having tasks in gi as clients. Each of the ki servers must have their utilization, as
computed using (4.1), lower than or equal to 1.

4. Merge servers. This step is to reduce the concurrency on shared resources by distinct
servers. As the previous step may create small servers, some of them may be merged
if there are resources in common. If two servers are merged, one of them is discarded
and the one that is kept is set to serve all client tasks of both of them. Merging
servers is subject to the constraints imposed by (4.1).

5. Merge unrelated servers. This step was applied to the MrsP protocol only, as it
best handles the presence of unrelated tasks on the same server, unlike the SBLP
protocol. It consists of merging servers even if they do not have tasks sharing
resources in common.
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6. Create servers for isolated tasks. This �nal step is to pack tasks not requesting any
resources into new servers. These servers are not subject to (4.1) and the packing
followed in this step can be the usual carried out by the o�-line phase of RUN.

The OBT heuristic is now illustrated taking Example 3.

Example 3. Consider the same system as in Example 1 and complete its speci�cation
with the following additional information. Let the maximum size for the critical sections
be Cψ1 = 1 and Cψ2 = 2 and de�ne the system tasks as

Γ = {τ1(0.4; 40N+), τ2(0.4; 20N+), τ3(0.3; 30N+)}.

After carrying out step 1, the resulting ordered list Ψ = {ψ2, ψ1} since Lψ1 = Lψ2 = 2 and
Cψ2 > Cψ1 . Then two task groups are generated according to step 2, namely g1 = {τ2, τ3}
and g2 = {τ1}. Step 3 is able to de�ne one server for each group since according to (4.1),
setting up a server σ1 for the tasks in g1 would give Ûσ1 = 0.85 < 1. Group g2 containing
a single task give rise to server σ2 with Ûσ2 = 0.425. Step 4 is not able to merge the two
servers since a single server for the three tasks would have utilization greater than 1.

It is worth observing in Example 3 that the initial utilization of the system is 1.1 and
the total system utilization after carrying out the OBT heuristic for SBLP is 1.275 and it
is equal for MrsP. If FG had been used, the total system utilization would be 1.342 and
in the case of CG, it would be 1.32 considering that τ1 and τ2 would have been packed
together into single server. That is, the in�ation imposed by OBT tends to be lower
when compared to FG and CG. This relevant characteristic of OBT is experimentally
evaluated next.

4.3 EXPERIMENTAL ASSESSMENT

In this section we present results from experiments that compared the performance of the
OBT heuristic and the MrsP protocol with the ones originally developed for the SBLP
protocol.

4.3.1 Experimental Setup

As previously mentioned, we generated synthetic task sets using the same procedures
as the ones used for evaluating SBLP (BONATO; MEZZETTI; VARDANEGA, 2014).
Thus, it was possible to perform experiments similar to those of the referenced work and
compare the processor utilization in�ation demanded by each generated task set. Each
value of in�ated utilization obtained during experiments represents an average of 100
experiment runs each of which taking sets with 40 tasks. There were 20 or 30 resources
in the system to be distributed between tasks. Each task could access 3 or 6 resources
and the resources were associated with its respective tasks in a random manner. The size
of the critical section for each resource was chosen randomly from the ranges 10 to 100µs
or 50 to 200µs. Four task period ranges, four system utilization ranges, two values for
the number of resources per task, two values for the number of resources in the system
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and two ranges for the size of the critical section were considered. This gave a total of
128 settings. Period and utilization for each task were generated according to a uniform
distribution within the respective ranges for each considered setting in Table 4.1.

Table 4.1 Schedulability Test Parameters - Tasks Con�guration.

# Period (ms) Utilization
1 [50, 150] [0.01, 0.1]
2 [50, 150] [0.1, 0.3]
3 [50, 150] [0.3, 0.5]
4 [50, 150] [0.01, 0.5]
5 [150, 500] [0.01, 0.1]
6 [150, 500] [0.1, 0.3]
7 [150, 500] [0.3, 0.5]
8 [150, 500] [0.01, 0.5]
9 [500, 2000] [0.01, 0.1]
10 [500, 2000] [0.1, 0.3]
11 [500, 2000] [0.3, 0.5]
12 [500, 2000] [0.01, 0.5]
13 [50, 2000] [0.01, 0.1]
14 [50, 2000] [0.1, 0.3]
15 [50, 2000] [0.3, 0.5]
16 [50, 2000] [0.01, 0.5]

The options available for the number of resources per task, the number of resources
in the system and the size of the critical section are shown in Table 4.2.

Table 4.2 Schedulability Test Parameters - Resources Con�guration.

# Resources/task Resources/system Critical section's (µs)
1 3 20 [10, 100]
2 3 30 [10, 100]
3 6 20 [10, 100]
4 6 30 [10, 100]
5 3 20 [50, 200]
6 3 30 [50, 200]
7 6 20 [50, 200]
8 6 30 [50, 200]

For each setting consisting of a pair of rows, one row from Table 4.1 and another from
Table 4.2, the degree of collaboration was made to vary from 0 to 100% in steps of 5%.
Collaboration degree of 0 means that tasks were not referring to any shared resource and
a collaboration degree of 5% represents scenarios were 2 out of 40 tasks access resources.
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4.3.2 Experimental Results

The FG and CG heuristics were applied only to SBLP in this work, so we mention FG-
SBLP and CG-SBLP for the combination of the respective heuristic with SBLP. The OBT
heuristic was applied to the SBLP and MrsP protocols; therefore, we named OBT-SBLP
for the heuristic applied to SBLP and OBT-MrsP for MrsP.

The experiments were performed for all possible row combinations of Tables 4.1 and
4.2, i.e., line pairs where one line belongs to Table 4.1 and another line belongs to Table
4.2. Obtained results showed that FG-SBLP was worse than CG-SBLP, OBT-SBLP and
OBT-MrsP. This behavior is due to the fact that FG-SBLP tends to generate more servers
and so it imposes more concurrency at the server level. This, according to (3.3), is likely
to over-in�ate the tasks' execution times for all tasks that use a global resource. For all
scenarios, the processor demand augmentation of FG-SBLP was worst than the ones of
OBT-MrsP. For one of the 128 scenarios FG-SBLP performs better than OBT-SBLP and
for few scenarios FG-SBLP performs better than CG-SBLP (about 13%). For higher task
utilization settings, FG-SBLP and CG-SBLP performed closer due to the greater number
of servers that both heuristics generate, a characteristic already observed in (BONATO;
MEZZETTI; VARDANEGA, 2014). The comparison of the number of servers that each
heuristic / protocol obtained during the experiments can be observed in Figure 4.1.
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Figure 4.1 Average number of generated servers for the scenarios in Tables 4.1 and 4.2

Fig. 4.2 shows us the comparison of the results obtained by all heuristics used in this
work for all scenario combinations described in Tables 4.1 and 4.2.

Note that FG-SBLP performed worse than the others, even compromising the visu-
alization of the graph scale, so we observe in Fig. 4.3 the results obtained excluding this
heuristic. As FG was shown to behave consistently worse than CG in almost all evaluated
settings and worse than OBT in all scenarios but one, FG will not be further considered
hereafter.

From Fig. 4.3, it is possible to see that CG-SBLP obtained slightly larger augmenta-
tion than the OBT heuristic applied to both protocols, and OBT-SBLP and OBT-MrsP
presented equivalent augmentation in this graph.
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Figure 4.2 Comparison of processor utilization in�ation for all heuristics used in this work for

all scenarios de�ned in Tables 4.1 and 4.2.

Figure 4.3 Comparison of processor utilization in�ation for CG-SBLP, OBT-SBLP and OBT-

MrsP for all scenarios de�ned in Tables 4.1 and 4.2.

We identi�ed therefore the need to evaluate the worst scenarios achieved by each of
the heuristics explored in this project, since the Fig. 4.3 does not show great di�erences
between the evaluated solutions, as it shows the averages of all possible con�gurations of
the experiments. Let us now examine in detail the behavior of each protocol by applying
heuristics and varying the following parameters: task utilization and period, number of
resources accessed by each task, available system resources, and size of critical sections.
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4.3.2.1 CG-SBLP Highest In�ation We observed the highest in�ation for CG-
SBLP was obtained for the parameters de�ned in Table 4.3.

Table 4.3 Schedulability Test Parameters - CG-SBLP highest in�ation.
Number of resources per task 6
Number of system resources 20

Critical section size range between 50 and 200 µs
Period range 50 to 150 ms

Utilization range 0.1 to 0.3

It is possible to see in Fig. 4.4 the comparison of the results obtained by CG-SBLP,
OBT-SBLP and OBT-MrsP for this con�guration. The �gure represents the results
gathered by performing 100 experiments at the highest level of concurrency, i.e., when
all tasks access resources.

Figure 4.4 CG-SBLP highest processor utilization in�ation

Fig. 4.5 illustrates the average run of 100 experiments for the con�guration of Table
4.3. The graph shows in the horizontal axis the increments in the system concurrency.
0% stands for none of the tasks accessing resources and 100% for all tasks accessing
resources. The right vertical axis reports the percentage increase in system utilization
obtained by each heuristic / protocol. The graph shows the highest average in�ation
for all the experiments disregarding FG-SBLP. This is due to a shorter period of the
tasks and the higher blocking time related to the number of resources per task, number
of resources in the system and lenght of the critical section. The �gure also shows that
OBT-MrsP had results quite close to OBT-SBLP in this case.

Considering not only the average of 100 experiments, but individual results, the worst
case of CG-SBLP obtained a diference of 9.34% when comparing to OBT-MrsP, the
former presented a in�ation of 35.51% where the latter presented 26.16%, wich represents
a disadvantage ratio of 35.7% for CG-SBLP.
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Figure 4.5 Trend for CG-SBLP highest processor utilization in�ation

4.3.2.2 OBT-SBLP Highest In�ation The highest in�ation for OBT-SBLP was
obtained for the parameters de�ned is Table 4.4.

Table 4.4 Schedulability Test Parameters - OBT-SBLP highest in�ation.
Number of resources per task 3
Number of system resources 30

Critical section size range between 50 and 200 µs
Period range 50 to 150 ms

Utilization range 0.01 to 0.1

Let us observe through Fig. 4.6 the comparison of the results obtained by CG-
SBLP, OBT-SBLP and OBT-MrsP at the highest level of concurrency of the tasks for
the con�guration of Table 4.4.

The �gure represents the results gathered by performing 100 experiments for this
con�guration set. The advantage obtained by OBT-MrsP is not so great. This leads us
to conclude that the greatest reduction in in�ation was achieved by applying the heuristic
rather than the MrsP protocol itself.

Fig. 4.7 represents the results gathered for the con�guration described in Table 4.4
for the average execution of 100 experiments. From the �gure it is possible to see that
there is also high in�ation, however, lower than in the previous scenario. This is due to
small WCET and period of tasks combined with the larger size of critical sessions which
have considerable impact on blocking times. In this example, however, tasks use fewer
resources than in the scenario described in Table 4.3 and there are more resources in the
system to be distributed between tasks, which reduces concurrency.

4.3.2.3 Worse Results for OBT-MrsP Compared to OBT-SBLP Looking at
other con�gurations, the worse scenarios for OBT-MrsP compared to OBT-SBLP were
a tie and had periods ranging between 500 and 2000 (the longest periods of the exper-
iments), utilizations ranging from 0.3 to 0.5 (the highest of the experiments) and size
of the critical sections ranging from 10 to 100 µs (the shortest of experiments). This
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Figure 4.6 OBT-SBLP highest processor utilization in�ation
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Figure 4.7 Trend for OBT-SBLP highest processor utilization in�ation
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con�guration represents low processor utilization in�ation and can be viewed in table
4.5.

Table 4.5 Schedulability Test Parameters - OBT-MrsP X OBT-SBLP
Number of resources per task 6
Number of system resources 20

Critical section size range between 10 and 100 µs
Period range 500 to 2000 ms

Utilization range 0.3 to 0.5

We can see in Fig. 4.8 that the result for the researched solutions was very close and
that the processor in�ation was very low.

Figure 4.8 Worse results for OBT-MrsP compared to OBT-SBLP

Fig. 4.9 also con�rmed the results obtained in Fig. 4.8. It can be seen that the
percentages of processor time reservation in�ation are low and that the results obtained by
OBT-SBLP and OBT-MrsP are almost equal, while CG-SBLP has minor disadvantage.

4.3.2.4 Worse Results for OBT-MrsP Compared to CG-SBLP The worse re-
sults for OBT-MrsP compared to CG-SBLP were collected for the parameter combination
described in Table 4.6.

Table 4.6 Schedulability Test Parameters - OBT-MrsP X CG-SBLP
Number of resources per task 6
Number of system resources 20

Critical section size range between 50 and 200 µs
Period range 150 to 500 ms

Utilization range 0.01 to 0.1
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Figure 4.9 Trend for worse results for OBT-MrsP compared to OBT-SBLP

Observing Fig. 4.10 it is possible to realize a very small advantage for the CG-SBLP
protocol compared to the others and comparing this �gure with Fig. 4.8 we can see that
the augmentation factor is 10 times higher.

Figure 4.10 Worse results for OBT-MrsP compared to CG-SBLP

Finally, we have Fig. 4.11 representing the trend of processor time reservation as the
system concurrency increases for the solutions evaluated according to the con�guration
given in Table 4.6. We can again see very close results for the heuristics / protocols, which
makes us realize that the OBT-MrsP solution has no losses for the other solutions in the
observed scenarios and in some scenarios has advantages, the most signi�cant being the
advantage over the heuristic CG-SBLP.

Considering that the MrsP protocol obtained positive results when compared to the
SBLP protocol with the CG heuristic, but obtained not much better results when com-
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Figure 4.11 Trend for worse results for OBT-MrsP compared to CG-SBLP

pared to SBLP with the OBT heuristic, we veri�ed the importance of observing the
behavior of these protocols in a real operating system environment and compare the
overhead produced by each of the solutions. In the next chapter, we describe how this so-
lution was implemented in the LitmusRT plataform and then present the results obtained
by comparing the two solutions.



Chapter

5
IMPLEMENTATION

In order to make feasible the experimental evaluation of the MrsP protocol and the
comparison of the results with those obtained by the SBLP protocol, we selected LitmusRT

platform, a Linux-based operating system designed for evaluating and testing real-time
scheduling algorithms and resource sharing protocols (MPI-SWS, Max Planck Institute
for Software Systems, 2018).

The following section shows some details of LitmusRT and its relation to our protocol
implementation and experimentation. In Section 5.2, we will explain in more detail how
we implemented MrsP based on an existing RUN implementation 1. In Section 6.1, we
will present the preparatory procedures for the �nal experiments, which demonstrated
the correctness of the solution proposed in this work and compared the results obtained
for the two protocols. Finally, the results obtained by the experiments will be presented
and explained.

5.1 LITMUSRT

LitmusRT is an extension of the Linux kernel that makes it easy to deploy and evalu-
ate real-time systems. In this platform, the scheduling algorithms can be implemented
through plugins. There are previously de�ned methods that can be specialized by the
plugins to implement the necessary functionality to obtain the expected behavior of the
algorithms being developed. Similarly, there are also methods that enable the implemen-
tation of resource sharing protocols. This platform has been maintained since 2006 and
its current version is 2017.1, which is based on Linux 4.9.30. Some factors were observed
by us and determined the choice for this platform, among them:

� LitmusRT is well accepted and widely used in research works;

� It is possible to implement scheduling algorithms and resource sharing protocols as
plugins;

1The implementation is available at https://gitlab.com/ricardo.btxr/RUN_MrsP

49
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� There is a previous implementation of SBLP and RUN for this platform;

� There is an implementation of MrsP for partitioned systems with �xed priority for
LitmusRT;

� It facilitates the collection of statistics of overhead and scheduling decisions;

� There is a mailing list with active participation of the collaborators;

� Documentation and website with updated information are available;

Liblitmus is an interface to the system kernel functionalities that is provided together
with LitmusRT. It contains a tool called rtspin which is a simple program that is executed
for the simulations required by this research project as a representation of the tasks to
be scheduled by the system. This tool runs a loop for a parameterized period of time,
which is the duration of the experiments. The launch of real-time tasks is done through
the rt_launch tool, so we used it to lauch the tasks which runs rtspin. The parameters
to be used when lauching a task can vary from protocol to protocol.

The most common parameters are WCET and period of the tasks. In addition to these
parameters, our implementation also used the following: (i) identi�cation of the server
associated with the task, (ii) the resource sharing protocol used for synchronization of
the tasks, (iii) identi�cation of the resource referenced by the task and (iv) duration of
the resource's critical session. Some tasks did not use the last three parameters when
they do not share resources. Our experiments also used the tool called release_ts which
allows us to set up and trigger synchronous tasks releases. To enable the execution of
tasks in an operating system, it was necessary to detect and correct all errors found in the
plugin developed in this work. Detecting and correcting errors in software development
that perform the core functions of an operating system is a separate challenge. �However,
experience over the last �ve years show that novice developers still struggle with the
complexity of programming in a kernel even after much of Linux's complexity has been
hidden - realistically, a certain degree of "kernel hacking" aptitude is required to work
with LitmusRT.� (BRANDENBURG, 2011)

Recording tracers is an e�ective technique for analyzing the algorithm behavior and
correcting the implementation errors. Linux developers often use printk() function to
issue logs that can aid in debugging the software, however using this function can lead to
deadlocks when it is called inside LitmusRT plugin functions. To circumvent this situation,
some macros were developed by University of North Carolina to enable the collection of
tracers without impacting the execution of the system. These tracers are usually turned
o� in the executions of the experiments when the purpose is to collect the workload
data, avoiding additional overhead. The macros that generate tracers containing the
data for software debugging do not apply to the purpose of overhead data collection and
scheduling statistics, since they use strings instead of binary format.

In order to enable the collection of data, there is a library containing a set of tools,
scripts, and macros that enable overhead data collection and job execution statistics,
including scheduling decisions, preemptions and migrations. This library is called Feather
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Trace Tools and was thought to produce low impact in the execution of the LitmusRT

kernel, avoiding greater impacts on the overhead as a whole. In the implementation of
the plugin methods it is possible to de�ne new macros to collect more speci�c overhead
data, but there are macros previously de�ned in the platform that collect overhead data
for the events of (i) context switching, (ii) lock, (iii) unlock, (iv) schedule decision, (v)
release and (vi) release latency. For the implementation of the protocols evaluated in
this work, we also collected data about the operations related to the update of the RUN
Reduction Tree. There is also the need to collect and analyse schedule data.

Feather Trace Tools have macros that allow the plug-in developer to de�ne and collect
all the scheduling data tracers needed for an analysis of a problem. These macros are
designed to save data in a location other than where the overhead data is saved. Some
tracers are generated by LitmusRT methods, so they do not require additional implemen-
tation in the plugin code, e.g., a job release and its completion. From this data, we can
generate statistics and evaluate whether deadlines were missed, as well as the number of
migrations and preemptions that a job has su�ered. It is also possible to con�gure other
types of data related to scheduling and synchronization decisions. For this work tracers
also collected data regarding the helping mechanism, as well as spinning time.

Compiling the Linux kernel is the �rst step in order to run the system con�gured
with the scheduling plugin. The web site (MPI-SWS, Max Planck Institute for Software
Systems, 2018) contains basic information about how to install LitmusRT and compile
the Linux kernel. In the �rst compilation it is necessary to take into consideration all
the Linux modules, as well as the kernel, which is a time-consuming operation, but in
the following compilations it is possible to compile only the kernel and this signi�cantly
reduces the time spent for compiling, except when there are kernel con�guration changes.
The development of plugins in LitmusRT is not a trivial service, since Linux kernel devel-
opment knowledge and skills are necessary for this objective. For a better understanding
of how this process was conducted in this work, the details of the implementation of MrsP
for RUN are discussed in the following section.

5.2 IMPLEMENTATION DETAILS

The development of plugins for LitmusRT requires that the Linux kernel hacking skills
are present. These skills were intensively explored during the stages of implementation,
testing and experimentation for this work. In this chapter we will describe some of the
tools that have supported this development process as well as explain the functions imple-
mented to meet the requirements for adapting the MrsP protocol to the RUN algorithm.

Virtualization technique provides essential support for debugging a scheduling algo-
rithm that runs within an actual operating system. Without such a tool it would be
unfeasible to detect system crash situations where no information about the error is pre-
sented in the screen. For example, when the software stops responding without any trail
as to what motivated nonresponsive behavior. QEMU was the software chosen in this
work for virtualization (QEMU, 2019). Its ease of use, stability and abundant documen-
tation favored the choice of this tool. In conjunction with virtualization, a debugging
tool becomes extremely useful.
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The tools selected for debugging the code were GNU Debugger (GDB) and Kernel
Debugger (KDB) (ALVES et al., 2019; WESSEL, 2019). Both are widely disseminated
among Linux kernel developers, but there are a variety of tools of a similar nature.
Through GDB it was possible to gain access to the tracers generated by our plugin in
situations where the system crashed. KDB complemented the functions of GDB, allowing
access to the system that crashed to obtain important information about the state of the
system. Step-by-step debugging techniques have not been shown to be e�ective for real-
time systems. The best approach is to generate tracers and analyze them after running
the test cases. Another tool that gave important support to this work was the version
control tool. We selected the GitLab web tool motivated by the proposal to allow free use,
but maintaining a restricted access control to our code (GITLAB, 2019). After gaining
knowledge in using these tools, the next step was to begin implementation.

As we were aware, there is an implementation of the SBLP protocol (BONATO;
MEZZETTI; VARDANEGA, 2014) for the LitmusRT platform based on an implementa-
tion of the RUN algorithm2(COMPAGNIN; MEZZETTI; VARDANEGA, 2014). As the
available implementation of the protocol had been made for an older version of LitmusRT

(v2012.3), so we had to adapt this code to the newer version of LitmusRT, since the old
version is no longer supported and contains bugs that were already �xed. We did the
adaptation of the code avoiding to modify the existing functionalities. Then we made a
copy of the whole code (which includes the Linux and LitmusRT code) and started the
implementation of the new plugin which implements the rules of the MrsP protocol and
the RUN algorithm.

For the development of a new plugin we followed the steps proposed in the documents
that describes the creation of plugins for LitmusRT(MPI-SWS, Max Planck Institute for
Software Systems, 2018). In addition, we referenced Chapter 3 of Brandenburg's thesis
(BRANDENBURG, 2011) which describes the architecture of this platform and explain
in detail the methods available for creating plugins. In the following, we will describe
some of these methods and the details of their implementation.

5.2.1 Scheduling Plugin Methods

For a better understanding of the implementation of our scheduling plugin, we will follow
with an explanation of the main methods available in the LitmusRT plugin interface that
were coded in this project.

The schedule() method of a LitmusRT plugin is invoked to determine what the next
task will be selected to run on a processor. By the original RUN implementation for
LitmusRT, when there is no server associated with the processor being scheduled, no
task is selected to execute and LitmusRT returns a NULL pointer to the Linux operating
system schedule function, indicating that it can select a non-real-time task for execution.

Whenever there is a server associated with the processor being rescheduled, a veri�ca-
tion occurs inside the schedule() function to determine whether the highest priority task
of the current server's ready queue can take the place of the task of the same server that
was previously running. At this time, EDF priority is considered, but it is also checked

2The code was handed to us by Dr. Enrico Mezzetti, one of the authors of SBLP.
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whether the preemption level of the high priority ready task is higher than the server's
ceiling level. This is done to ensure the inherited property of the SRP protocol.

The ready queue contains tasks that are ready to run, and the release queue contains
tasks that will be released to execute at a future time. Whenever a task is selected to run,
it must be removed from the ready queue and the schedule() function ensures consistency
between ready and release queues. In cases where a task is leaving the processor, the task
will be stored in one of the available queues (i.e., ready queue or release queue) according
to its status.

The helping mechanism can be activated or deactivated according to the task transi-
tion, i.e., the helping mechanism should be deactivated whenever a task that was helping
another is not selected for execution. Similarly, if a task is selected to execute and the
resource it is requesting is blocked by a task which is not running, so the helping mecha-
nism must be activated and the selected task must give way its processor to the blocking
task. Each time the helping mechanism is activated, the task which is receiving help is
removed from the ready queue of its server, in order to prevent the task from running on
two servers simultaneously. In the same way, when the helping mechanism is deactivated,
both the helper task and the task being helped are returned to the ready queue of their
respective servers in order to allow them to be rescheduled.

Algorithms 2 and 3 give a general understanding of servers allocation to processors
and the RUN task scheduling mechanism3.

According to multiprocessor resource sharing protocols based on PCP / SRP, each
resource must have a ceiling level for each processor that has tasks that use the resource.
In adapting the MrsP protocol to the RUN algorithm in this work, it was established that
servers would be an analogy of processors for the purpose of managing concurrent access
to resources, so each resource must have a ceiling level for each server that has tasks that
use it. In our implementation of the MrsP protocol, when a task uses resources, it must
initially invoke the open() method for each resource it uses. This method determines the
resource ceiling level for the server to which the task belongs. The ceiling level of the
resource is given by the shortest period of tasks that use it for a given server.

The lock() method is invoked whenever a task needs to access a shared resource. In
this method it is checked if the resource is already locked by a task of another server,
in this case the current task will busy wait if the resource holder task is running, or
will help the resource holder task otherwise. If the requested resource is not locked, the
task get the resource. The server ceiling level can be increased in this function if the
resource ceiling level for the server is higher than the current server level. A stack is
used for returning to the previous ceiling level after the lock be released. It is important
to remember that resource access requests are served in FIFO order and this work does
not deal with nested resources. See Algorithm 4 for a better understanding of the lock
event4.

When a task is no longer accessing a resource, it must call the unlock() method.
This method restores the server ceiling level to the level prior to the corresponding lock

3Some details have been omitted for ease of understanding
4Some details have been omitted for ease of understanding
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Algorithm 2: RUN-MrsP schedule servers event

Require: Γ0..i; {the RUN reduction tree with i levels}
Require: P 0..m; {list of m processors}
1: for all σ ∈ Γ0..i do
2: update deadline of σ;
3: end for
4: for all σ ∈ Γi..0 do
5: check or uncheck σ for execution; {the tree is traversed from root to leaf}
6: end for
7: if σ ∈ Γ0 is unchecked then
8: τ ← σ's current task;
9: enqueue τ into σ's ready queue;
10: if τ is helping a task τ ′ then
11: enqueue τ ′ into its server's ready queue;
12: end if
13: end if
14: Γ′ ← set of servers checked for execution, Γ′ ⊂ Γ0;
15: for all p ∈ P 0..m do
16: assign σ to p, σ ∈ Γ′;
17: Γ′ ← Γ′ \ {σ};
18: schedule p;
19: end for
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Algorithm 3: RUN-MrsP schedule processor event
Require: σ; {Server assigned to the processor being scheduled}
Require: τ ; {σ's current task}
1: if σ = 0 then
2: return 0;
3: end if
4: t← current instant;
5: τ ′ ← dequeue highest priority task of σ's ready queue;
6: if τ is completed or (priority(τ ′) > priority(τ) and Πτ ′ > Πσ(t)) then
7: enqueue τ into release queue or σ's ready queue;
8: if τ is helping a task τ ′′ then
9: enqueue τ ′′ into its server's ready queue;
10: if τ ′′'s server is assigned to a processor p′ then
11: schedule p′;
12: end if
13: else if lock(ψ, τ, t) then
14: for all τ ′′ ∈ ψ's queue do
15: if τ ′′ is running then
16: schedule the processor τ ′′ is running; {to enable τ to receive help}
17: end if
18: end for
19: end if
20: σ's current task ← τ ′;
21: return τ ′;
22: else if wait(ψ, τ, t) and lock(ψ, τ ′′′, t) and τ ′′′ is not running then
23: dequeue τ ′′′ from its server's ready queue;
24: return τ ′′′;
25: else
26: return τ ;
27: end if
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Algorithm 4: RUN-MrsP lock event
Require: p; {Current processor}
Require: τ ; {Current task}
Require: σ; {τ 's server}
Require: ψ; {Requested resource}
1: t← current instant;
2: store σ's current ceiling level into σ's stack;
3: increase σ's current ceiling level to the ψ's ceiling level for σ, if necessary;
4: if lock(ψ, τ ′, t) then
5: enqueue τ into ψ's queue;
6: τ waits for ψ;
7: if τ ′ is not running then
8: schedule p;
9: end if
10: while lock(ψ, τ ′, t) do
11: τ spin;
12: end while
13: τ blocks ψ;
14: else
15: τ blocks ψ;
16: end if

operation. If the running task was receiving help from another task, it is necessary to
deactivate the helping mechanism and invoke the rescheduling operation on both pro-
cessors which are hosting the server of the helping task and the server of the task being
helped. If the running task is not getting help, then releasing the lock should invoke a
rescheduling operation on the respective processor, as the server ceiling level may have
dropped and some locally blocked task may start running.

After the resource lock is released, the global blocking queue for the resource is tra-
versed to check for any tasks waiting to access it. If so, the �rst task in the queue gets
the access to the resource. If the task is not running and there are tasks busy waiting for
the resource, then the helping mechanism is activated. In this case, the spinning task will
give up the place on the processor for the task that got the lock on the resource and, as
a result, a reschedule will be required on the spinning task processor. Algorithm 5 helps
to understand the unlock() method5.

Fig. 5.1 represents the state diagram for the implementation of RUN with MrsP. It is
possible to observe the state transitions and the events that trigger each transition. We
can see that a task only gets help if it is ready to execute and has a lock on a resource.
Similarly, a task only provides help if it is running in busy waiting mode. Other state
transitions are common to other scheduling and resource sharing algorithms, so they will
not be explained here. In the next chapter we will discuss the overhead measurement

5Some details have been omitted for ease of understanding
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Algorithm 5: RUN-MrsP unlock event
Require: p; {Current processor}
Require: τ ; {Current task}
Require: σ; {τ 's source server}
Require: ψ; {Blocked resource}
1: τ unlock ψ;
2: restore σ's current ceiling level from σ's stack;
3: if τ was being helped then
4: enqueue τ into σ's ready queue;
5: if σ is allocated to processor p′ then
6: schedule p′;
7: end if
8: end if
9: schedule p;
10: if ψ's queue is not empty then
11: dequeue τ ′ from ψ's queue;
12: τ ′ blocks ψ;
13: if τ ′ is not running then
14: for all τ ′′ ∈ ψ's queue do
15: if τ ′′ is running on processor p′′ then
16: schedule p′′; {to enable τ ′ to receive help}
17: break
18: end if
19: end for
20: end if
21: end if
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experiments for the solutions described in this paper.
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Figure 5.1 State Diagram for the Implementation of RUN with MrsP
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6

OVERHEAD EVALUATION

The comparative study of overhead originating from the MrsP and SBLP protocols, both
applied in conjunction with the RUN algorithm, will be detailed in this chapter. The
experiments performed for this comparison were important because they demonstrated
how each protocol behaved in applying the basic task scheduling and resource sharing
primitives in a real-time operating system environment. In the next session, we will ex-
plain how the experiments were con�gured for the mentioned protocols and the heuristics
applied to each one. In the following, we will present the results obtained and explain
them.

6.1 EVALUATION PREPARATION

Aiming at sequencing and con�guring the use of the tools described in Section 5.1 and
enabling future replications of the experiments, we used sets of scripts that were provided
to us along with SBLP and RUN implementations1. Among other things, these scripts do
(i) activation of the scheduling plugin, (ii) activation of the tracers for data collection of
overheads, scheduling decisions, lateness, preemptions, migrations, deadline misses and
other informations for debugging purposes, (iii) loading the parameters for executing the
tasks, (iv) loading and con�guring the RUN reduction tree, (v) execution of the tasks,
(vi) shutdown of the tracers and copy resulting �les to the experiment folder and (vii)
deactivation of the plugin. Before carrying out the experiments, it was �rst necessary to
prepare a mass of data to enable the comparison of the protocols.

This work used 8 parameter combinations to prepare the data mass for the execution of
the experiments. For each of these combinations, 100 task sets were randomly generated,
totaling 800 algorithm execution cases, obtaining a signi�cant set of scenarios for the
comparison of protocols and heuristics. The experiments were performed on a 4-core
Intel (R) Core (TM) i5-6200U CPU @ 2.30GHz notebook with L1, L2 and L3 caches
of 32K, 256K and 3072K, respectively. Power scaling and power management functions

1The Python scripts were handed to us by Dr. Enrico Mezzetti, one of the authors of SBLP.
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were intentionally disabled. Since there were a limited number of cores available, the
task sets generated for the experiments were compatible with this feature, as we will see
ahead.

We set the initial total utilization of each set of tasks to 3.5, as there were 4 processor
cores to perform the tasks. The di�erence between the total hardware capacity and the
total initial utilization of the system was designed to accommodate the necessary in�ation
regarding blocking times that tasks may su�er from concurrent access to resources. The
utilization of each task was generated randomly through a uniform distribution within
the range 0.075 to 0.35. The number of tasks for each experiment could vary and was
not de�ned as a parameter for experiments. The period of each task, in turn, was chosen
randomly through a uniform distribution within the following set of values: [100, 125,
150, 175, 200, 250, 300, 400]. The task periods were set in milliseconds. Each task had
its maximum execution time limited to 95% from its WCET, in order to accommodate
the operating system overhead. The number of resources to be distributed among tasks
was set at 4 resources but each task could access only 1 resource. Now we talk about
the parameters that varied between the execution of the experiments, forming the 8
con�gurations mentioned.

Resource distribution is the parameter that de�nes the level of concurrency between
tasks. This parameter de�nes how many tasks can access available resources, 4 options
were used for it: 0.5, 0.65, 0.8 and 1.0. This parameter set to 0.5 means that 5 out of
10 tasks accesses resources, while 1.0 indicates all tasks accesses resources. The critical
section length of a resource has been set to 4% or 6% of the smallest WCET of tasks
using the resource, but fractional values were rounded down (�oor function). Each set of
tasks was con�gured to run for 30 seconds.

After the generation of the task sets for the experiments, we observed the �nal utiliza-
tion obtained by the application of the formula used to calculate the processor utilization
in�ation demanded by the protocols. This result can be seen in Table 6.1. It is noticed
that the protocols presented similar in�ation. The smallest in�ations were obtained for
Resource Distribution 0.5 and resource critical section 4%, while the largest in�ations
were obtained for these same factors set at 1.0 and 6%. These values can be seen in
Table 6.1 through the Minimum and Maximum columns, respectively. This is reasonable
because the lowest in�ations were obtained for the least concurrent task sets.

Table 6.1 Processor �nal utilization for CG-SBLP, OBT-SBLP, and OBT-MrsP

Heuristic-Protocol Average Minimum Maximum
CG-SBLP 3.57 3.52 3.73
OBT-SBLP 3.57 3.52 3.74
OBT-MrsP 3.57 3.51 3.74

We also compared the number of servers generated by the scripts for the task sets
of CG-SBLP, OBT-SBLP, and OBT-MrsP. The result of this comparison can be seen
in Table 6.2. It is clear that the heuristics applied to SBLP obtained more servers,
they generated 14% more servers than MrsP. Regarding OBT, the di�erence is due to
the non-application of the heuristic step 5 for the SBLP protocol (see Subsection 4.2.1),
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since the application of this step would not be advantageous for the protocol in terms of
schedulability as we can see in the example below.

Example 4. Consider tasks τi and τj with periods set at 10ms and 1000ms, respectively,
and being able to access resources ψi and ψj, respectively. Under SBLP, if both tasks were
on the same server, τi could be prevented from running while τj was accessing or waiting
for resource ψj. This condition would make the system unschedulable if the length of the
critical session of ψj is equal to or greater than 10ms and this is an undesirable situation
since τi and τj do not compete for the same resources. This is a problem that does not
occur with the MrsP protocol.

As in this part of the experiments each task was limited to accessing only 1 resource,
there were more servers for SBLP, as the heuristics applied to this protocol did not join
sets of tasks that did not have common resources on the same server.

Table 6.2 Servers demanded by the experiments task sets for CG-SBLP, OBT-SBLP and

OBT-MrsP. The Total and Average columns represent the number of servers generated for all

experiments and the average number of servers obtained for each experiment, respectively.

Heuristic-Protocol Total Average Standard Deviation
CG-SBLP 4495 5.62 0.53
OBT-SBLP 4523 5.65 0.53
OBT-MrsP 3938 4.92 0.46

Finally, we look at the RUN reduction tree level for each of the solutions. Table 6.3
contains the averages of the tree levels for all tasks sets of the experiments. From the table
it is possible to see that there is a reasonable advantage to the OBT-MrsP solution. As
we can see from the number of servers generated for each solution, there is also in�uence
of step 5 of the OBT heuristic (Subsection 4.2.1) on the level of the tree.

Table 6.3 Maximum RUN reduction tree level for CG-SBLP, OBT-SBLP and OBT-MrsP

Heuristic-Protocol Total
CG-SBLP 2.60
OBT-SBLP 2.63
OBT-MrsP 2.07

At running the data generation scripts, 3 �les are generated for each task set: params.py,
sched.py, and tree.json. The �rst �le contains the parameters used for the experiment
setup, the second �le contains the tasks and their settings (server, identi�cation of the
resource accessed, size of the resource critical section, WCET and period). Finally, the
last �le contains the RUN reduction tree in JavaScript Object Notation (JSON) format
(ECMA, 2019). These �les are input for running the experiments to collect overhead
statistics and scheduling decisions.

During the execution of the experiments, each lasting 30 seconds, one round for each
of the 800 task sets, two tracers collected plug-in execution statistics, as described in
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Section 5.1. One tracer collected overhead statistics for (i) context switching, (ii) lock,
(iii) unlock, (iv) schedule decision, (v) release and (vi) release latency. The other tracer
was responsible for collecting (i) preemption, (ii) migrations, (iii) deadline losses, (iv)
execution times of each job. Both tracers produce data in binary �les and complementary
tools allow us to access data from these �les and collect the statistics of the experiments.
In the next section we will discuss the results and analyze the protocols.

6.2 EVALUATION RESULTS

In order to analyze the performance of the protocols with their respective heuristics, we
start by looking at the overhead produced by each one in performing the basic schedul-
ing and resource sharing primitives in the following session. After we then characterize
overheads in terms of the number of migrations and preemptions su�ered by the tasks in
the execution of the experiments within the LitmusRT environment.

6.2.1 Overhead

The comparison of the overhead obtained by each of the protocols studied in this work was
based on the collection of a timestamp at the beginning of an event and the collection of a
timestamp at the end of the code execution for the same event, thus obtaining an interval
of time in nanoseconds which represents the code execution of an implementation that is
part of the operating system primitives for a real-time system, such as those related to
task scheduling and resource sharing.

The time measurements collected in this work were (i) context switching: time spent
for one task leaving the processor and another task occupying it; (ii) lock: measures the
time interval between requesting a lock operation on a resource and obtaining the lock.
Time spent in busy waiting activity is not considered in this measurement; (iii) unlock:
time interval between the request for the resource release and the e�ective release of the
resource; (iv) schedule decision: every time a scheduling decision is made to a processor,
the time spent on that decision is collected. The measurement is divided into two parts,
one of which refers to task selection and the other refers to post-context-switch cleanup
and management activities; (v) release: measures how much time is spent to enqueue a
newly-released job in the ready queue; (vi) release latency: release latency is the di�erence
between the time a task release should have taken place and the time it actually took
place; (vii) Tree: represents the time spent by the system maintaining the state of the
RUN reduction tree.

Fig. 6.1 shows the comparison of the average of the results obtained during the
experiments performed. Let us now analyze the di�erences obtained by the protocols.

(i) Context switch (CXS): The di�erence between the MrsP and SBLP protocols was
up to 5.2% for the CG-SBLP composition and up to 3.8% for OBT-SBLP. This result
means that MrsP performed worse. We found no clear motivation for the di�erence
between the protocols when analyzing their implementations, except that we added extra
information to MrsP's task data structures, which could justify a little additional overhead
for the protocol.
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(ii) Lock: As with context-switching events, we also had a di�erence in measurements
made for SBLP and MrsP for resource blocking events that was unfavorable to MrsP. The
result was up to 4.2% higher for MrsP when compared to CG-SBLP and 1.7% higher when
compared to OBT-SBLP. MrsP uses a stack to store server's ceiling level and maintaining
it may have a�ected the time taken to acquire the lock. The SBLP plugin does not need
to implement this stack, as the protocol is non-preemptive inside a server whenever a task
is requesting or locking a resource. In addition, the MrsP plugin helping mechanism can
be con�gured during the resource lock and in doing so our plugin removes the task that
receives the help from the ready queue. This does not happen with the SBLP plugin.

(iii) Unlock: The MrsP plugin restores the server ceiling level from the stacked level.
In this event, the helping mechanism can be deactivated and in this case the task receiving
help is reinserted into the ready queue. MrsP can also set up a new helping mechanism
and in doing so removes the task that gets help from the ready queue. SBLP can con�gure
the helping mechanism during this event, but does not remove the task that gets help
from the ready queue, as the task requesting the resource cannot be preempted by another
task from its source server. The di�erence in time spent on this primitive was unfavorable
to MrsP up to 6.5% when compared to CG-SBLP and up to 5.6% for OBT-SBLP.

(iv) Schedule decision (SCHED and SCHED2): The di�erence for the SCHED event
was 12.9% and 12.6% disadvantageous for MrsP when compared with CG-SBLP and
OBT-SBLP, respectively, and it was 1.9% and 1.6%, respectively, for SCHED2. In MrsP,
the run_schedule() method may include in the ready queue of the servers both tasks
which o�ers and receives help by undoing the helping mechanism; This method can also
set up a new helping mechanism and, when this occurs it removes the task that gets
help from its server's ready queue. In SBLP, when the server is blocking or requesting a
resource, the run_schedule() method automatically selects the previously running task
(hp_task), not undoing the helping mechanism when the task stops running. This check
is now done within the resched_servers() method because when the server leaves the
processor it needs to undo the helping mechanism. We believe that adding or removing
tasks in the ready queue can negatively in�uence the MrsP protocol runtime.

(v) Release: MrsP spent up to 10.6% and 15.5% less time than CG-SBLP and OBT-
SBLP, respectively, to perform this operation. The implementation of both plugins goes
through the RUN reduction tree to update its status with deadline information of released
tasks. The smaller number of servers in�uenced the release-related overhead in favor of
the MrsP protocol. Both protocols check to see if there is a need to undo the helping
mechanism, but only the MrsP protocol includes in the ready queue of the servers the
tasks that o�ers and receives help, which slightly penalizes this protocol.

(vi) Release latency: It was not very clear to us what factors in the implementation
of the plugins could have in�uenced this metric. We observed that MrsP delayed up to
32% more than CG-SBLP to release the tasks and up to 20.3% more than OBT-SBLP.
It is not trivial to �nd the reason for the di�erence in this measurement. When a job is
created but not in its release time (e.g., when a job completes a new job is created to
be released at the next execution interval), it is placed in the release heap and a Linux
timer is set to �re at release time. When this timer reaches its time, the system executes
the method that generates the trace for Release Latency. Unlike other tracers, this tracer
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is a single record (the other tracers have two records, one for the beginning and one for
the end of the event). In the generation of this trace, the job release time is passed
and the di�erence between the time and the current time gives the measurement for
Release Latency. Understanding why the timer is being delayed is not straightforward,
as the source may be the blocking of interruptions or some lock on the operating system
semaphore that may be causing the delay. The origin of this delay can be at several
points in the code.

It should be noted that the maximum delay on this one was similar for both protocols.
Fig. 6.2 shows the results considering 99.9 percentile. It is also important to note that the
median for both protocols presented low and very close values, around 0.6 microseconds.

(vi) Tree: The tree() method traverses the RUN reduction tree to update its status
with deadline information for released tasks. The smaller number of servers certainly
in�uenced the overhead related to this operation favorably to the MrsP protocol. Scan-
ning this tree may enable or disable the help engine for both protocols. This may include
adding or removing tasks from the ready queue of their respective servers which a�ect
only MrsP.
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Figure 6.1 Comparative of overhead for CG-SBLP, OBT-SBLP and OBT-MrsP

As we can see from these results, the MrsP protocol obtained better results in the
methods in which the RUN reduction tree is scanned due to the smaller size of its tree, but
was penalized in the methods in which the helping mechanism is activated or deactivated,
due to the need for more job additions and removals in the ready queue.

For a fairer comparison, we need to measure the overheads taking into consideration
the number of events that occurs on the processors during the experimets execution.
Doing so, we weight the time spent handling each event by the number of occurring
events. For example, as the reduction tree for each protocol di�ers, number of events to
be handled by them is unlikely to be the same. Fig. 6.3 plots a graphs comparing the
weighted overhead. As can be seen the total weighted overhead achieved by OBT-SBLP
and CG-SBLP was greater than OBT-MrsP by 3.24% and 8.48%, respectively.
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Fig. 6.4 shows the total weighted overhead distributed between events. Fig. 6.4(d)
shows the general distribution of weighted overhead between events for all solutions eval-
uated in this work. It can be seen that the Schedule event produces the greatest overhead,
followed by the Context Switch.

In the next section we will discuss the results obtained by the protocols related to the
number of preemptions and migrations.

6.2.2 Preemptions and Migrations

Gathering migration and preemption statistical data is already part of the standard
LitmusRT toolkit, so no additional implementation of our plugin was required to enable
this data collection. After each round of the experiment, the LitmusRT libraries generate
a binary �le containing the following information: (i) Task ID, (ii) JOB Number, (iii)
Task Period, (iv ) Time to complete JOB (v) Flag indicating deadline loss, (vi) Di�er-
ence between JOB completion time and its deadline, (vii) Delay to deadline, (viii) Flag
indicating whether conclusion was forced due to the completion of the experiments, (ix)
JOB execution time, (x) Number of preemptions and (xi) Number of migrations.

Regarding the number of preemptions, we observed that the MrsP protocol performed
better in most scenarios evaluated, averaging 12.5% less preemption, but there is a sce-
nario where the reduction in the number of preemptions reached 26% lower for the pro-
tocol. The main reason for this performance is related to the smaller number of servers,
which implies less preemption due to rescheduling of servers. Fig. 6.5 illustrates this



6.2 EVALUATION RESULTS 67

result, the x-axis represents pairs of the parameters concurrency factor and size of the
critical section. The Y-axis represents the averages of the number of preemptions su�ered
by each job. As we can see, MrsP performed better in almost all scenarios except when
the concurrency and critical section size parameters were set to 0.65 and 0.06, respec-
tively, when the SBLP protocol obtained very close results. The reason for this close
result between protocols has not been fully understood by us, but it probably has to do
with the formation of the servers.
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Figure 6.5 Comparative of the number of preemptions per task for CG-SBLP, OBT-SBLP

and OBT-MrsP

The results obtained for the migrations were also favorable to the MrsP protocol. We
observed that this protocol had an advantage of up to 67.8% in the number of migra-
tions for one of the observed scenarios, while the average of this protocol was 36% less
migrations when compared to CG-SBLP and 33.5% less migrations for the comparison
with OBT-SBLP. The reasons for fewer migrations are the same as those for preemptions.
With fewer servers, there are less task migrations. Fig. 6.6 illustrates this result. It can
be observed that only one of the scenarios produced better results for OBT-SBLP, in this
case the advantage was 10.3% less in the number of migrations to this protocol.

As we can see in Figs. 6.5 and 6.6, there is a clear advantage obtained by the MrsP
protocol due to the smaller number of servers and this advantage was provided by the
protocol's ability to join tasks that do not compete for the same resources on the same
server without impacting execution of high-priority tasks allocated to servers. As demon-
strated in Example 4, the SBLP protocol can reduce the system's schedulability level
when tasks that do not compete for the same resources are placed on the same servers
and these tasks have widely varying time periods.
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CONCLUSION

We have identi�ed a speci�c research problem, namely the integration of RUN and MrsP
so that system utilization can be improved, as compared to related work, and schedul-
ing can be carried out e�ciently in the context of resource sharing for multiprocessor
real-time systems. As we have pointed out, MrsP has recently attracted researchers' at-
tention due to its potentials. Likewise, RUN has been shown to be an e�cient real-time
scheduling algorithm. Further, the only attempt to implement resource sharing for RUN
scheduled systems, namely SBLP, can be considered too restrictive for some application
domains since such a solution is based on preventing preemptions within RUN servers
while resources are blocked or requested by their tasks. By using MrsP, we intend to
design a more �exible and e�cient solution.

Integrating RUN and MrsP requires adapting their rules and proving it correct. We
worked to preserve most characteristics of both RUN and MrsP, algorithms that have
shown to perform very well by previous work. We kept modi�cations to their rules at
a minimum. We de�ned the rules for this new proposed solution, based on the rules of
MrsP and RUN and derived the properties and rules to enable both to adapt and prove
their correctness.

After proving the feasibility of the integration between MrsP and RUN, we used scripts
to perform experiments to measure how well our solution has achieved in terms of increas-
ing processor demand and compare with the results obtained by the the SBLP protocol.
Besides the comparison between the protocols, we also proposed a new heuristic namely
OBT and observed the results obtained by OBT in relation to FG and CG heuristics. We
observed that OBT presented better results. The MrsP protocol obtained slightly better
results than SBLP, up to 93% of the increment reached, both under the OBT heuristic.
A smaller increment achieved by the protocol indicates that its performance is better
as the processor capacity reserve will be smaller. When comparing the results obtained
by MrsP with those of SBLP with the other heuristics, the results were even better for
MrsP, which obtained up to 79% and 12% of the increment obtained by CG-SBLP and
FG-SBLP, respectively.

69
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Next, we implemented the solution derived from the integration of MrsP with RUN
in LitmusRT environment and performed experiments for several sets of tasks generated
according to the parameters de�ned in this work. We observed the overhead results
obtained by each of the solutions, namely OBT-MrsP, OBT-SBLP and CG-SBLP. MrsP
obtained up to 74% of the number of preemption and up to 35% of the number of
migrations obtained by SBLP, which means a signi�cant reduction in overhead. When
comparing average times obtained in performing the basic task scheduling and resource
sharing primitives, we observed that there were alternations in the advantages between
the protocols. The Tree and Release primitives were signi�cantly advantageous for MrsP,
while Context Switch, Lock, Unlock, Schedule and Release Latency where eminent for
SBLP, highlighting Schedule and Release Latency. When considering the total overhead
achieved by the solutions, we observed that OBT-SBLP and CG-SBLP presented an
overhead higher than that of MrsP by 3.24% and 8.48%, respectively.

This research work can motivate further developments. We did not address scenarios
with nested resources. Removing this constraint is certainly necessary for broadening
the application of the obtained results in this work. Further, as we have mentioned in
Chapter 4, system schedulability may depend on how tasks are assigned to the RUN
servers. Seeking for task assignment policies aiming at maximizing schedulability is a
problem to be further investigated. Regarding implementation, the results of our work
bene�t from an e�cient implementation of the RUN reduction tree structure. Since the
tree is managed at any scheduling instant, all the scheduling decisions can be taken in
a more e�cient way if the tree implementation is optimized. In this work we did not
go into such implementation aspects. Another interesting topic to be considered in the
future is integrating MrsP with other global scheduling policies. QPS is a natural choice.
Although more complex to enable this integration with QPS, it performs similarly to
RUN. Since QPS can deal with sporadic tasks, having such an integration can be useful
for enlarging the application domain of MrsP.

In summary, by addressing a relevant research topic, we believe that the solution that
this work provided brings about both advances in the state of the art and starting points
for further developments in the �eld.
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