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Davilene e Mayara.

Quero agradecer em especial aos meus amigos mais chegados que irmão, que o mestrado
me presenteou: Beatriz Brito, Daniel Amador, Edilton Santos, Filipe Garrido, e agradecer
pela força, pelas risadas e por nos apoior uns aos outros como irmãos nas horas dificéis.
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RESUMO

Testar um sistema é uma atividade rotineira e desempenha um papel importante no pro-
cesso de garantia de qualidade do software. Entretanto, o teste de sistemas altamente
configuráveis, como as Linhas de Produto de Software (LPS), é uma atividade complexa,
devido à presença de variabilidade em seu processo de engenharia, que aumenta o número
de configurações de produto a se testar. Caso um defeito afete um (ou um subconjunto)
destas funcionalidades, uma gama de produtos (e não apenas um, como é o caso da
Engenharia de Software tradicional) será afetada. Tal complexidade implica ainda no
aumento significativo do custo da atividade de testes. O uso de técnicas de teste de
amostragem apoiadas por suporte ferramental podem trazer contribuições significativas
para alcançar reduções de custo. Dentre as técnicas mais eficazes, destaca-se o teste de
interação combinatória (CIT), que tem sido usado extensivamente para prover amostras
de entradas no teste de sistemas de software altamente configuráveis. O CIT baseia-se
na premissa de que muitos erros no software só podem surgir da interação de dois ou
mais parâmetros. O CIT toma como entrada um modelo de configuração que define o
espaço de configuração válido para o software em teste. Esse modelo geralmente inclui
um conjunto de opções de configuração, cada uma delas obtendo um valor de um pe-
queno número de configurações discretas e um conjunto de restrições de todo o sistema
entre as opções de configuração. Dado o modelo, esses métodos calculam uma matriz
de abrangência t - um conjunto de configurações, no qual cada combinação válida de
configurações de opção para cada combinação de opções aparece pelo menos uma vez.
O sistema é então testado executando seu conjunto de testes em todas as configurações
selecionadas. Esta dissertação apresenta o MERCI, um método para avaliar técnicas de
teste de interação combinatória. O objetivo do MERCI é avaliar a adequação das ferra-
mentas de CIT existentes, amplamente empregadas no teste de software tradicional, para
a engenharia de LPS. Neste trabalho, realizamos uma avaliação emṕırica para comparar
quatro ferramentas de CIT: ACTS, CATS, PICTMaster e VPTag. A análise considerou
as métricas de detecção de defeitos, cobertura de testes e tempo de execução dos testes.
Os resultados mostraram que o método pode servir como um bom indicador para avaliar
como as ferramentas CIT poderiam se comportar em um cenário prático de testes de
projetos LPS.

Palavras-chave: Linhas de produtos de software, Teste de interação combinatória,
Engenharia de Software Emṕırica.
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ABSTRACT

Testing a system is a routine activity and plays an important role in the software quality
assurance process. However, testing highly-configurable systems, such as Software Prod-
uct Lines (SPL), is a complex activity due to the presence of variability in its engineering
process, which increases the number of product configurations to test. In case a defect af-
fects one (or a subset) of these functionalities, a range of products (and not just one, such
as in traditional Software Engineering, in which each product is built from scratch) may
be affected. Such complexity also implies a significant increase in the cost of testing. The
use of tool-supported sampling testing techniques could bring significant contributions to
achieve reductions in such a cost. Among the most effective techniques, Combinatorial
Interaction Testing (CIT) has been used extensively to sample inputs to software, and
to test highly-configurable software systems. CIT is based on the premise that many
errors in software can only arise from the interaction of two or more parameters. CIT
take as input a configuration model that defines the valid configuration space for the
software under test. This model typically includes a set of configuration options, each of
which takes a value from a small number of discrete settings, and a set of system-wide
constraints among configuration options. Given the model, these methods compute a
t-way covering array - a set of configurations, in which each valid combination of option
settings for every combination of t options appears at least once. The system is then
tested by running its test suite in all the configurations selected. In this investigation,
we aimed to analyze the effectiveness of existing tool support for CIT. To accomplish our
goal, we introduced the MERCI - a Method to Evaluate Combinatory Interaction Testing
techniques, aimed to establish a systematic means to evaluate the adequacy of existing
CIT tools for highly-configurable systems testing. In this work, we performed an empiri-
cal evaluation to compare four CIT tools: ACTS, CATS, PICTMaster and VPTag. The
analysis considered the metrics defect detection, test coverage and test execution length.
The yielded results show that the method could be employed as a good mechanism to
evaluate how CIT tools could behave in a practical SPL testing scenario.

Keywords: Software Product Lines, Combinatorial Interaction Testing, Empirical
Software Engineering.
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Chapter

1
INTRODUCTION

SPL can be defined as a “set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way”
(CLEMENTS; NORTHROP, 2001). In other words, it can be considered as a set of
programs that share key functionalities, created from a set of reusable parts.

The software development strategy based on SPL engineering is analogous to manu-
facturing, such as the automotive industry in which, from a common basis (or platform),
it is possible to configure a range of products, which share functionalities, but offer op-
tions that make them different. Such options may address particular customer needs, or
might even consider the needs of a whole given market segment (APEL et al., 2013).

In SPL engineering, variability management is the key strategy that provides flexibility
for product differentiation and diversification. Variability management generally affects
the degree to which an SPL project is successful, covering all the activities of variability
representing software artifacts throughout the project life cycle (CHEN; BABAR; ALI,
2009).

While variability management enables delivering a range of products with reduced
cost and time-to-market, when compared to traditional software development strategies,
it is necessary to employ suitable software quality strategies in order to achieve high
quality in every delivered product. In this scenario, software testing plays an important
role. Software testing is intended to identify faults in the system, and guarantee that
they can be corrected in a timely and effective manner, i.e., finding actual defects before
delivery to the end user.

Although testing has proved its effectiveness, it is a rather arduous and laborious
activity, as there are several input data combinations to test in a software project. In
terms of highly configurable systems, such as SPL projects, in which variability increases
the number of possible configurations, testing is even more difficult. Such a complexity is
mainly due to the amount of variability an SPL must handle, what leads to an increased
number of possible combinations to test (MACHADO et al., 2014).

1



2 INTRODUCTION

Along the years, several tools have been proposed to handle testing in SPL engineering
(LIMA-NETO et al., 2012). There is another large set of tools not developed to handle
variability, but that might be suitable to test SPL projects. However, there is a few
reports on the analysis of the effectiveness of existing tool support for SPL testing.

Tool support for SPL testing should be focused on reducing the set of possibilities
to a reasonable and representative set of product configurations, thus reducing the test
configuration space. While keeping a small sample is critical to limit the effort necessary
for testing each selected configuration (HERVIEU; BAUDRY; GOTLIEB, 2011), this is
particularly a combinatorial problem, that should be handled accordingly.

An affordable strategy to cope with reducing the testing space is the use of CIT
techniques. CIT can be considered as a feasible strategy to reduce testing effort by
selecting a set of representative products (YILMAZ et al., 2014; LOPEZ-HERREJON
et al., 2015). CIT techniques have been the subject of recent studies as they are used
in various domains and there is a variety of commercial and free tools to support the
testing process (YILMAZ et al., 2014). They mainly leverage test configuration selection
or employ test configuration prioritization approaches.

Therefore, CIT techniques play an important role in SPL engineering, as they pro-
pose mechanisms to test the interaction between the many features and parameters that
compose the configuration space of software systems (PETKE et al., 2015). In this effect,
this current investigation aims to analyze the effectiveness of CIT tools regarding
their adequacy to SPL engineering . In order to reach such a goal, we performed a
set of empirical evaluations to compare CIT tools1.

1.1 MOTIVATION

Software testing is a technique used to detect faults efficiently in complex software
systems (AMMANN; OFFUTT, 2016). Despite its importance, testing software is a
non-trivial, exhausting, and costly activity, and it is deemed to be a bottleneck in the
software development process. In this effect, there is an enormous attempt to reduce its
related costs. Unfortunately, many companies leave test aside, in a pseudo-cost reduction
strategy. Indeed, it is better to reduce the cost by improving the quality of the software
system, and it encompasses fixing any likely issue still during the development.

The above statement still holds true in the SPL engineering context. Due to the degree
of complexity variability poses, some authors consider that testing is also a bottleneck
in SPL engineering, being even more expensive than testing individual systems (KOLB,
2003).

There are some recent reports discussing the state-of-the-art SPL testing practices
(LAMANCHA; USAOLA; VELTHUIS, 2009; NETO et al., 2011; ENGSTROM; RUNE-
SON, 2011; MACHADO et al., 2014). They synthesize available evidence on this field,
and discuss existing solutions and leverage the gaps still to bridge. All of them ob-
served an increased interest in improving SPL testing practice, by providing both testing
processes and mechanisms to automate such processes.

Although several studies in the SPL engineering field have been proposed along the

1Widely used CIT tools are available at http://www.pairwise.org/tools.asp
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years, we observed a lack of empirical studies attempting to discuss the benefits and
drawbacks of existing tool support, in the light of widely accepted testing measurements.

Lima-Neto et al. (2012) carried out a systematic literature review on SPL testing
tools. The main objective was to identify how the available tools could support existing
SPL testing processes. The literature review leveraged a set of supported features, and
which should be present in all tools based on their priorities. It is worth mentioning that
the study was not focused on discussing the tools’ effectiveness to any extent.

In this effect, there is a need for more in-depth studies of testing tools for SPL en-
gineering. In this current research, we narrow down the focus to the analysis of CIT
tools in terms of their effectiveness to test SPL projects. Tool effectiveness could be
observed by analyzing several metrics, which mainly indicate their readiness for finding
faults (MACHADO et al., 2011).

In order to reach such a goal, we carried out a set of empirical evaluations to compare
CIT tools. Although the reports on the state-of-the-art SPL testing practice (LAMAN-
CHA; USAOLA; VELTHUIS, 2009; NETO et al., 2011; ENGSTROM; RUNESON, 2011;
MACHADO et al., 2014) discuss topics that need particular attention from both research
and practitioners communities - such as quality attribute testing considering variability,
the traceability between development and test artifacts, and the management of test as-
sets throughout the whole SPL development life cycle - it is worth to mention that these
are out of scope in this investigation.

1.2 OBJECTIVES

1.2.1 General objective

In this current investigation, we aim to evaluate the effectiveness of the CIT tools
regarding their adequacy to the development of SPL projects.

1.2.2 Specific objectives

• Review the literature in order to leverage state-of-the-art practices in SPL testing;

• Identify testing tools applied to the SPL engineering context;

• Provide an empirical comparison among testing tools with respect to the following
metrics: defect detection capability, code coverage, and test execution length.

1.3 EXPECTED CONTRIBUTIONS

As a result of the work presented in this dissertation, the following contributions can
be highlighted:

• Evidence on state-of-the-art SPL testing practice;

• A method to empirically evaluate CIT tools;

• An empirical study on the adequacy of CIT tools for software testing in SPL
projects.



4 INTRODUCTION

1.4 DISSERTATION STRUCTURE

The remainder of this dissertation is structured as follows:

• Chapter 2: This chapter presents the foundations on SPL and Software Testing.
Such a discussion is rather important to establish the underlying concepts necessary
for the understanding of this dissertation.

• Chapter 3: This chapter presents an updated Review on SPL testing, based on a
previously published work (MACHADO et al., 2014), which is extended by incor-
porating studies published from 2014 up to 2016.

• Chapter 4: This chapter introduces the MERCI, our proposed method to Evaluate
CIT Tools for SPL engineering. The proposed method was empirically evaluated
with the ACTS, CATS, PICT Master and VPTag tools, which resulted in a reduc-
tion in the number of products.

• Chapter 5: This chapter presents the concluding remarks, by including a discus-
sion on the related work, and by pointing out directions for future investigations in
the field of SPL testing.



Chapter

2
THEORETICAL BACKGROUND

This chapter presents fundamental concepts which are relevant to follow up this work:
SPL engineering, Feature-oriented SPL, software testing, SPL testing, testing tools and
metrics related to software testing.

2.1 SOFTWARE PRODUCT LINES

In the early years of software development, the products were commonly built from
scratch, and reuse was merely opportunistic. For instance, it is not uncommon for small
and medium-sized companies to adopt a clone-and-own strategy, by copying, adding or
removing functions from existing products (RUBIN; CHECHIK, 2012). This approach
leads to building ad-hoc product portfolios of multiple yet similar variants (FISCHER
et al., 2014). With the growth of such products portfolio, the management of variations
among them becomes more complex (SHATNAWI; SERIAI; SAHRAOUI, 2015). When-
ever a new customer decided to acquire a software product, it was handcrafted to meet
its particular needs. However, with the software evolution numerous people could afford
buying several types of products, similarly to what occurred with the automobile domain.
Such a domain is widely known by the concept of mass-production, introduced by Henry
Ford as a strategy to deliver cars much cheaper than individual creation, in what was
coined as product line engineering (POHL; BOCKLE; LINDEN, 2005).

As with the automobile domain, the software systems domain has also undergone
evolution (POHL; BOCKLE; LINDEN, 2005). The mass standardization process, also
called as mass customization , i.e., “the large-scale production of goods tailored to
individual customer’s needs”, was an important step to advance Software Engineering
practices. Due to mass customization, the software industry is prone to improve quality
by adopting strategies that emphasize proactive reuse, as a means to deliver products
more efficiently, quickly, reliably, and cheaply.

SPL engineering is a paradigm that has been largely adopted by companies in the
last decades. It provides a means to systematically reuse software artifacts, and build
sets of products which share functionalities, allowing them to reach improvements in

5
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time-to-market, productivity, quality, and cost reduction, as well as other positive gains
(CLEMENTS; NORTHROP, 2001; APEL et al., 2013).

An SPL captures commonalities among a range of software products, so that product
development would focus on product specific issues rather than on issues that are common
to all products (GURP; BOSCH; SVAHNBERG, 2001). The product specific parts may
be referred to as variability, which is a key artifact for SPL engineering (BEUCHE;
PAPAJEWSKI; SCHRÖDER-PREIKSCHAT, 2004).

A successful management of variability in software artifacts leads to better customiz-
able software products that are in turn likely to result in higher market success: in the
information systems domain, the products are more easily adaptable to the needs of
different user groups; in the embedded systems domain, the software can be easily con-
figured to work with different hardware and environmental constraints (GURP; BOSCH;
SVAHNBERG, 2001), and so on.

In SPL engineering, variability may be expressed in terms of features, basic building
blocks for specifying products (GURP; BOSCH; SVAHNBERG, 2001). A feature can be
defined as the distinctive characteristic of a system (LEE; KANG; LEE, 2002). In most
trivial cases, a small number of features could result in a small number of possible product
configurations. However, the number of product configurations increases as the number
of features increases (MACHADO et al., 2014). Exhaustively testing all configurations
for SPL projects is not feasible in practice. Applying existing testing techniques to test
each product separately is also difficult and may requires enormous adaptations so they
could handle variability (GALINDO et al., 2016).

2.1.1 SPL Motivation and Benefits

SPL engineering bring a diversity of benefits for software development, as follows
(POHL; BOCKLE; LINDEN, 2005): quality improvement, reduction of time-to-market,
reduction of maintenance effort, and reduction of development costs. These are discussed
next.

• Quality improvement. Many products are tested and analyzed through arti-
facts and their reusable assets, that have their quality assessed considering different
contexts, leading to overall higher product quality.

• Reduction of time-to-market. Time-to-market is one of the main success fac-
tors for an SPL, which requires a high initial investment, when compared to single
systems. However, as the time passes, the time to deliver a product instance to the
market is significantly reduced, as several artifacts can be reused in novel products.

• Reduction of maintenance effort. Whenever software artifacts are changed
or new artifacts are included in the core asset base (for reusable artifacts), those
changes are propagated to all products, making maintenance and evolution simpler
and cheaper compared to maintaining and evolving products separately.
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• Reduction of development costs. Cost reduction is an essential reason to intro-
duce SPL. Instead of developing every new product from scratch, the artifacts can
be reused in different types of systems, generating benefits such as the reduction of
costs.

2.1.2 Essential SPL activities

Figure 2.1 shows the three key SPL engineering activities, according to the SEI/CMU1:
(i) core asset development, (ii) product development, and (iii) management. It presents
the three activities in the form of rotating arrows, each rotating circle represents one of the
essential activities. This means that the three activities are connected to each other in a
constant movement showing that all of them are essential and highly interactive and that
they can occur in any order. The arrows indicate that the product is not only developed
by the core asset activity, but also that revisions of existing core assets or even new core
assets can, and do so more frequently, evolve from the product development activity
(CLEMENTS; NORTHROP, 2001).

For Clements and Northrop (2001), core assets can be either developed or acquired,
making a strong feedback loop between core assets. Management is needed everywhere.
It may control the development of the essential assets and products. Moreover, it of-
fers processes and activities necessary for the three essential activities to work together.
Following we describe each of these activities (CLEMENTS; NORTHROP, 2001):

Figure 2.1 Essential Product Line Activities (CLEMENTS; NORTHROP, 2001)

• Core asset development. It aims to define commonality and variability by es-
tablishing reusable artifacts and production capacity for products. Figure 2.2 shows
the core asset development activity together with its outputs and contextual fac-
tors. This activity is also commonly referred to as domain engineering (POHL;
BOCKLE; LINDEN, 2005).

1〈https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513798〉
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Figure 2.2 Core Asset Development (CLEMENTS; NORTHROP, 2001)

In Figure 2.2, the spinning arrows show that there is no one-way causal relationship
from the context to the outputs.

• Product development. This activity is responsible for creating individual prod-
ucts by reusing core assets. In addition, it gives feedback to core asset development,
as a means to evolve the core asset base, as the products are evolving. Figure 2.3
shows the product development activity along with its results and contextual factors
(CLEMENTS; NORTHROP, 2001). This activity is also known as application
engineering (POHL; BOCKLE; LINDEN, 2005).

Figure 2.3 Product Development (CLEMENTS; NORTHROP, 2001)

Alike in core asset development, the rotating arrows in Figure 2.3 indicate itera-
tion and relationships involved. In this activity it is mandatory to provide feedback
on problems or deficiencies found in core assets (CLEMENTS; NORTHROP, 2001).

• Management. It plays a critical role, and includes both technical and organiza-
tional management issues. “Management at the technical and organizational levels
should be strongly committed to the effort of the SPL” (CLEMENTS; NORTHROP,
2001). Technical management is responsible for controlling requirements and for
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coordinating asset and product development, ensuring that those who construct
essential assets and products participate in the required activities (CLEMENTS;
NORTHROP, 2001).

In turn, organizational management identifies constraints and production strategies.
Clements and Northrop (2001) defines “organizational management as the authority
responsible for the success or ultimate failure of the SPL effort”. All in all, it is
necessary an adequate organizational planning, investment, direction and strategic
thinking that looks beyond a single product.

2.2 FEATURE-ORIENTED SOFTWARE PRODUCT LINES

An SPL aims to assist the software development industry, based on a set of reusable
parts, generating a software product based on the requirements of a particular customer
(APEL et al., 2013).

As mentioned in the previous section, SPL engineering is a growing paradigm that
helps organizations develop their products from reusable core assets. Products are built
from the analysis of a domain, using the Feature-Oriented Domain Analysis (FODA)
method that supports reuse at the functional and architectural levels (KANG et al.,
1990).

In a domain, features are particularities or characteristics visible to the user. They
are necessary for the development of a set of products that define the specific domain.
Features are also used to define the domain in terms of the mandatory, optional or
alternative elements composing those related systems, from which define the common
aspects of the domain, as well as the differences between related systems (KANG et al.,
1990).

It is natural and intuitive for customers to specify what features products should
contain in terms of features, to express possible similarities or variability in terms of
features. According to Kang et al. (1990) “a feature-based model thus provides a basis
for developing, parameterizing, and configuring reusable assets”.

2.2.1 Variability Modeling

Likewise variability management, variability modeling is also an important activity
for SPL engineering. The most common strategy to model variability in an SPL is to
use a feature model, which is a tree-like structure, whose nodes describe its features,
and the edges indicate the different forms of relationships between them (APEL et al.,
2013; BENAVIDES; SEGURA; RUIZ-CORTÉS, 2010). A feature model represents the
products in an SPL by means of the dependencies among features and the interrelation-
ships among variation points (JOHANSEN; HAUGEN; FLEUREY, 2011). As a matter of
fact, feature models have become the de facto standard variability model, as they provide
compact representations of all products of an SPL in terms of their features (BEUCHE;
PAPAJEWSKI; SCHRÖDER-PREIKSCHAT, 2004).

Figure 2.4 shows a sample feature model, which represents the domain of Mobile
Phone - the root node. It encompasses the representation of four types of features, as
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Figure 2.4 Sample Feature Model.

follows:

• Mandatory - features that must be present in all product configurations. In the
example, they are represented by the features Call and Screen;

• Optional - features that could be either selected or not in a product configuration.
In the example, the optional features are GPS and Media;

• Alternative - grouped features which are mutually exclusive. In the sample, the
feature Screen is a parent-feature of a group of alternative features. In this case,
only one feature in such a group could be selected, either Basic, Color or High -

Resolution.

• Or-features - in this group of features, at least one of them must be selected. In
the sample feature model, the feature Media is a parent-feature, from which at least
one of the sub-features camera or MP3 must be selected.

Besides, a Feature Model also includes Cross-Tree Constraints, i.e., a feature model
may define which features are selected and their dependencies, that is, the constraints.
These constraints are called cross-tree constraints, but can be just as a table of possible
combinations.

2.3 FUNDAMENTAL CONCEPTS OF SOFTWARE TESTING

Any software may contain several types of problems, one of which is to deliver a prod-
uct different from what it was expected. This is a common effect of human errors, namely
because the development activities depend on the ability of interpretation and execution
of the people who construct them (DELAMARO; MALDONADO; JINO, 2007).

In this effect, Software Quality Assurance (SQA) plays an important role at defining
a set of strategies to reduce the probability of failure of a system. SQA is “a set of activ-
ities that define and assess the adequacy of software processes to provide evidence that
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establishes confidence that the software processes are appropriate and produce software
products of suitable quality for their intended purpose” (BOURQUE; FAIRLEY et al.,
2014).

Some concepts and terminologies are important to understand and apply in a software
testing process. They are discussed along this section.

Validation and Verification. These activities are intended to ensure that the soft-
ware works as specified. The verification is intended to explore whether the software
conforms to the requested specifications, and validation is the process of confirming that
the system is appropriate and consistent with the requirements. Software testing is part
of a broader topic that is often referred to as validation and verification. In other words, if
the products of a given stage of the software development process meet the requirements
established during the previous phase (AMMANN; OFFUTT, 2016).

Error, Fault, and Failure. The distinction between error, fault, and failure is
an important concept related to software testing. According to Burnstein (2006), error
refers to a misconception or misunderstanding carried out by a developer, a manifestation
of some failure. Fault is a software anomaly that can cause it to malfunction, and not
according to its specification, a static defect. It is a result of an error. Failure comprises
the inability of a system or a component to perform its required functions as set forth by
the requirements.

In SQA, there are two major categories of activities (LUO, 2001):

• Static analysis - focuses on the range of methods that are used to determine or
estimate software quality without reference to actual executions. Techniques in
this area include code inspection, program analysis, symbolic analysis, and model
checking;

• Dynamic analysis - deals with specific methods for ascertaining and/or approx-
imating software quality through actual executions, i.e., with real data and under
real (or simulated) circumstances. Techniques in this area include synthesis of in-
puts, the use of structurally dictated testing procedures, and the automation of
testing environment generation.

There are several well-acknowledged definitions in the literature for software testing.
According to Graham (1993), to deliver a product in good quality, it is necessary to test
it. Testing is the only way to assess and preserve software quality in a real environment.
Ammann and Offutt (2016) states that “testing is the main method the industry uses to
evaluate software development”.

Pohl, Bockle and Linden (2005) argue that software testing is “the process that gen-
erates evidence of defect discovery in software systems. Its main goal is to reveal the
existence of faults in the Product Under Testing (PUT) during its different development
phases”. In any quality assurance process, testing is a necessary part.
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In order to test a project, it is necessary to run a set of test cases, where the result
will be evaluated to determine whether the performance conforms to its specification and
that it meets customer expectations (JALOTE, 2012).

Test cases are sets of input values, execution conditions, and expected results devel-
oped for a determined test goal. Test cases executions can be either positive (or valid)
or negative (or invalid). The positive test cases are those that confirm that the software
does what it should do, while the negative ones are those that the actions performed are
unforeseen, i.e., the software does not do what it should do (IEEE, 2008).

2.3.1 Test levels

Several techniques and methods are used to test a software, at different levels. A test
level can be referred to as the granularity of the items to be tested and the requirements
used as the test reference (POHL; BOCKLE; LINDEN, 2005). The most widely accepted
test levels are unit, integration, and system test. These are defined next:

• Unit test - It has as objective to identify faults directed to the logic and implemen-
tation in each unit, ensuring that its algorithmic aspects are implemented correctly.
The behavior of a component, method, or class is validated through the unit test.

• Integration test - It aims to validate the behavior of two or more units to check
whether they also work properly when combined.

• System test - Its main objective is to run and validate the behavior of the sys-
tem as a whole. The system tests validate the implemented system against the
specification.

The desired behavior of the system is defined by the requirements, where each test
has a distinct purpose, all work to verify that the elements of the system have been
properly integrated and perform the functions assigned to them.

2.3.2 Testing Techniques

There are different testing techniques, these techniques reveal the quality aspects
of the software systems. In this section, we discuss functional and structural testing
techniques, the most widely accepted ones in both academia and industry (LUO, 2001;
DELAMARO; MALDONADO; JINO, 2007).

2.3.2.1 Functional testing

This is also known as black box testing. It is intended to create a set of data inputs
and evaluate the outputs to test all the functional requirements of a program.

The functional test emphasizes the external behavior of the software entity. As a
“black box”, the tester is not aware of the system implementation and the software is
classified according to the user’s view. The following are some black box criteria:
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Equivalence class partitioning: Is the representation of a set of valid or invalid
states for input conditions, and are defined according to some guidelines, such as a valid
class or two invalid classes (DELAMARO; MALDONADO; JINO, 2007).

Boundary value analysis: Is a criterion used with the equivalence partitioning set
that works correctly for a set of values in an equivalence class, which exploit the boundary
conditions to find the largest number of defects. The data is selected in the threshold
form of each class that the equivalence class is expelled from the point of view of input
and output (DELAMARO; MALDONADO; JINO, 2007; JALOTE, 2012).

2.3.2.2 Structural testing

This is also known as white box testing. Unlike the preceding one, this is an
implementation-based technique, as it emphasizes the internal structure of the software
entity.

The goal of structural testing is to select the test cases and specific points to run in the
software entity, such as specific instructions, program branches, or paths (PRESSMAN,
2005; SOMMERVILLE, 2007). This makes the white box testing rather important, as it
explores logical paths of the program, where logic errors might occur.

Structural tests may be applied at different stages during the software development
process, generating an expected result. These results are evaluated in a set of coverage
criteria.

2.3.3 Mutation testing

Mutation testing is a fault-based structural test technique that uses the code structure
to guide the testing process to evaluate the quality of the tests that will be applied to a
system (DEMILLO, 1980; OFFUTT; UNTCH, 2001).

The mutation analysis process is the process of rewriting the source code in small ways,
that is, it causes software failures creating multiple versions of the original software, where
each version created contains a failure. After the creation of the mutants, the existing test
cases are used to perform the defective versions (mutants) to highlight the defective ones
(to kill a mutant) of the original software. The test designer aims to achieve a mutation
score of 100 percent, that is, that all mutants (ie, all failures) were detected (OFFUTT;
UNTCH, 2001).

According to Jia and Harman (2009), we can highlight several types of mutants that
can be created. The simplest and most common are the first-order mutants, that is, those
that have only one introduced fault.

One of the fault-based testing strategies is mutation testing. There are many varia-
tions of mutation testing such as weak mutation (HOWDEN, 1982), interface mutation
(DELAMARO; MALDONADO; MATHUR, 1996) and specification-based mutation test-
ing (MURNANE; REED, 2001).
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2.3.4 Combinatorial Interaction Testing (CIT)

CIT is a recognized software testing technique, which aims to test interactions between
values of software parameters (COHEN et al., 1997). CIT works by modeling a system
under test as a set of factors to detect faults caused by the interactions of various input
parameters of the system in an efficient and effective way (YILMAZ et al., 2014; LOPEZ-
HERREJON et al., 2015).

CIT is a black-box sampling technique derived from the statistical design field of
experiments (COHEN et al., 1997). It works by generating samples that cover a repre-
sentative set of all possible value combinations between any set of parameters. In order
to accomplish its goals, the CIT technique must comply with coverage criteria and the
sample must contain some specified combinations, with the purpose of reducing the final
number of test cases (COHEN; DWYER; SHI, 2008).

In CIT, a Covering Array (CA) must be built. It is a two-dimensional array, where
each column represents a feature and each row represent a test configuration. The strategy
is to construct the CA based on t-wise strength, where t indicates the coverage strength
(1,2,3,..,n) and it will determine the number of feature combinations that should
appear at least once in the CA (KUHN et al., 2009).

When observing its adequacy for SPL engineering, CIT could enable testing several
product configurations, by leveraging a representative set of products (or even subsets of
features) to test. A generally accepted idea is to select a small subset of products where
possible feature interactions are most likely to occur. This is the main principle behind
the CIT techniques, given that not all input or configuration options contribute to every
fault in a system. In practice, most failures are caused by interactions of n factors (KUHN
et al., 2009). In this effect, several tools handle CIT by employing a factor n=2, in what
is called pairwise testing, from which the interaction of pairs is more cost-effective at
finding important issues in a software system (BACH; SCHROEDER, 2004).

CIT has successfully been applied in test input generation and parameter combina-
tions of single systems development (ENGSTROM; RUNESON, 2011). CIT enables a
significant reduction of the number of test cases without compromising functional cov-
erage. There are several studies in the SPL field applying CIT techniques to reduce the
overall testing effort (GALINDO et al., 2016).

Despite CIT could be deemed as an affordable strategy to reduce test sets, there are
several issues that prevent its larger application in practice. In this effect, we should move
to a new understanding in which CIT is used in new ways, being it for alternative notions
of input, such as event sequences and SPL, among others. Researchers and practitioners
have been working towards facilitating the application of CIT in practice (YILMAZ et
al., 2014).

In order to improve such understanding Yilmaz et al. (2014) formalized the CIT con-
cepts, by presenting a set of phases the technique should encompass. In their standpoint,
the CIT can be divided into four main phases, as Figure 2.5 shows.

The first group represents the word WHAT, which includes two phases: modeling
and sampling. What does “test” mean - what are the characteristics of the PUT and
what are the inputs against which it should be tested?
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Figure 2.5 Four Phases of CIT (YILMAZ et al., 2014)

Modeling involves the determination of the characteristics of the model to be mod-
eled, that is, inputs, configurations, and sequences of operations. Sampling refers to
the process or algorithm by which it is possible to determine a means to cover the model
generated in the first phase, that is, all pairs or factors. Sampling and modeling are
typically static phases, performed at the beginning of the process.

The second group includes the testing and analyzing phases, which together address
the HOW tests must be performed - which runs the tests and then examining the yielded
results, so it is possible to understand whether a test case has either passed or failed.
Such phases are driven by several processes, and are usually carried out over a longer
period of time, when compared to the preceding group. The tests can be carried out in
batch mode, incrementally, or in an adaptive way. In some eventualities, developers can
use the testing and analysis phases to provide feedback, and refine subsequent modeling
and sampling activities.

2.4 SOFTWARE PRODUCT LINES TESTING

Software testing is still a widely-accepted quality assurance technique. As mentioned
earlier in this work, software testing encompasses a set of important activities to identify
the defects and ensure that the finished products can function properly as specified, both
in terms of specified functionalities and with a minimum probability of occurrence of an
undesirable outcome.

SPL testing is aimed at handling tests from two main perspectives, namely, is must
examine the core assets, the individual parts, and the interaction between them, which
are shared in products derived from an SPL (NETO et al., 2011). The SPL testing ac-
tivities embrace activities from validating initial requirements to activities performed by
customers in the acceptance of a product, and confirms that testing is still the most effec-
tive method of quality assurance. Next, we discuss each of these perspectives, hereinafter
called SPL testing interests (MACHADO et al., 2014)..
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The first interest deals with the selection of products to test. It seeks to un-
derstand how products are selected from a large set of possible products, and how each
selected product should be tested. Although it is necessary to test and analyze all combi-
nations of possible features, this is not feasible for large-sized SPL projects. The ultimate
goal of such an interest is to reduce the set of possibilities for a reasonable and represen-
tative set of product configurations.

The second interest seeks to guarantee that end-product functionalities would
work as specified. This interest deals with the systematic reuse of test artifacts and
test results as well. This is an affordable means to reduce the overall test effort and avoid
retesting every already tested features, for each new product configuration. Test assets
are designed to test the functionalities of features that will compose the products.

In either one or another interest, there is a particular problem, namely the number
of test inputs to consider, which could increase exponentially as the number of features
increases. Designing and selecting effective test sets, considering the likely amount of test
inputs, play an important role for SPL testing.

2.4.1 Testing in core asset development

When we refer to customization, we are emphasizing the concept of variability, that
is, we use common artifacts and differences in applications in terms of requirements,
architecture, components, and test artifacts in an SPL. Variability, a key element in SPL
engineering, is also the source of complexity, and the variation points is one of the sources
of faults (POHL; BOCKLE; LINDEN, 2005).

In core asset development, the test artifacts are created so that they can be reused in
product testing (POHL; BOCKLE; LINDEN, 2005). Therefore, core asset testing is an
opportunity to save effort, as it is not always necessary to (re-)test everything again, but
only reuse the previously obtained results instead (MACHADO et al., 2011).

Notwithstanding, there is a big challenge concerning core asset testing, given that
several products would reuse the core assets in a range of distinct product configurations.
Hence, not only the individual core assets but, to a certain extent, their integration,
should be tested as well (MACHADO et al., 2011). Otherwise, a defect would be spread
over a range of products, what may directly impact the promised SPL benefits.

2.4.2 Testing in product development

Carrying out tests exclusively on either core asset or product development phases is
not always safe. An important assumption is that the core assets were previously created,
documented, and tested during core asset development, and as such they may be reused
seamlessly, and no testing is required as well. However, in practice, even if the products
are derived from the same core asset base, it is necessary to make sure that all the
features are working properly in the integrated environment, and also that all expected
requirements are working according to the product specifications (MCGREGOR, 2001).
Therefore, it is strongly recommended to carry out tests in both SPL phases.
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2.5 SPL TESTING TOOLS

The tools are used to verify and validate the software, which helps in the detection
of errors. If the defect is detected and solved during the development phase, many faults
can be avoided. By using the tools, the reduction of test costs can be quite significant
(SOMMERVILLE, 2007).

There are different types of testing tools available for different purposes. In SPL
engineering, they require specific tools to assist in the management of reusable tests and
automation of test execution (LIMA-NETO et al., 2012).

The tools discussed in the work of Lima-Neto et al. (2012) are designed to support
only one specific test level, and that none of the tools support all the functionality of a
general SPL life cycle testing process.

If compared to other systems, an SPL may be a huge system, as it encompasses not
only one but a range of distinct products due to the degree of variability. In this effect, it
is prominent to count on support tools to both developers and testers could scan the large
volume of source code of SPL projects in a straightforward and cost-effective manner. In
practice, test tools can support testing large-scale SPL to achieve their goals (EDWIN,
2007; LIMA-NETO; ALMEIDA; MEIRA, 2012).

For Tevanlinna, Taina and Kauppinen (2004), SPL requires support for automated
tools, but also requires support for robust and specific tools. The use of test tools is
relevant because it decreases the effort when reusing test assets and makes the complex
test process more manageable in the construction of products that contain variability.
We next describe some of the widely-reported software testing tools in the literature.

• MoSo-PoLiTe-Model-based Software Product Line Testing framework: is a set of
tools that contains pairwise configuration selection component based on feature
model. MoSo-PoLiTe is a framework that provides a test framework for SPL (OS-
TER; MARKERT; RITTER, 2010; OSTER et al., 2011).

• SPLCAT-Software Product Line Covering Array Tool: It is a tool that generates
a set of T-wise tests. It is a tool that implements various algorithms for covering
features models arrays in SPL (JOHANSEN, 2013).

• CASA - Covering Arrays by Simulated Annealing: is a Simulated Annealing algo-
rithm that is designed to generate T-wise coverage matrices for SPL projects. It is a
tool in an improved metaheuristic search for restricted interaction tests (GARVIN;
COHEN; DWYER, 2009).

• ACTS - Automated Combinatorial Testing For Software: is a test-generation tool
for constructing t-wise (or pairwise) combinatorial test sets with input parameter
values, including support for constraints and variable force tests. The tool provides
command line interfaces and Graphical User Interface (GUI) (BORAZJANY et al.,
2012).

• PICT Master - Pairwise Independent Combinatorial Testing tool is a tool that
implements an algorithm similar to an optimized for speed Automatic Efficient
Test Generator (AETG) (CZERWONKA, 2006).
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• CATS - Constrained Array Test System is a tool for generating test cases, aiming to
improve the coverage and efficiency of the test. The tool uses pairwise to generate
the test cases by providing complete statistical test plans with a small number of
test cases (SHERWOOD, 1994).

• Pairwiser: The pairwise test tests all possible combinations of a set of variables.
In the pair test, a set of test cases is generated that covers all combinations of the
selected test data values for each pair of variables (BACH; SCHROEDER, 2004).

2.6 SOFTWARE METRICS

When it comes to measurements in software engineering, we are dealing with metrics
to measure the intermediate or final product. They measure the characteristics of the
software development process (TRAVASSOS; GUROV; AMARAL, 2002).

According to (PRESSMAN, 2005) the metrics are intended to construct indicators
that facilitate decision making, and are used to “degree” specific attributes of the software.
Quality metrics are applied to software development, and it becomes complex because of
the nature of the development activities and the range of measurement techniques that
are used in the marketplace.

Test metrics are used to evaluate the effectiveness of the tests. Coverage metrics aim
to provide coverage for the program, while defect metrics focus on errors found instead
of the tests themselves (PRESSMAN, 2005).

2.6.1 Code coverage

Test coverage metrics that check, in different ways, the percentage that your code is
testing. These metrics are intended to show which part is not covered. It is very difficult
to say how much software is “well tested” (YANG; LI; WEISS, 2009).

Code coverage is a criterion used by test coverage. Test coverage is a quantitative
only metric, i.e., it is not used to measure the quality of a set of tests. The objective of
this metric is only to demonstrate by percentage, the amount of code that was executed
during the test with effectiveness, taking into account points with no or almost no test
performed (DELAMARO; MALDONADO; JINO, 2007).

Code coverage ensures a quantification of test development related to coverage. To
select the tests that require greater incremental gain in coverage is a way to prioritize
testing. Code Coverage says which code is not tested, but tells you precisely what code
is actually tested (JONES; HARROLD, 2003).

The measure taken for a set of tests results in the percentage of code, and thus one
or more coverage criteria is used. They are usually defined as rules or requirements to
meet the coverage criteria (DELAMARO; MALDONADO; JINO, 2007).

2.7 CHAPTER SUMMARY

This chapter presented the fundamental concepts and definitions about SPL engi-
neering and its essential activities, the motivations and benefits of using SPL, managing
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variability and quality of SPL.
We also presented fundamental concepts about SPL testing, where an overview of soft-

ware testing was presented, discussing the main concepts, processes, technical strategies,
approaches, and so on, in order to define the conceptual base for this dissertation.





Chapter

3
AN UPDATED REVIEW ON STRATEGIES FOR SPL

TESTING

In this chapter, we present an updated and extended systematic literature review
on SPL testing strategies, carried out to synthesize currently available evidence on test
strategies, metrics, techniques, and tools. This work was based on the study performed
by Machado et al. (2014) and included primary studies published from the years 2014 to
2016. Despite the characteristic of an extension study, it is worth mentioning that this
study was focused on understanding the role of tools and metrics for the SPL testing
field, and how they have been employed along the last years. In the former study, the
authors did not include any discussion surrounding such important issues.

3.1 SYSTEMATIC LITERATURE REVIEW METHOD

A Systematic Literature Review (SLR) is a means of identifying, evaluating, and inter-
preting all available research relevant to a particular question (PETTICREW; ROBERTS,
2008). This Chapter reports on the SLR carried out to update and extend the preced-
ing investigation of Machado et al. (2014), which analyzed an initial set of two hundred
seventy-six studies, published between the years 1998 and 2013. In this study, we an-
alyzed primary studies published between the years 2014 to 2016, so we could have a
current view on the SPL testing field. Besides, a new set of research questions was de-
fined, so we could focus our investigation on topics not addressed in the preceding study.
To carry out this work, we followed the procedures of (KITCHENHAM, 2004).

The study focused on SPL Tests and has the following objectives: investigate test
strategies, test metrics, synthesize available evidence and identify gaps between required
techniques and existing approaches available in the literature (MACHADO et al., 2014)

3.1.1 Research questions

We followed the PICOC - Population, Intervention, Comparison, Outcome and Con-
text - criteria (WOHLIN et al., 2012) to define the research questions addressed in this
study, as Figure 3.1 shows. They are described next:

21
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Table 3.1 PICOC

Criterion Description

Population Published studies in the SPL testing field

Intervention Studies with empirical evidence

Comparison Not applicable to this investigation

Outcomes
Evidence on metrics, techniques, tools and strategies suited to
SPL testing

Context Empirically assessed studies in the SPL testing field

RQ1. What SPL testing strategies are available to handle the selection of
products to test?

RQ2. What SPL testing strategies are available to deal with the test of
end-product functionalities?

RQ3. What are the commonly used test metrics in SPL testing practice?

RQ4. How does SPL practice handle variability testing?

RQ5. What are the available SPL testing tools?

RQ1 and RQ2 were incorporated from Machado et al. (2014). The former was aimed
at leveraging primary studies dealing with the selection of product instances for testing.
The later was defined to leverage the test strategies for the test of product functionality.
The remainder are novel questions, especially designed for this update study. RQ3 was
defined to identify which test metrics are applied in the SPL testing practice. RQ4 aimed
to leverage testing techniques available to test software variability, and RQ5 was defined
to identify the SPL testing tools used in SPL projects, and also to investigate whether
support information was available.

3.2 DATA COLLECTION

3.2.1 Identification of relevant literature

The procedure to collect and select the most relevant studies to be used for data
extraction was developed in two distinct phases, as Figure 3.1 shows.

In Phase 1, we conducted an automated search for studies published between the years
2014 and 2016. The collection phase consisted of a screening process aimed to exclude
studies that are not relevant to answer the research questions. Phase 2 consisted of a
manual search of the relevant studies in conference proceedings. In addition, snowballing
gave through all the selected papers from both automated and manual phases (WOHLIN,
2014). After reading the studies in each automated and manual phase, a total of 33 studies
were selected.

In both phases the inclusion and exclusion criteria were used to select the studies
during the search. The inclusion and exclusion criteria were applied in the first and
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Figure 3.1 Stages of the selection process (adapted from Machado et al. (2014)).

second filter in the study titles and then in the abstracts. Next, we provide more detailed
information about each phase.

3.2.1.1 Phase 1: Automated Search

In the first phase, we performed an automated search in the search engines of the fol-
lowing digital libraries: ScienceDirect, ACM Digital Library, IEEE Xplore, and Springer-
Link. These are deemed as the most important ones in the field of Software Engineering,
as they together index all relevant journals and conferences in the field.

In order to perform the search, we defined a set of keywords, reflecting the established
goals and research questions of this study. Therefore, the following terms were applied:
“Test Technique”, “Testing in Software Product Line”, “testing strategies in SPL”, “met-
rics”, “ variability”, “Tools”. For each digital library, a string was created to meet their
syntax requirements and capabilities. Table 3.2 shows all the search strings used.

From the automated search, we retrieved a set of 369 primary studies. We eliminated
the duplicated studies, i.e., retrieved by more than one search engine. We also excluded
retrieved SLR.

The next task consisted of reading the primary studies’ titles and abstracts and ap-
plying the inclusion and exclusion criteria, to filter out uninteresting studies. Table 3.3
shows the set of inclusion and exclusion criteria used in this SLR. On the basis of such
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Table 3.2 Search strings used in the digital libraries.

Databases Search String

IEEE
(test OR testing) AND ((“software product line” OR “software product family”
OR “configurable systems” OR “domain engineering” OR “variability”) AND
(metric OR measure))

SPRINGER
(software AND product AND line AND test AND testing AND variability AND
metric AND measuring AND family)

ACM DL
(test OR testing) AND ((“software product line” OR “software product family”
OR “configurable systems” OR “domain engineering” OR “variability”) AND
(metric OR measure))

SCIENCEDIRECT
((“test” AND “software product line” AND “metric”)) or (“testing” AND
“software product family” AND “configurable systems” AND “domain engi-
neering” AND “variability” AND “measure”)

Table 3.3 Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

IC1. All publications addressing testing strate-
gies, metrics or tool of SPL

EC1. The publication is gray literature - techni-
cal report, short paper, article without empirical
evidence, magazines, and extended abstracts

IC2. All publications in English. EC2. The publication is a secondary study

IC3. Period: 2014- 2016 EC3. The publication is an opinion paper

IC4. In case of extended studies, only the most
complete would be selected

EC4. The study does not address SPL

EC5. Excluded after re-reading of the title and
abstract - Papers are not related to testing in
SPL.

analysis, another 300 studies were excluded, as they were not considered as relevant to
our research.

The remaining studies were subject to full-text reading, so actual data could be ex-
tracted from them. After carefully reading every study, 22 of them were excluded because
they did not address either strategies for SPL or techniques and metrics.

At the end of the automated search (Phase 1), a final pool of twenty studies was
included.

3.2.1.2 Phase 2: Manual search

In the second phase, we conducted the manual search for primary studies. To ac-
complish this task, we only considered the conferences relevant to the field of SPL, as
follows: International Systems and Software Product Line Conference (SPLC), Inter-
national Conference on Software Reuse (ICSR), International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), International Conference on Genera-
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tive Programming: Concepts & Experience (GPCE), and Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA).

The search retrieved 42 studies after reading titles and abstracts. Seven of them were
excluded as being duplicate studies. Another five studies were secondary studies (i.e.,
SLR), as such they were excluded as well.

After applying the inclusion and exclusion criteria, another 22 studies were excluded,
as they did not address any topic related to this investigation.

Alike in the previous phase, we also carried out a full-text reading in the remainder
set of studies, aiming to get actual data, important to answer the research questions.
After reading the complete papers, five studies were considered as being relevant to our
investigation.

Next, we carried out a snowballing, in an attempt to include studies from the refer-
ences of the primary studies selected up to this point. In this task, we retrieved another
eight relevant studies. Therefore, there were thirteen studies included in final pool from
the manual search.

After merging the results from Phases 1 and 2, we had a set of thirty-three studies
included in this updated and extended SLR.

3.2.2 Data extraction

After selecting the primary studies, we performed the data extraction, a mandatory
task to leverage data necessary to answer the research questions. From each study, we
extracted the following data:

• Study title, venue, and publication year;

• Testing strategies: selection and prioritization, and design;

• Test metrics and tools;

• Empirical assessment methods employed in the study;

• Domains and platforms in which the studies have been applied;

• Level of evidence, classified and evaluated according to the hierarchy of evidences
proposed by (KITCHENHAM, 2004): (i) no evidence; (ii) obtained from demon-
stration or working out toy examples; (iii) obtained from expert opinions or obser-
vations; (iv) obtained from academic studies; (v) obtained from industrial studies;
and (vi) obtained from industrial practice.

After extracting all relevant data from each primary study, an analysis was carried
out so that we could group the main test strategies, metrics, and tools.

3.3 RESULTS OF THE SLR

In this section, we used the data extracted from the primary studies to answer our
research questions. We provided an overview of the selected studies and their relation to
their publication sites. The studies are listed in Table A.1 in Appendix A.
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3.3.1 Characteristics of the studies

Table 3.4 lists the venues and the number of publications where the studies were
published.

Table 3.4 Study distribution per publication sources.

Source Count

Conferences

International Software Product Line Conference - SPLC 7

Workshop on Variability Modelling of Software-intensive Systems - VAMOS 3

International Conference on Generative Programming: Concepts and Experience - GPCE 2

International Conference on Software Reuse - ICSR 2

International Conference on Software Testing, Verification and Validation - ICST 2

International Workshop on Feature-Oriented Software Development - FOSD 2

Brazilian Symposium on Software Engineering - SBES 1

Congress on Evolutionary Computation - CEC 1

Conference on Genetic and Evolutionary Computation - GECOO 1

International Conference on Computing, Control, Networking, Electronics and Embedded
Systems Engineering - ICCNEEE

1

International Workshop on Search-Based Software Testing - SBST 1

Journals

Journal of Systems and Software - JSS 3

Software and Systems Modeling - SoSyM 2

IEEE Transactions on Software Engineering - TSE 1

Information and Software Technology -IST 1

Journal Applied Software Computing - ASC 1

Journal Automated Software Engineering - ASE 1

Journal of Logical and Algebraic Methods in Programming - JLAMP 1

Through the analysis of extracted data, we grouped the studies according to their
central purpose. Figure 3.2 shows the number of studies addressing each SPL testing
strategy, namely (i) strategies handling the selection of product instances to test (i.e.,
this first interest is focused on handling core asset testing, concept earlier discussed
in Section 2.4), and (ii) strategies handling the actual product test (i.e., this second
interest is focused on handling product development testing). Table 3.5 shows the studies
addressing each SPL testing interest. It is worth to mention that we gathered some studies
which address both interests. Besides, Figure 3.2 also shows a combination of the studies
retrieved in Machado et al. (2014) - period from 2003 to 2013, and the set of studies
retrieved in this current work - period from 2014 to 2016.
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Figure 3.2 Distribution of studies by SPL testing interest and publication year

Table 3.5 Selected studies vs. SPL testing interest addressed.

Interest Studies Count

1 [P1], [P2], [P3], [P6], [P7], [P8], [P10], [P11], [P12], [P15], [P17], [P19], [P22],
[P23], [P24], [P27]

16

2 [P2], [P4], [P5], [P6], [P7], [P9], [P10], [P13], [P14], [P6], [P18], [P20], [P21],
[P22], [P25], [P26], [P28], [P29], [P30], [P31], [P32], [P33]

22

Both [P2], [P6], [P7], [P10], [P22] 5

3.3.2 Strategies to handle the selection of products to test (RQ1)

Testing an SPL could become impractical due to the huge number of possible product
configurations. The primary challenge in SPL testing is therefore to reduce the set of
possibilities to a reasonable and representative set of product configurations, thus limiting
the effort required to test each selected configuration.

One affordable strategy to cope with such a challenge is to employ CIT techniques
to reduce the number of products to handle. This is a low-cost engineering strategy for
SPL testing (MACHADO et al., 2014).

In the search for primary studies, we found several ones that are based on CIT tech-
niques, in which the main objective is to select a group of products where feature interac-
tion failures can occur. A feature interaction is a functional behavior where two or more
features are selected and enabled for the derivation of an SPL and act unexpectedly, but
when they are enabled separately, work in isolation from other behavior (OLIMPIEW,
2008; APEL; KASTNER, 2009). It is possible to detect faults that are triggered by
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feature interaction erroneously between the number of features, by employing CIT tech-
niques. We next summarize the main primary studies addressing this first SPL testing
interest.

P19 proposed an incremental approach to product sampling for pairwise interaction
testing called IncLing Incremental sampLing. They applied CIT to reduce the test effort
of the SPL by selecting a minimum but sufficient subset of products, thus restricting the
number of products to be tested.

P05 used similarity-based CIT as a surrogate metric for t-wise coverage, that is, if the
size of test suites is unfeasible due to technological problems or budget constraints.

P10 used the similarity technique to compare two configurations. They claim that
model-based tests have greater failure detection power than similar ones. Due to the
application of the two configurations, they used the direct distance metric, that is, a set
of distance metrics to evaluate their degree of similarity.

In P10, the main focus of SPL testing has been on the use of pairwise testing, where the
coverage takes place through combinations of features, aiming to select a set of products.

P11, P12, P19, and P23 presented approaches in which the pairwise technique was
used as an heuristic for the design, selection and coverage of test cases.

The pairwise testing technique aims to select a set of products to test where possible
combinations of two features are covered by at least one selected product, i.e., pairwise
has focused on obtaining full coverage of all combinations of features with the minimum
number of products to be tested.

In order to improve the coverage of the test, only two out of the selected studies did not
present any algorithmic implementation to generate all possible connections. According
to the selected studies, a range of tools were used, but only 26% (P2, P10, P11, P17,21,
and P28) of the selected studies used the SPLCat tool to generate all possible pairs of
features Feature model.

Sanchez, Segura and Ruiz-Cortes (2014) explains that the SPLCat tool uses an im-
plicit prioritization criterion, where products that cover the most discovered pairs of
features, get first in the list.

In this first interest, we also address software quality metrics. Four out of the primary
studies addressing the first interest (P1, P2, P22, and P27) highlighted the use of metrics.
The most commonly used metrics are: Average Percentage of Faults Detected (APFD),
Fault Detection Capability (FDC), and Test Suite Fault Detection Capability (TSFDC).

3.3.3 Strategies to handle the test of end-product functionalities (RQ2)

This second research question is mostly interested in leveraging the testing practices
handling problems regarding the actual testing of functionalities, a common activity of
product development.

For each feature, there must be (a set of) test cases present in the test suite to validate
whether the characteristic has been properly implemented. There are some character-
istics intrinsic to this SPL testing interest a technique should address, as follows: (i)
Variability - SPL test assets are explicitly designed and modeled making their variation
points explicit, (ii) Test asset reuse - Test assets from domain engineering may be sys-
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tematically reused in application engineering, as assets from a product instance may serve
as input for a next instance, (iii) Test Automation - employing an automated strategy
for generating SPL test assets leads to significant effort reduction, (iv) SPL process -
tests can be performed in core asset development, in product development, or in both
processes. Table 3.6 lists the studies addressing each of these characteristics.

Table 3.6 Issues addressed by each primary study.

Study
Variability Asset reuse Automated gen.
TC TS TC TS TR TD TC TCS TI

P1 · · · · · · • · •
P2 • · • · · · · · ·
P3 • · · · · · • · ·
P4 • · · · · · · · ·
P5 · · · · · · · · ·
P6 • · • · · · • · ·
P7 • · · · · · • · ·
P8 � · · • • · · · ·
P9 • · · · · · • · ·
P10 · • · · · · · • ·
P11 · • · · · · · · ·
P12 · · · · • • · · ·
P13 · · • · · · · · ·
P14 · · • · • · · · ·
P15 · • · · · · · · ·
P16 · • · · · · · · ·
P17 · • · · · · · · •
P18 · · • · • · · · ·
P19 · · · · · · · • ·
P20 · · · · · · · · ·
P21 · • · · · � · · ·
P22 • · · · · · · · ·
P23 · • · · · · · · ·
P24 · · · · · · · • ·
P25 · · · · · · • · •
P26 · • · · · · · · ·
P27 • • · · · · · · ·
P28 · • · · · · • · ·
P29 · · · · · · • · ·
P30 · • · · · · · · �
P31 • · • · · · • · ·
P32 • · · · · · · · ·
P33 • · · · · · · • ·

Legend : [•] Characteristic clearly addressed by the study, [�] The study encourages the use
of such characteristic, but do not provide any implementation (e.g., it states an external
tool is used, but no detail is provided), [·] Characteristic not mentioned in the study, [TC]
Test case, [TI] Test input, [TD] Test data, [TCS] Test case selection, [TR] Test result, [DE]
Domain Engineering, [AE] Application Engineering, [TS] test Scenarios.

We analyzed how the studies address the automated generation of test cases (TC),
test cases selection (TCS) and test inputs (TI). In 10 out of the 16 studies, the authors
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presented a description of how to perform the automated tests by offering tool support
to deal with the mentioned characteristics.

Moreover, we analyzed the level of evidence gathered from each study, as Table 3.7
shows. They were mostly evaluated through academic studies (Lev4) with 63% of the
total, followed by the evidence obtained from industrial studies (Lev5) with 31%, and one
study obtained evidence from industrial practice (Lev6) and another from demonstrations
or toy samples (Lev2), representing around 3% of the studies each.

Table 3.7 Evidence level addressed in each primary study.
Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6
P1 •
P2 •
P3 •
P4 •
P5 •
P6 •
P7 •
P8 •
P9
P10 •
P11 •
P12 •
P13 •
P14 •
P15 •
P16 •
P17 •
P18 •
P19 •
P20 •
P21 •
P22 •
P23 •
P24 •
P25 •
P26 •
P27 •
P28 •
P29 •
P30 •
P31 •
P32 •
P33 •

3.3.4 Testing metrics suitable for SPL testing (RQ3)

When we deal with software, we always keep in mind that the software complies with
the requirements of the customer. In this context, according to Pressman (2005), the
quality of software is a compliance of functional requirements requested by the customer
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and documented according to development standards.

Metrics are a quantitative measure of the degree to which the system, component,
or process has a given attribute (IEEE, 2008). In other words, metrics are the means
that we can measure a system, giving it due confidence in the product. There are several
software quality metrics.

By analyzing gathered data, we could observe that the studies P1, P2, P14, P16, P18,
P21, P22, P27, P28, and P33 (30% out of the total) used the following metrics: Mean
Number of Failures Fetected, Fault Detection Capability (FDC) and Average Percentage of
Faults Detected (APFD). These metrics are related to the quality of the test, to evaluate
how quickly the failures are detected during testing.

Another set of metrics, although not as commonly used as the aforementioned list,
could also be observed. In Lopez-Herrejon et al. (2014a), the authors employed the
metric Hypervolume (HV) and Generational Distance, which are quality indicators used
in the multi-objective community to compare the approximate Pareto fronts of various
algorithms. Among other authors who have used the Distance Metrics, Distance Learning,
Euclidean Distance, Jaccard, Dice, Anti-dice distance, where they represent 19% of the
selected primary studies (P3, P10, P11, P24, P25 and P27). These measure the diversity
between two products and the authors used distance metrics to compare the similarity
of the sampling set.

Devine et al. (2016) used the change and static code metrics. Change metrics were
used for classification of fault-proneness at a file level. In particular, for each file we
extracted the same set of seventeen change metrics, and Static code metrics that capture
information pertaining to the source code. They range from simple metrics, such as
Lines of Code (LOC), to metrics that measure structural intricacy, such as Cyclomatic
Complexity (CC).

3.3.5 Variability testing techniques (RQ4)

Of the 33 selected studies, 66% (22) of the studies present several types of testing
techniques to handle variability. The studies were categorized in three dimensions: De-
sign, Selection/Prioritization or both. The test Selection/Prioritization dimension were
considered in 50% of the identified studies, followed by 32% of the design tests, and the
remaining 18% covered both dimensions.

The studies P2, P4, P10, P11, P16, P17, P21, P22, P28, P30 and P31 present prioriti-
zation testing techniques. The studies P4, P10, P11, P28, and P30 used the Pairwise test
techniques. P4 presented a parallel genetic algorithm to generate a prioritized pairwise
test sets for SPL called Parallel Priorized Genetic Solver. Authors compared this with
the Covering Array Generation Algorithm for SPL prioritized-ICPL Algorithms. The
prioritized ICPL does not calculate coverage matrices with full coverage, it covers only
the n-wise combinations among the features that are present. In this context, they used
Prioritized Pairwise Covering Arrays in SPL.

The techniques proposed by P10 are effective and scalable search-based approaches
capable of generating product configurations for large-sized SPLs. Authors used prioriti-
zation algorithms for any set of product configurations.
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The techniques employ a similarity heuristic evaluating empirical studies through a
comparison with last generation tools and focusing on generating the configuration of the
product as in the aspects of prioritization. Prioritization techniques based on interaction
coverage that is commonly used in CIT studies and based on t-wise interaction coverage.
In the comparison of prioritization approaches, the area under curve is evaluated and
represents the weighted average of the percentage of failures detected over the life of the
test set.

P21 developed three fault injection strategies and identified differences in performance
between algorithms by improving search results. These techniques that drive knowledge
of the problem domain, in which the authors measured the impact of performance.

The studies P3, P32, and P11 used techniques such as mutation operators, multi-
objective evolutionary techniques and fault-based testing technique.

The authors P32 presented a mutation system that evaluates the quality of the SPL
tests through the ability to detect failures. The authors used the test techniques: fault-
based testing technique and mutation analysis. The model-based mutation operators
are adapted from automated and executed model testing cases and automated mutation
analysis.

The slicing technique is an analysis technique to automate the retest decision. P6
propose an automated analysis of the impact of the change based on the incremental slice
of the model for the incremental test in SPL. Authors used the techniques of Change
Impact Analysis that captures all changes between the test models, and Retest Coverage
Criterion which represents a pi cut criterion for which there is a slice regression, while the
Retest Test-Case Selection and Generation Validate the changes do not unintentionally
influence the behavior already tested.

The selected studies P3, P15, P23, P26, P27, and P30 present an algorithm-oriented
approaches. P15 propose and evaluate a hyper-heuristic approach (HH) to derive a set
of Feature Models product tests. Hyper-heuristics is a methodology that automates the
design and configuration of algorithms, whose purpose is to solve computationally difficult
problems. P23 propose a method and a tool that exploits and helps engineers to validate
and manage in an automated, scalable, and efficient way. The approach is based on
scheduling constraints which allow engineers to increase the effectiveness of configuration
tests. This technique covers the modeling of software variability using a feature model
and specifying the dependencies between them.

P26 used two Block-based Algorithm and Variable-based Algorithm to optimize the
high coverage of the common code base in terms of preprocessed C ++ configurations
with a limited set of actual configurations selected for testing. The two algorithms au-
tomatically detect the settings by maximizing preprocessor-level code coverage in C++
based projects.

P33 evaluate black box testing techniques in variability in the Drupal framework,
using CIT. To perform the test, the authors used the combinatorial algorithm as an
example ICPL that is used to generate an pairwise suite for the Drupal feature model,
using different criteria based on functional and nonfunctional information to derive a
request from test cases that allows to detect failures.
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3.3.6 SPL Testing tools (RQ5)

Aiming at greater agility in the activities of the test process, we present some tools
to support SPL testing. Test support tools can contribute to reduce time, and improve
productivity, reliability, and especially quality for each stage of the test life cycle.

Of the 33 primary studies selected, 68% are proposing as tools, while only 16% are
proposing algorithms and 16% of the studies are proposing both.

With the extraction of the data, we observed that the SPLCAT tool was used by 18%
of the selected studies - P2, P10, P11, P17, 21, and P28.

P2 used the SPLCat tool to select the test pairs and implement a fault generator,
the authors also used the Average percentage of faults detected (APFD) metric to aid in
the speed of fault detection. P2 points out that “SPLCAT uses an implicit prioritization
criterion by first listing the products that cover the most discovered pairs of features”.

P5 calculated and compared the number of failures that were lost by the products
generated using CASA covering array, whereas P21 measured the metric values Aver-
age percentage of faults detected (APFD) of both prioritized suites generated by a non
dominated sorting genetic algorithm II (NSGA-II) adaptation and the initial set of pairs
generated by the CASA algorithm in each execution.

3.4 ANALYSIS AND DISCUSSION

In the preceding work (MACHADO et al., 2014), the selected studies were separated
into two large groups, which were referred to as first interest and second interest. For
approaches in both interests to be concerned with minimizing the test effort, there is
little evidence on the subject of obtaining higher rates of defect detection.

Machado et al. (2014) state that each interest has a specific purpose in the SPL
test task, knowing common faults can be useful, and can guide an engineer to better
identify the faults that are most likely to occur. In addition to the above-mentioned
observation, we compared and discussed the main open-ended questions we found by
each of the interests and our findings. This work was carried out from two feature-based
(first interest) or product-based (second interest) perspectives. The studies selected by
Machado et al. (2014) in the period from 2003 to 2013 remained at the same level in
relation to this work carried out in the period from 2014 to 2016, as presented in section
3.3.1 in Figure 3.2.

• First SPL testing interest

The main problem of the first interest in SPL testing is to reduce the set of possibilities
for a reasonable and representative set of product configurations, thus limiting the effort
required to test each selected configuration (LOCHAU et al., 2012).

In their study, Machado et al. (2014) show the current techniques are manipulated
the combinatorial problem and they can be categorized as sampling and exhaustive ex-
ploration techniques. While the former emphasizes the selection of configurations, as well
as pairwise coverage, to reduce the combinatorial space involved, the latter intends to
consider all possible configurations, forming a flexible and scalable alternative to current
techniques in the behavioral aspects of SPL.
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Several approaches were found in our work. The ones that stood out most were
based on the CIT, which the main objective is to select a group of products where
the interaction failures can occur. To address the problem, an incremental approach to
product sampling for paired interaction testing called IncLing Incremental sampLing was
proposed by Hajjaji et al. (2016a). Authors performed a combinatorial test to reduce
the SPL test effort by restricting the number of products to be tested for a minimal
subset of products, while the authors Fischer et al. (2016) analyze how the faults are
distributed between resources and how effective it is for detect failures and how the
similarity compares to the classic coverage t-wise.

In the studies selected by Machado et al. (2014), we observed the use of several
optimization algorithms and the applicability of prioritization techniques from test cases
to test and, finally, to evaluate the quality of the product line test of through the ability
to detect faults as quickly as possible. In this sense, one of the concerns is which strategy
to use to test all feature interactions in variability. It is necessary to test and analyze all
possible combinations of existing features, even in reasonable size variability models.

In P10, authors applied the strategy to evaluate real FM and randomly generated.
They investigated the likelihood of encountering an interaction failure using a randomized,
search-based approach that works with constraints capable of generating and prioritizing
product configurations. When there is a problem in generating SPL configuration, it can
be solved by a CIT tool if it handles constraints. CIT targets sample configurations to
reduce the size of test suites (HENARD et al., 2014).

Another highlight was the generation of sets of test cases using tools with combina-
torial algorithms (P11, P12, P19 and P23). Wang, Ali and Gotlieb (2015) emphasizes
minimizing testing for product lines by reducing the total number of test cases to be
performed, thereby improving test efficiency. In that sense, they investigate the fitness
function with three Genetic Algorithms based on weight and seven multi-objective search
algorithms using an industrial case study and 500 artificial problems. While other au-
thors, such as Devroey, Perrouin and Schobbens (2014), focus only on the creation of
algorithms to construct a set of tests that satisfies the criterion of coverage of all states
at the SPL level with focus on the behavioral aspect using failure injection.

• Second SPL testing interest

The second interest is composed by most of the approaches that deal with the speci-
fication of variability in test assets. According to the variable scenarios, they can include
specifications for the entire set of possible products, depending on how the variant fea-
tures are instantiated. In this instance, not all possible test cases can be derived, but are
derived from the SPL test specification. Through a specific product the test cases will
actually be derived by instantiating the tags in each SPL use case.

As the number of products increases, the number of test cases would also increase. In
this sense, the search for the solution to minimize the test suites for a specific product is
essential. In addition, an efficient testing process should systematically explore the reuse
of test artifacts among products under test (MACHADO et al., 2014).

The analysis of uniformity and variability is the domain engineering, which the process
occurs and defines the reusable test assets. In this study it was identified that 31% of
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the studies selected for the second interest. Most of the analyzed approaches deal with
the specification of variability in the test assets, and explore the capability of variability
models to propose strategies to define reusable tests.

Lochau et al. (2014b) uses delta-oriented architectural test component, which en-
ables the generation and reuse of test artifacts between different system variations, while
Lochau et al. (2014b) uses an efficient integration test approach for SPL based on delta
modeling, focusing on prioritizing test cases by highlighting the differences between vari-
ants and identifying the altered parts, which can be retested.

To analyze the computation, Lackner and Schmidt (2014) use model-based mutation
operators and adapt them to test cases, automated modeling and execution of automated
mutation testing and analysis. The authors developed several mutation operators, and
use state machines from the Unified Modeling Language (UML) to reduce costs and
efforts in test cases. They evaluated the mutation techniques against the tests generated
from the specifications by transcribing the conclusions about the effectiveness of operators
mutations.

3.4.1 Threats to Validity

We observed some threats that might affect the validity of our this empirical study.
We next discuss them.

Internal validity. The first threat refers to the subjective decisions we take to either
include or not a primary. To mitigate this threat, the study was carried out with two
researchers and a specialist from the area to consolidate the differences in a collaborative
way and to evaluate the primary studies following a pre-defined protocol.

Next, when considering data extraction from primary studies, some of the studies
did not provide a clear description or objectives and results. To mitigate the threat, it
was necessary to incorporate the most complete primary studies possible to increase the
reliability of the conclusions.

External validity. Threats to external validity are the ability to propagate the
achieved results outside the observed environment. In this SLR, we selected representative
results of the research questions, and selected only four digital libraries according to the
Table 3.2. Although we have considered the most important venues, whose are most likely
to find SPL-related studies, such a limited size may hinder generalizations of findings.

Construct validity. The threat to construct validation refers to the relationship
between theory and observation. We attempted to leverage all relevant studies in the topic
under investigation, combining automated and manual researches, to increase coverage.

Conclusion validity. The validity threat to the conclusion describes a relationship
between treatment and outcomes, that is, it addresses the issues that affect our ability to
draw correct conclusions about an experiment and whether the operations of a study can
be repeated with the same results. In this study, we defined search strings and procedures
so that other researchers could replicate it directly and objectively and they could find
the same set of primary studies.
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3.4.2 Related work

In 2004, Tevanlinna, Taina and Kauppinen (2004) published a research on SPL testing.
They discussed established practices and challenges that surrounds the SPL testing field.
The focus of the discussion was on the methods developed to be applied to test product
families, ignoring particular features of a particular method. The paper served for a long
time as a good road map for researchers to investigate the field.

Neto et al. (2011) carried out a systematic mapping study to analyze important as-
pects that should be considered when adopting test tools. They evaluated 33 primary
studies from the period 1999 to 2011. Of the 33 studies, 24 described single-system test
tools and the other 9 SPL test tools described. Tools are usually developed to support a
specific testing level, under the justification that there are no tools supporting the whole
software testing process. We identified the possibility to use single system testing tools
such as JUnitMX and CodeGenie to support the SPL testing process.

3.5 SUMMARY

Machado et al. (2014) presented a SLR on SPL testing strategies, covering the period
from the year 2008 to 2013. In this current investigation, we elaborated on such a study,
and expanded the year range, to include studies published up to the year 2016, as well
as included some more research questions, to focus on aspects not covered in previously
published literature reviews in this field.

This chapter reported an extended and updated review, based on this former study.
To assist us in our research questions in the next chapter, the result of the first interest
presents the understand how products are selected from a very large set of possible asset
testing products and how each selected product is tested. Of the 33 studies selected,
16 provided material for the discussion of the first research question, while 22 articles
described strategies that matching the second interest.



Chapter

4
MERCI - A METHOD TO EVALUATE CIT TOOLS

FOR SPL ENGINEERING

Testing SPL projects is a rather complex activity, due to the presence of variability
in its engineering process, which increases the number of product configurations to test.
The underlying idea to make testing feasible in SPL engineering is to select a small but
representative subset of products to test, by employing techniques such as CIT.

CIT can be considered as an affordable strategy to reduce the overall testing effort
by selecting a small but representative set of products to test (LOPEZ-HERREJON et
al., 2015; YILMAZ et al., 2014). CIT techniques have been used in several domains and
there is a variety of tools to support the testing process (YILMAZ et al., 2014). They
are mainly concerned about providing feasible test configuration selection or employing
test prioritization approaches. However, selecting either a CIT technique or support tool
suitable to SPL engineering is not straightforward.

In order to facilitate the process of selecting support tools which both implement CIT
techniques and may be suitable for SPL engineering, we designed MERCI, a method to
evaluate the adequacy of CIT techniques to test SPL projects. This Chapter discusses
the proposed method in details.

4.1 THE MERCI METHOD

In this section, we describe our proposed method to evaluate the adequacy of CIT
tools for SPL testing. Figure 4.1 shows an overview of the method, comprising the set of
steps to take in order to assess a given CIT technique. The steps are discussed next.

1. Generate a Reduced Set of Product Configurations

In this first step, the goal is to generate a reduced set of product configurations.
Firstly, we need to select some features to generate the reduced set.

To achieve this goal, we use a Feature Models (FM) to calculate a coverage matrix,
using a pairwise technique, which will serve as input and generate the possible
combinations of features that could satisfy the n-wise coverage.

37
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Figure 4.1 Overview of the MERCI.

The presence of variability may add significant challenges to the development of
SPL projects. Through a FM, as Figure 4.2 shows, it is possible to generate an
enormous amount of products. For example, the BankAccount system, a small SPL
project used in this investigation, could generate around 40 products. Whether we
considered larger projects, testing all combinations of features could be an exhaust-
ing activity. Therefore, the idea is to cover all combinations of parameters, but
without necessarily testing all of them.

To generate the reduced set of product configurations, that are representative of all
combinations, we select a set of features and their respective constraints, be they
mandatory, optional or alternative, that will serve as input for each tool.

The features input in the CIT tools is as follows: each feature is launched as a
parameter and each feature has its hierarchical value. When a feature is mandatory,
it receives only a true value, when the feature is optional, it may receive either true
or false values, and then the constraints between the features are inserted.

After the input of the features in the CIT tools, the tool is executed, and the
expected result is the configuration of the reduced products set, which is capable
of satisfying the all n-wise coverage.

2. Build Product Configurations Set

After generating the Reduced Set of Product Configurations, this would serve as
the input for building the reduced products, that is, to generate the products with
their source code. This is enabled with the support of an automated tool to gen-
erate product instances, such as the FeatureIDE (THUM et al., 2014), a toolset
supporting the Feature-Oriented Software Development (FOSD) paradigm. In the
FeatureIDE, it is possible to select the Generate Reduced Set of Product Config-
urations from a feature model option, which makes it possible to automatically
generate distinct products.

3. Automatically Generate Test Cases

The goal of this step is to generate the automated test cases. The source code of the
reduced product set will be used as input to this phase. The automatic generation
of test cases could result in an increased test coverage.
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Such a task depends upon tool support. The Randoop tool1 is a good choice, for
the valuable results it may yield. It generates tests for Java code in JUnit, and
optimizes all test suites to satisfy a code coverage criterion. The expected results
of this phase are the automated test cases.

The Randoop tool generates two types of unit tests: Error-revealing tests and
Regression tests. Error-revealing tests aim to fail at the time of execution, indicating
a possible error in one or more test classes, and regression tests are tests that pass
when executed. Randoop selects a method to call. The method selected will be the
last method call in the test. Randoop chooses arguments for the method call, among
the values that were calculated by previous tests. No preconditions are thrown for
each method, so by default it assumes that any exception thrown by a method
and is a correct behavior in response to values that were passed (ABDELGHANY
MICHAEL ERNST, 2010). For the execution of the experiment, the regression
tests were used.

4. Inject Faults

In order to evaluate the effectiveness of the generated test cases, we need to seed
some faults in the source code. Fault injection could be supported by the mutation
testing technique (JIA; HARMAN, 2011). It is a technique to improve the coverage
of a test, in which faults are inserted into the source code to test software paths.

Likewise the preceding steps, it is necessary to count on automated tool support, in
order to reach better coverage. There are several automated tools to inject faults
in Java-based programs. PIT 2 provides test coverage for Java and reports a set of
metrics. Faults are inserted into the source code of the products through automated
PIT tools.

Next, it is necessary to introduce random mutants that lead some test cases to
fail. The quality of the tests can be evaluated by analyzing the percentage of dead
mutants, ensuring that such mutations are contained only in variants in certain
combinations of features (COLES et al., 2016).

PIT works by randomly inserting mutants in an automated form and the tests occur
on the units modified in the project code. As a result, we get a set of mutated source
code classes.

According to Coles et al. (2016), mutants aim to measure how good the tests are,
observing and comparing the runtime behavior of non-mutated and mutated pro-
grams. Mutants are artificially introduced, measuring the suitability of the test,
operating quickly and acting directly on the bytecode by optimizing the executed
mutants, and supporting a small number of mutation operators.

1Randoop is a unit test generator for Java. It automatically creates unit tests for Java classes, in
JUnit format. Available at 〈https://randoop.github.io/randoop/〉.

2PIT is a state of the art mutation testing system, providing gold standard test coverage for Java and
the jvm. Available at 〈http://pitest.org/〉.
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This is aimed to limit the number of mutants and the execution time (AMMANN,
2015). A list of mutants handled by the PIT tool is available at (COLES et al.,
2016).

5. Execute Test Cases

The application of the MERCI method requires the execution of the tests. For
this implementation, we must select a set of variants to test. The test cases were
included in the Eclipse projects.

Then, we run the automated tests using the PIT tool. PIT automatically inserted
the mutants into the .class files.

Each of these mutated versions of the selected variants is then tested and the test
results compared against each other.

Therefore, the assertions in the unit test may not be valid in certain variants, and
we would mistakenly assume that the mutation was detected.

The result for our MERCI Method is a set of mutants detected for a given product.

6. Analyze Test Results

The generated tests are applied throughout the SPL, taking into account different
combinations of features selected in the SPL.

After running the tests, the results are then evaluated, and compared against each
other. Such a comparison takes into account measures like the number of defects
detected - based on the analysis of mutants detected for each system -, code cov-
erage, and also the information about how long it took to run the test set, in each
CIT tool.

This analysis makes it possible to define the effectiveness of each CIT tool.

4.2 DEFINITION OF THE EXPERIMENTAL STUDY

The SLR findings reported in the previous chapter led us to observe a lack of empirical
studies concerning the analysis of the effectiveness of existing SPL testing tool support.
In this effect, we planned to assess the MERCI method aiming to analyze the effec-
tiveness of CIT tools regarding their adequacy to SPL engineering projects.
The following research questions drive this investigation:

• RQ1. Which tool uncovered the largest number of defects?

• RQ2. Which tool obtained the highest code coverage test?

• RQ3. Which tool required the shortest execution time?

We selected four CIT tools: ACTS, CATS, PICT Master and VPTag. These are
aimed at reducing input data for single systems. Our main intention was to evaluate
their adequacy to generate reduced input data for SPL projects.
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Table 4.1 Selected SPL projects.

System Domain NF NOF NC NM NP

BankAccount Bank 6 5 2 12 24

DiGraph Library 4 3 8 64 8

ExamDB Database 4 3 4 54 8

PokerSPL Game 11 5 8 63 28

Legend: [NF] Number of Features, [NOF] Number of Op-
tional Features, [NC] Number of Classes, [NM] Number of
Methods, [NP] Number of Products

Based on an automatically generated set of products considering the SPL projects,
we analyzed whether the CIT tools were capable to build a reduced, but representative
and effective test set. Table 4.1 shows raw data of the selected SPL projects. These were
implemented for different domains and they have different sizes.

For each CIT tool, we followed the MERCI method steps. To accomplish the overall
goal of this empirical evaluation, we ran product configurations generated with the sup-
port of the FeatureHouse composer (APEL; KASTNER; LENGAUER, 2009) - with the
support of the FeatureIDE. To further strengthen the study, random sets of tests were
generated automatically with the support of the Randoop tool.

Next, we introduce the subject SPL projects used in this study and discuss the reduced
products set generated from the analyzed CIT tools.

4.2.1 Tools

With the choice of CIT technique, the 4 tools were selected for implementing pairwise
techniques. In addition, we look at their availability (license + access to tutorials, etc.),
and recent reports in the literature. After an analysis in each one of the tools the ones
that most fit and were available were the tools ACTS, CATS, PICT Master and VPTag.

Next, we present the main characteristics of the four tools designed to handle the
paired tests.

• ACTS - Advanced Combinatorial Testing System. The tool generates test
sets that ensure t-way coverage of input parameter values. The ACTS supports
t-way combinatorial test generation with several advanced features such as mixed-
strength test generation for up to a 6-way coverage. The ACTS supports three
types of values: Boolean, Integer (Int) and Enumerative (Enum). The test gen-
eration algorithms implemented in ACTS are: IPOG, IPOG-D, IPOG-F, IPOG-F2

(YU et al., 2013).

• CATS - Constrained Array Test System. It is a tool for generating test cases
with the objective of improving the coverage and efficiency of the test. The tool
provides statistical test plans. It is an online tool, which generates unique test cases
to improve test productivity and reduces the number of test cases performed. The
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results of the generator are presented in Hyper Text Markup Language (HTML)
tables accessible from a browser.

• PICT Master. This is a free software that generates combinatorial interaction
test cases by using the Pairwise method. It is a CUI-based application (Character
User Interface) which runs at the command prompt. PICT Master Master overlays
the CUI-based PICT Master with an Excel-based GUI (graphical user interface)
shell. The main input for the PICT Master Master is a plain text file. The core
generation algorithm uses a greedy heuristic, similar to the AETG algorithm. The
tool might generate test cases for several types of tests.

• VPTag - Visual Pairwise Test Array Generator. This is a tool aimed to
automatically deliver test combinations based on the pairwise approach. It is a
free software application and uses the Tai-Lei algorithm (TAI; LEI, 2002) to create
the tests. VPTag uses the input parameters in pairs to perform the combinations
(VISUAL. . . , 2010). The algorithm that has been applied includes the constraints
on the inputs, ensuring that no invalid tests are generated and the constraints are
respected.

4.2.2 Subject Programs

We selected SPL projects developed in Java whose source code was available to be
used in the FeatureIDE, with the FeatureHouse composer, and the projects developed in
Java and that the source code was available. The projects were selected according to the
availability of these characteristics.

Although the projects were developed in the same programming language and were
available in the same repository, they were developed by different teams. The source code
is a mandatory asset for our investigation. Next, we present the four projects that were
selected as subjects of this work.

• BankAccount: It provides a means to generate distinct projects for managing
bank accounts, in terms of the individual features they provide. Figure 4.2 shows
the feature Model of this project. It contains six features, five of which are op-
tional. When considering the CIT tools, the CATS tools generated a reduced set
of 7 products, while the ACTS, PICT MasterMaster and VPTag tools generated 6
products;

• DiGraph: It simulates a library for representing and manipulating directed graph
structures. Beside basic graphs, it also supports various operations such as removal,
traversal, and transposition, implemented as optional features. The project has four
features, from which three are optional ones, as Figure 4.3 shows. In this project,
the ACTS, CATS, PICT MasterMaster and VPTag tools generated a reduced set
of 4 products each;

• ExamDB: This is a tiny SPL project in the Database domain. Figure 4.4 shows the
FM of the project. The project can deliver products that manages students’ exams,
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Figure 4.2 Overview of the Feature Model BankAccount.

Figure 4.3 Overview of the Feature Model DiGraph.

including features for subscription and backouting, bonus points, and statistics.
In this project, the ACTS, CATS, PICT Master and VPTTag tools generated a
reduced set of 4 products;

Figure 4.4 Overview of the Feature Model ExamDB.

• PokerSPL: This is a project in the Games domain. Figure 4.5 shows the project
feature model, which comprises eleven features, from which five are optional ones.
The ACTS, PICT Master and VPTag tool generated a reduced set of 8 products,
while the CATS generated a reduced set of 6 products.

4.2.3 Hypothesis

Based on our goals, we designed the following hypotheses:

• (H0) All tools have similar results;

• (H1) At least one tool stands out from the others.
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Figure 4.5 Overview of the Feature Model PokerSPL.

Such hypotheses correspond to all research questions, RQ1, RQ2 and RQ3.

4.2.4 Statistical Tests

This section discusses the statistical tests used to analyze collected data in relation
to all research questions.

Analysis of Variance (ANOVA) is a statistical test used to validate the hypothesis
tests. According to Kim (2014), ANOVA is used for a comparison of more than two
groups, unidirectional ANOVA is the appropriate method in place of the t-test. For
Wohlin et al. (2012) ANOVA is a family of parametric tests that can be can be used
to analyze experiments from a number of different designs, and ANOVA can compare
projects with one factor, with more than two treatments.

ANOVA aims to observe the total variability of the data and to compare the variability
due to the treatment and random error.

Before applying ANOVA, it is necessary to make sure that the following assumptions
are respected:

1. The populations have distributions that are approximately normal. If the popula-
tion does have a distribution that is far from normal, it is recommended to use the
Kruskal-Wallis test.

2. The populations have the same variance σ (or standard deviation σ).

3. The samples are simple random samples, that is, samples of the same size have the
same probability of being selected.

4. The samples are independent of each other, that is, the sample are not matched or
paired in any way.

5. The different samples are from populations that are categorised in only one way.

The first step to interpret the ANOVA results is understanding that a small p-value
(such as 0,05 or less) leads to rejection of the null hypothesis of equal means while a
large p-value (such as greater than 0,05), fails to reject the null hypothesis of equal
means (TRIOLA, 2006).
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Tukey’s test: This statistical test is generally used in conjunction with ANOVA to
find which means are significantly different from one another. The Tukey’s test, also
known as Tukey-Kramer method or Tukey’s Honestly Significant Difference (HSD) test,
is a single-step multiple comparison procedure.

The test compares the means of every treatment to the means of every other treatment;
that is, it applies simultaneously to the set of all pairwise comparisons and identifies where
the difference between two means is greater than the standard error would be expected
to allow (NATRELLA, 2010).

4.3 RESULTS AND DISCUSSION

This section presents the data extracted from the empirical evaluation, used to answer
the research questions.

4.3.1 Sampling

Figure 4.6 presents the sample size without product reduction. BankAccount, Di-
graph, ExamDB, and Poker projects have the size of 24, 8, 8 and 28 products respectively.

After the reduction, the sample size for the ACTS tool using the BankAccount,
Digraph, Poker, and ExamDB project were respectively 6, 4, 8 and 4 reduced products
representing the sample.

The sample size for the CATS tool using the BankAccount, Digraph, Poker, and
ExamDB project were respectively 7, 4, 6 and 4 reduced products representing the sample.

The sample size for the PICT Master tool using the BankAccount project, Digraph,
Poker, and ExamDB were respectively 6, 3, 8 and 4 products the sample.

The sample size for the VPTag tool using the BankAccount project, Digraph, Poker,
and ExamDB were respectively 6, 4, 3 and 4 products the sample.

4.3.2 Defect detection capability (RQ1)

In this research question, quality control is the medium from which it is used to
evaluate the quality of the software. Defect detection capability is one of the evaluation
metrics based on the history of defects detected during the system test phase.

Data presented in Tables B.6 B.7 B.8 and B.9 in Appendix B, show that the tools
generated a subset of reduced products for each tool and for each product. The BankAc-
count system together with the ACTS tool generated a subset of 6 products, and will
be named P1, P2, P3, P4, P5 and P6 and so on for other tools and projects. For the
analysis of the results of the experiment, we performed the sum of all the products (P1
+ P2 + P3 + P4 + P5 + P6) and applied the statistical tests.

We created sets of automated test cases based upon the four selected SPL projects.
After creating the test cases, we seeded mutants in the projects through the PIT tool.
Table 4.2 details the number of mutants per project. Moreover, it presents the amount
of total mutants and the number of detected mutants (dead mutants) by the tools.

By observing data from Table 4.2, the BankAccount project obtained the smallest
number of mutants inserted. This is likely due to the project size. The BankAccount
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Figure 4.6 Products’ Sample Size by Tools

Table 4.2 Number of mutants killed by number of mutants inserte

ACTS CATS PICT Master VPTag

Mutants Mutants Mutants Mutants

Project/Tool Killed Insert Killed Insert Killed Insert Killed Insert

BankAccount 88 237 128 313 99 265 109 291

Digraph 543 1080 507 1080 543 1080 507 1080

ExamDB 737 1247 797 1246 765 1246 797 1246

Poker 412 735 374 670 412 735 159 288

project contains 6 features, but each feature consists of only two classes, one interface
(not all features contain interface). And each class has ranged from 15 to 35 lines of
codes. Therefore, it obtained the lowest number of mutants inserted.

Figure 4.7 shows the boxplots indicating that the ACTS, CATS, PICT Master and
VPTag tools obtained rather similar results regarding the number of dead mutants. On
the other hand, Figure 4.8 shows the number of live mutants. The boxplots indicate that
the results were similar and the CATS tool presented slightly different values.

In order to evaluate if any of the tools is significantly different from the others, we
tested the results statistically through ANOVA.

In this observation, the p-value for the ANOVA was 0.936. In other words, it was not
possible to reject the null hypothesis (all tools have similar results).

Moreover, to identify different means, we applied the Tukey’s test.
Table 4.3 shows the p-values of the correlation between the tools. We identified that

none of the tools presented statistically significant differences.
Figure 4.9(a) shows the boxplots for the tools’ defect detection capability. The
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Figure 4.7 Number of dead mutants.

Figure 4.8 Number of live mutants.

horizontal lines crossing the boxplot indicates the median, while the dots show how the
values spread over the Y-axis. The tools yielded similar results.

4.3.3 Code coverage (RQ2)

Regarding this research question, we complied the sums of all lines of all subsets, as
detailed in Appendix B. The code coverage analysis was performed through the analysis
of LOC traversed by the PIT tool, for the mutants detection.

Regarding test coverage, it was not possible to reject the null hypothesis, due to the

Table 4.3 P-value results for defect detection capability.

ACTS CATS PICT Master

CATS 0,978 - -
PICT Master 0,999 - -
VPTag 0,950 - -
PICT Master - 0,983 -
VPTag - 0,998 -
VPTag - - 0,958
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(a) Defect detection capability (b) Code coverage (c) Test execution length

Figure 4.9 Results by tools

value of the correlation between the tools p-value was 0.995. To verify the result, we also
performed the Tukey’s test. Table 4.4 shows the results of such a comparison.

Table 4.4 P-value results for test coverage.

ACTS CATS PICT Master

CATS 0,999 - -
PICT Master 0,999 - -
VPTag 0,994 - -
PICT Master - 0,999 -
VPTag - 0,999 -
VPTag - 0,996

There is no significant difference between the tools concerning test coverage. Figure
4.9(b) presents the boxplots of test coverage by tools. The tools presented similar results.

4.3.4 Test execution length (RQ3)

In this research question, the execution time was measured in minutes and seconds.
Test teams should be able to properly plan their schedules, resources, and estimates for
the test run effort, because the effort may be restrictive in practice (ARANHA; BORBA,
2007).

The test run works as follows: (i) the Randoop test generation tool considers minimum
requirements coverage and maximum execution effort; (ii) it is analyzed the set of test
cases using the PIT mutation tool, where the estimated effort is calculated based on the
time that the PIT tool was able to detect the defects.

Once again, it was not possible to reject the null hypothesis, given that p-value was
0.882. To check the result, we performed a multiple comparison procedure using Tukey’s
test. Table 4.5 shows the comparison results.

Figure 4.9(c) presents the boxplots representing the test execution length. We iden-
tified outliers in ACTS, CATS, and VPTAG. Moreover, the tools execution length were
similar.
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Table 4.5 P-value results for test execution length.

ACTS CATS PICT Master

CATS 0,970 - -
PICT Master 0,999 - -
VPTag 0,979 - -
PICT Master - 0,960 -
VPTag - 0,852 -
VPTag - 0,985

4.3.5 Analysis and Discussion

Among the selected SPL projects (see Table 4.1), we carried out a strategy to reduce
the number of products. As a result, we achieved a significant reduction in the number
of representative products in Digraph and ExamDB projects. We generated 8 possible
products. However, the reduction led to the number of 4 representative products in each
project. In addition, the Bank Account project has reasonable average overall, as they
generated on average 6 to 7 reduced sets out of 24 possible ones.

With these reduced sets of products, we performed mutation testing, using defect de-
tection capability, test coverage, and test execution length measures. Then, we validated
the results of the tools by making a comparison between them.

After analyzing the results, we could observe that the tools yielded very similar results.
With a too high p-value, it was not possible to reject the null hypothesis, concerning their
defect detection capability.

Regarding RQ2, test coverage, we applied the Tukey’s test, which indicated that it
was not possible to reject the null hypothesis.

Concerning the RQ3, test execution length, we could not reject the null hypothesis
as well. Such a study yielded very similar results, when considering distinct CIT tools,
and the observed measures: Defect detection capability, Test coverage, and test execution
length. Therefore, we could not reject any of the stated null hypotheses. No statistically
significant differences could be found between the tools (ACTS, CATS, PICT Master,
and VPTAG). This may be an indicator that all the analyzed tools could fit in the SPL
engineering context, and not only in the single-systems development.

4.3.6 Threats to Validity

Internal Validity. Because SPL projects acted from different perspectives, such as
size, domains, during the inspection, the systems obtained similar results. It might be
explained due to the small size of the systems. We understand that larger-sized systems
must be included in this analysis.

External Validity. No industrial SPL projects were used in this study; only open source
SPL projects created for educational and research purposes were used. To minimize such
a threat, we analyzed widely-accepted projects by the SPL research community, which
have been used as testbeds for empirical evaluations.
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Construct Validity. The MERCI method was developed ye only considering projects
developed in Java. This may hinder larger inferences on the basis of our observed results.

Conclusion Validity. We used statistical tests recommended by the empirical software
engineering community (WOHLIN et al., 2012). This procedure aimed to minimize issues
regarding the conclusions we drew.

4.4 CHAPTER SUMMARY

This chapter presented our proposed method for evaluating the adequacy of CIT
tools for testing SPL projects, named MERCI. Besides, we presented an empirical study
performed to evaluate four well-accepted CIT tools for single-systems development, and
how they could behave when testing SPL projects. The observed results indicate that the
tools could be used for both single-systems development and SPL engineering. Indeed,
more in-depth studies, with larger samples must be carried out, so we could strengthen
the confidence in both the evaluation method and on the adequacy of CIT tools.



Chapter

5
CONCLUSION

There are several testing tools available in the market that may be unable to directly
support the SPL testing process. Some tools proposed for SPL testing are neither avail-
able nor implemented as a ready-to-use tool. This is a “must go” direction for the SPL
research community. In order to make SPL testing a feasible approach in practice, it is
necessary to have adequate tool support.

A particular step we took in this dissertation was to analyze existing tool support
for single-systems development, in order to evaluate whether they are also suitable for
SPL engineering testing. We proposed a method to support such an evaluation. Our
results indicate that existing tool support, considering CIT testing, a good approach for
reducing test sets, could be adequate to SPL engineering as well.

Whereas we understand this study is a tiny step towards improving SPL testing
practice, we believe it could be an interesting starting point to enhance comprehension
of the role of existing tool support for testing SPL engineering projects.

According to the data collected and analyzed in the experiment, the method presents
indications of its effectiveness. We believe this dissertation is yet another step towards
the maturity of testing tools in SPL testing.

We next discuss related work and pinpoint opportunities for further research in this
field.

5.1 RELATED WORK

Regarding the empirical evaluation carried out in this dissertation, we identified three
similar studies. These are discussed next.

The study conducted by Accioly, Borba and Bonifacio (2012) carried out an empir-
ical evaluation to compare two manual black-box testing techniques, namely a generic
technique that was observed in an industrial test environment, and a specific product
technique whose functional test cases could be derived using any SPL technique that
considers variations in functional tests. The comparison was performed through a con-
trolled experiment with students simulating a real-world test environment. After the
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experiment, they reported the differences between the two techniques for testing SPL
products.

Another similar study to ours is the work of Perrouin et al. (2012), who performed
an experiment using the t-wise technique for SPL and applied them in two sets of inde-
pendent tools developed by the authors. The authors compared two approaches (CSP-
dedicated and Alloy-based) for reducing test cases, both based on the t-wise interaction
testing. In order to evaluate the approaches, they used measures such as the number of
generated test configurations, and the similarity between them. Both approaches were
considered functionally equivalent from the t-wise testing perspective.

Fischer, Lopez-Herrejon and Egyed (2018) presented a benchmark to evaluate the fail-
ure detection capabilities of SPL testing approaches. Due to the lack of publicly available
SPL tests and actual SPL failures, the authors designed a process to automatically gen-
erate tests and failures, consisting of a set of Java-based SPLs for which they generated
test sets, and introduced mutations to simulate failures. The work performed through
a set of variants to test based on some coverage criteria. The authors claimed that the
biggest problem to evaluate such test approaches is to correctly compare them against
each other.

All these works present same empirical evaluation to compare existing SPL testing
techniques. We consider these as important empirical studies, but they do not discuss
how real-world support tools could behave when testing SPL projects. In this effect, we
could establish that a key difference between these and our proposal is that our work
aims at a comparative analysis of support tools. In practice, any SPL project should
count on support tools for generating its test assets, and we believe that our study could
provide the SPL research and practitioners community with an affordable strategy to
select adequate tools.

5.2 OPEN ISSUES AND FUTURE WORK

We consider this study as an initial endeavor towards establishing a means to make
SPL testing an easier activity. One of the most important open issues is how to select a
software testing tool, which is both reliable and ready to use. In this sense, we contribute
to such advances in SPL testing.

However, we believe that a more in-depth empirical evaluation must be performed so
that we could have stronger confidence on the tools to select to real-world SPL projects.
We next describe some steps to take in future investigations.

The present dissertation only considered three metrics that were implemented at PIT
tool to evaluate the effectiveness of the proposed method. For this reason, more metrics
may be included as well.

The design of this study should be used in some replications, which consider larger
samples, and not only academic-purposes SPL projects, such as those used from the
SPL2GO repository, but also real-world SPL projects. This is a good strategy to mitigate
the issues concerning external validity of this study.

We used several tools to derive test sets, to inject faults, and to analyze the results.
It could be interesting to have an integrated approach, with an automated support, so
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that it could be easier for any ordinary SPL engineer to use the approach and select a
given testing tool, based on a set of inputs.
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APPENDIX A

SYSTEMATIC LITERATURE REVIEW - PRIMARY
STUDIES

This Appendix presents detailed information on the primary studies included the
Systematic Literature Review discussed in Chapter 3.

A.1 PRIMARY STUDIES

Table A.1 Primary studies

ID Title Author(s) Venue

P1
Abstract Test Case Generation for Behavioural Test-
ing of Software Product Lines

Devroey, Perrouin and
Schobbens (2014)

SPLC’14

P2
A Comparison of Test Case Prioritization Criteria for
Software Product Lines

Sanchez, Segura and Ruiz-
Cortes (2014)

ICST’14

P3
A Mutation and Multi-objective Test Data Genera-
tion Approach for Feature Testing of Software Product
Lines

Filho and Vergilio (2015) SBES’15

P4
A parallel evolutionary algorithm for prioritized pair-
wise testing of software product lines

Lopez-Herrejon et al. (2014b) GECCO’14

P5
A Preliminary Empirical Assessment of Similarity for
Combinatorial Interaction Testing of Software Prod-
uct Lines

Fischer et al. (2016) SBST’16

P6
Applying Incremental Model Slicing to Product-Line
Regression Testing

Lity et al. (2016) ICSR’16

P7
Applying Model-based Software Product Line Testing
Approaches to the Automation Engineering Domain

Lochau et al. (2014a) AT’14

P8
Assessment and cross-product prediction of software
product line quality: accounting for reuse across prod-
ucts, over multiple releases

Devine et al. (2016) ASE’16

P9
Automation of test scripts in software product line us-
ing Model driven architecture

Ahmed, SidAhmed and El-
toum (2015)

ICCNEEE’15

P10
Bypassing the Combinatorial Explosion: Using Simi-
larity to Generate and Prioritize T-Wise Test Config-
urations for Software Product Lines

Henard et al. (2014) TSE’14

P11
Comparative analysis of classical multi-objective evo-
lutionary algorithms and seeding strategies for pair-
wise testing of Software Product Lines

Lopez-Herrejon et al. (2014a) CEC’14

P12
Cost-effective test suite minimization in product lines
using search techniques

Wang, Ali and Gotlieb (2015) JSS’14

Continued on next page.
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Table A.2 Continued.
ID Title Author(s) Venue

P13
Delta-oriented model-based integration testing of
large-scale systems

Lochau et al. (2014b) JSS’15

P14
Delta-oriented Test Case Prioritization for Integration
Testing of Software Product Lines

Lachmann et al. (2015) SPLC ’15

P15
Deriving products for variability test of Feature Mod-
els with a hyper-heuristic approach

Strickler et al. (2016) ASC’16

P16
Effective product-line testing using similarity-based
product prioritization

Hajjaji et al. (2016b) SSM’15

P17
Fault-based Product-Line Testing Effective Sample
Generation based on Feature-Diagram Mutation

Reuling et al. (2015) SPLC’15

P18
Fine-grained Test Case Prioritization for Integration
Testing of Delta-oriented Software Product Lines

Lachmann et al. (2016) FOSD’16

P19
IncLing: Efficient Product-line Testing Using Incre-
mental Pairwise Sampling

Hajjaji et al. (2016a) GPCE’16

P20
Input-output conformance testing for software product
lines

Beohar and Mousavi (2016) JLAMP’16

P21
Multi-objective test case prioritization in highly con-
figurable systems: A case study

Parejo et al. (2016) JSS’16

P22
Multi-objective Test Prioritization in Software Prod-
uct Line Testing: An Industrial Case Study

Wang et al. (2014) SPLC’14

P23
Practical minimization of pairwise-covering test con-
figurations using constraint programming

Hervieu et al. (2016) IST’16

P24
Search-based similarity-driven behavioural SPL test-
ing

Devroey et al. (2016) VaMoS’16

P25
Similarity-based Prioritization in Software Product-
line Testing

Al-Hajjaji et al. (2014) SPLC’14

P26
Supporting software product line testing by optimizing
code configuration coverage

Vidacs et al. (2015) STTT’15

P27
Test Control Algorithms for the Validation of Cyber-
physical Systems Product Lines

Arrieta, Sagardui and Etxeber-
ria (2015)

SPLC’15

P28
The Drupal Framework A Case Study to Evaluate
Variability Testing Techniques

Sanchez, Segura and Ruiz-
Cortes (2013)

VaMoS’13

P29
Towards Incremental Test Suite Otimization for Soft-
ware Product Lines

Baller and Lochau (2014) FOSD’14

P30
Towards scalable configuration testing in variable soft-
ware

Rothberg et al. (2016) GPCE’16

P31
Towards Statistical Prioritization for Software Prod-
uct Lines Testing

Devroey et al. (2013) VaMoS’14

P32
Towards the Assessment of Software Product Line
Tests: A Mutation System for Variable Systems

Lackner and Schmidt (2014) SPLC’14

P33 Variability testing in the wild: the Drupal case study Sanchez et al. (2017) SoSyM’15



APPENDIX B

EXPERIMENTAL EVALUATION

This appendix presents raw data for all the observations from the experiment carried
out in this dissertation.

B.1 SAMPLING

Table B.1 shows the number of test case sets for each product that has been reduced
regarding each of the analyzed CIT tools.

Table B.1 Number of Sets of Test Cases

Tools Products BankAccount Poker DiGraph ExamDB

ACTS

P1 26 2 2 6

P2 27 3 2 6

P3 27 3 2 6

P4 26 4 2 5

P5 28 3 - -

P6 28 3 - -

CATS

P1 23 3 2 8

P2 26 4 2 7

P3 27 4 2 5

P4 24 3 2 4

P5 25 3 - -

P6 21 3 - -

P7 25 3 - -

PICT Maste

P1 31 3 2 6

P2 27 3 2 6

P3 29 3 2 5

P4 27 3 2 6

P5 23 3 - -

P6 28 2 - -

VPTag

P1 23 4 2 8

P2 26 4 2 7

P3 29 3 2 5

P4 27 2 2 4

P5 30 4 - -

P6 28 3 - -
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Table B.2 shows the number of test case for each product that has been reduced
regarding each of the analyzed CIT tools.

Table B.2 Number of Test Cases

Tools Products BankAccount Poker DiGraph ExamDB

ACTS

P1 12215 134 203 2325

P2 12285 727 60 2331

P3 12560 587 216 2041

P4 12416 1084 301 1598

P5 13439 693 - -

P6 13404 655 - -

P7 - 950 - -

P8 - 1036 - -

CATS

P1 12215 1016 280 3442

P2 12416 947 387 2764

P3 12560 645 136 1695

P4 10714 623 57 1466

P5 11600 727 - -

P6 9909 984 - -

P7 11982 - - -

PICT Master

P1 14750 693 60 2331

P2 12285 727 203 2325

P3 13946 940 301 1598

P4 12560 645 216 2041

P5 12215 134 - -

P6 13404 1084 - -

P7 - 1016 - -

P8 - 587 - -

VPTag

P1 12215 134 280 3442

P2 12416 1016 387 2764

P3 13729 640 136 1695

P4 12977 - 57 1466

P5 13686 - - -

P6 13439 - - -
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Table B.3 shows the number of classes that each product contains.

Table B.3 Number of classes by project

Tools Products BankAccount Poker DiGraph ExamDB

ACTS

P1 2 6 6 3

P2 2 8 5 3

P3 2 6 5 3

P4 2 8 4 3

P5 2 6 - -

P6 2 8 - -

P7 - 7 - -

P8 - 8 - -

CATS

2 8 6 3

P1 2 8 4 3

P2 2 8 5 3

P3 2 8 5 3

P4 2 8 - -

P5 2 8 - -

P6 2 - - -

PICT Master

2 6 5 3

P1 2 8 6 3

P2 2 7 4 3

P3 2 8 5 3

P4 2 6 - -

P5 2 8 - -

P6 - 8 - -

P7 - 6 - -

VPTag

2 6 6 3

P1 2 8 4 3

P2 2 8 5 3

P3 2 5 3

P4 2 - - -

P5 2 - - -
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Table B.4 shows the total number of lines and the number of lines covered by the PIT
tool.

Table B.4 Line Coverage

Tools Products BankAccount Poker Digraph ExamDB

ACTS

P1 8/21 76/76 137/161 83/102

P2 16/26 118/127 84/96 106/133

P3 10/23 76/76 126/154 102/132

P4 17/25 122/122 25/81 72/91

P5 16/35 76/76 - -

P6 8/12 120/120 - -

P7 - 102/102 - -

P8 - 122/122 - -

CATS

P1 17/36 124/124 133/165 123/138

P2 17/25 122/122 29/85 97/127

P3 10/23 118/118 121/150 77/96

P4 7/12 120/120 72/92 78/97

P5 18/35 118/127 - -

P6 17/35 124/124 - -

P7 9/13 - - -

PICT Master

P1 8/22 76/76 84/96 106/133

P2 16/26 118/127 137/161 83/102

P3 18/34 102/102 25/81 72/91

P4 10/23 118/118 126/154 102/132

P5 17/36 76/76 - -

P6 8/12 122/122 - -

P7 - 124/124 - -

P8 - 76/76 - -

VPTag

17/36 76/76 133/165 123/138

P1 17/25 124/124 29/85 97/127

P2 9/22 118/118 121/150 77/96

P3 8/13 72/92 78/97

P4 19/35 - - -

P5 16/35 - - -

Table B.5 shows Min, 1st Qu., Median, Mean, 3rd Qu. Max. and stdev., related to
the code coverage.
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Table B.5 Mean related to the line coverage

Min 1st Qu. Median Mean 3rd Qu. Max. stdev.

ACTS 12.00 45.25 93.50 86.95 122.00 161.00 46.05222

CATS 12.00 35.00 97.00 88.76 124.00 165.00 49.52868

PICT Master 12.00 46.00 93.50 87.45 123.50 161.00 45.39743

VPTag 12.00 35.00 97.00 88.76 124.00 165.00 49.52868

Table B.6 shows the amount of total mutants inserted, the dead mutants, the mutants
not detected by the PIT tool in relation to the BankAccount project.

Table B.6 Number of Mutants in the BankAccount Project

Tools Products Total Dead Mutants Alive Mutants Undetected

ACTS

P1 31 4 9 18

P2 49 22 16 11

P3 42 19 3 20

P4 40 21 12 7

P5 61 11 21 29

P6 14 11 1 1

CATS

P1 69 22 18 29

P2 40 21 12 7

P3 42 19 3 20

P4 15 4 7 4

P5 60 21 14 25

P6 65 22 18 25

P7 22 19 1 2

PICT Master

P1 35 4 9 22

P2 49 22 16 11

P3 56 21 14 21

P4 42 19 3 20

P5 69 22 18 29

P6 14 11 1 1

VPTag

P1 69 22 18 29

P2 40 21 12 7

P3 34 11 3 20

P4 23 15 4 4

P5 64 29 14 21

P6 61 11 21 29
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Table B.7 shows the amount of total mutants inserted, the dead mutants, the mutants
not detected by the PIT tool in relation to the PokerSPL project.

Table B.7 Number of Mutants in the PokerSPL Project

Tools Products Total Dead Mutants Alive Mutants Undetected

ACTS

P1 66 34 32 -
P2 113 62 48 3
P3 66 37 29 -
P4 112 64 48 -
P5 66 37 29 -
P6 110 61 49 -
P7 90 53 39 -
P8 112 64 49 -

CATS

P1 113 64 49 -
P2 112 62 50 -
P3 109 61 48 -
P4 110 61 49 -
P5 113 62 48 3
P5 113 64 49 -

PICT Master

P1 66 37 29 -
P2 113 62 48 3
P3 90 53 37 -
P4 109 61 48 -
P5 66 34 32 -
P6 112 64 48 -
P7 113 64 49 -
P8 66 37 29 -

VPTag

P1 66 34 32 -
P2 113 64 49 -
P3 109 61 48 -
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Table B.8 shows the amount of total mutants inserted, the dead mutants, the mutants
not detected by the PIT tool in relation to the Digraph project.

Table B.8 Number of Mutants in the Digraph Project

Tools Products Total Dead Mutants Alive Mutants Undetected

ACTS

P1 354 197 82 75
P2 206 121 43 42
P3 337 193 56 88
P4 183 32 12 139

CATS

P1 357 179 83 95
P2 186 35 12 139
P3 334 189 61 84
P4 203 104 30 69

PICT Master

P1 206 121 43 42
P2 354 197 82 75
P3 183 32 12 139
P4 337 193 56 88

VPTag

P1 357 179 83 95
P2 186 35 12 139
P3 334 189 61 84
P4 203 104 30 69

Table B.9 shows the amount of total mutants inserted, the dead mutants, the mutants
not detected by the PIT tool in relation to the ExamDB project.

Table B.9 Number of Mutants in the Project ExamDB

Tools Products Total Dead Mutants Alive Mutants Undetected

ACTS

P1 275 175 47 53
P2 364 225 69 70
P3 367 219 72 76
P4 240 146 41 53

CATS

P1 383 279 64 40
P2 348 204 68 76
P3 259 162 44 53
P4 256 152 51 53

PICT Master

P1 364 225 69 70
P2 275 175 47 53
P3 240 146 41 53
P4 367 219 72 76

VPTag

P1 383 279 64 40
P2 348 204 68 76
P3 259 162 44 53
P4 256 152 51 53
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Tables B.10, B.11, B.12 show Min, 1st Qu., Median, Mean, 3rd Qu. Max. and stdev.
regarding data for the Number of dead mutants, Number of live mutants and Defect
detection capability respectively.

Table B.10 Mean related to the dead mutants

Min 1st Qu. Median Mean 3rd Qu. Max. stdev.

ACTS 4.00 24.50 57.00 82.18 139.75 225.00 7485518

CATS 4.00 22.00 62.00 87.91 146.00 279.00 7587139

PICT Master 4.00 24.50 57.00 82.68 139.75 225.00 7439239

VPTag 11.00 22.00 61.00 92.47 162.00 279.00 8457624

Table B.11 Mean related to the live mutants

Min 1st Qu. Median Mean 3rd Qu. Max. stdev.

ACTS 1.0 17.25 40.00 36.68 48.75 82.0 2252488

CATS 1.0 14.0 48.0 37.1 50.0 83.0 23.84514

PICT Master 1.0 16.5 39.0 36.5 48.0 82.0 2250238

VPTag 3.00 14.00 32.00 36.12 51.00 83.0 2448694

Table B.12 Mean related to the defect detection

Min 1st Qu. Median Mean 3rd Qu. Max. stdev.

ACTS 14.00 62.25 111.00 149.91 231.50 367.00 120.0373

CATS 15.0 66.0 113.0 164.6 258.2 383.0 121.1782

PICT Master 14.0 66.0 110.5 151.2 231.5 367.0 118.9244

VPTag 23.0 64.0 113.0 170.9 259.0 383.0 128.3734
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Table B.13 presents the time of complete execution for the detection of mutants in
relation to the products reduction BankAccount and Poker.

Table B.13 Execution Time for the BankAccount and Poker projects

Tools Products BankAccount Poker

ACTS

P1 7 min. and 12 sec. 16 sec.

P2 13 min. and 16 sec. 58 sec.

P3 4 min. and 14 sec. 48 sec.

P4 8 min. and 52 sec. 1 min. and 1 sec.

P5 17 min. and 12 sec. 49 sec.

P6 5 min. and 50 sec. 52 sec.

P7 - 58 sec.

P8 - 1 min. and 1 sec.

CATS

P1 10 min. and 56 sec. 57 sec.

P2 8 min. and 52 sec. 55 sec.

P3 4 min. and 14 sec. 47 sec.

P4 5 min. and 43 sec. 45 sec.

P5 9 min. and 09 sec. 58 sec.

P6 8 min. and 35 sec. 58 sec.

P7 2 min. and 46 sec. -

PICT Master

P1 9 min. and 35 sec. 49 sec.

P2 14 min. and 16 sec. 58 sec.

P3 11 min. and 20 sec. 57 sec.

P4 4 min. and 16 sec. 47 sec.

P5 10 min. and 56 sec. 16 sec.

P6 5 min. and 50sec. 1 min. and 1 sec.

P7 - 57 sec.

P8 - 48 sec.

VPTag

P1 10 min. and 56 sec. 14 sec.

P2 8 min. and 52 sec. 57 sec.

P3 4 min. and 35 sec. 53 sec.

P4 4 min. and 58 sec. -

P5 10 min. and 42 sec. -

P6 17 min. and 12 sec. -
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Table B.14 presents the time of complete execution for the detection of mutants
regarding data for the projects Digraph and ExamDB.

Table B.14 Execution Time for the Digraph and ExamDB projects

Tools Products DiGraph ExamDB

ACTS

P1 30 sec. 3 min. and 12 sec.

P2 14 sec. 7 min. and 09 sec.

P3 33 sec. 5 min. and 56 sec.

P4 12 sec. 2 min. and 01 second

P5 - 18 min. and 18 sec.

CATS

P1 40 sec. 4 min. and 35 sec.

P2 20 sec. 3 min. and 57 sec.

P3 31 second 1 minute and 37 sec.

P4 8 sec. 1 minute and 37 sec.

PICT Master

P1 14 sec. 7 min. and 09 sec.

P2 20 sec. 3 min. and 12 sec.

P3 12 sec. 2 min. and 01 second

P4 33 sec. 5 min. and 56 sec.

VPTag

P1 40 sec. 4 min. and 35 sec.

P2 20 sec. 3 min. and 57 sec.

P3 31 second 1 minute and 37 sec.

P4 8 sec. 1 minute and 37 sec.

Table B.15 show Min, 1st Qu., Median, Mean, 3rd Qu. Max. and stdev. regarding
data for the Test execution length in all the projects.

Table B.15 Mean related to the Test execution length

Min 1st Qu. Median Mean 3rd Qu. Max. stdev.

ACTS 12000 49250 60200 184754 284250 894000 236400

CATS 8000 46000 59000 155090 240100 551000 166584

PICT Master 12000 48250 59100 188064 315000 691000 224578

VPTag 8000 40000 97000 212571 275000 886000 244985


