
Federal University of Bahia
Institute of Mathematics and Statistics

Graduate Program in Computer Science

EXPLOITING HETEROGENEOUS
COMPUTING TECHNIQUES TO ADDRESS

PROBABILISTIC BIG DATA LINKAGE

Cĺıcia dos Santos Pinto

DOCTORAL THESIS

Salvador, Bahia - Brazil
28 July 2020

CĹICIA DOS SANTOS PINTO

EXPLOITING HETEROGENEOUS COMPUTING TECHNIQUES
TO ADDRESS PROBABILISTIC BIG DATA LINKAGE

This PhD thesis was presented to the
Graduate Program in Computer Sci-
ence (PGCOMP) of the Federal Uni-
versity of Bahia (UFBA) as a partial
requirement for the granting of the
title of Doctor (PhD) in Computer
Science.

Advisor: Prof. Dr. Marcos Ennes Barreto

Salvador, Bahia - Brazil
28 July 2020

Sistema de Bibliotecas - UFBA

Pinto, Cĺıcia.
Exploiting heterogeneous computing techniques to address probabilistic

big data linkage / Cĺıcia dos Santos Pinto – Salvador, Bahia - Brazil, 2020.
88p.: il.

Advisor: Prof. Dr. Prof. Dr. Marcos Ennes Barreto.
Tese de (Doutorado) – Federal University of Bahia, Institute of Mathe-

matics and Statistics, 2020.

1. Data linkage. 2. Heterogeneous computing. 3. Optimization. 4.
Graphic processors. I. Barreto, Marcos E.. II. Federal University of Bahia.
Institute of Mathematics and Statistics. III T́ıtulo.

CDD – XXX.XX

CDU – XXX.XX.XXX

CLÍCIA DOS SANTOS PINTO

“EXPLOITING HETEROGENEOUS COMPUTING TECHNIQUES TO ADDRESS

PROBABILISTIC BIG DATA LINKAGE”

Esta tese foi julgada adequada à obtenção

do título de Doutor em Ciência da

Computação e aprovada em sua forma

final pelo Programa de Pós-Graduação

em Ciência da Computação da UFBA.

Salvador, 28 de julho de 2020

Prof. Dr. Marcos Ennes Barreto

(Orientador - PGCOMP/UFBA)

Prof. Dr. Rodrigo da Rosa Righi

(UNISINOS)

Prof. Dr. Esbel Tomás Valero Orellana

(UESC)

Prof. Dr. Maycon Leone Maciel Peixoto

(UFBA)

Prof. Dr. George Marconi de Araújo Lima

(UFBA)

George Lima

To my sister, that supports me since the first steps of this

journey and whose strength and competence have always

been an example and an inspiration, I dedicate this work

and everything it means.

ACKNOWLEDGEMENTS

I would like to express my thankfulness to Professor Marcos Barreto, mainly for his confi-
dence and direction during this research development and during my academic formation.
His knowledge that goes beyond technical competence helped me to keep the focus on the
development of proposed approaches and, at the same time, to place this research in a
local and global social context. The dynamics he built AtyImo-Lab are a great reference
and object of enormous admiration.

With a heart now full of joy, I thank my partner Anderson Amorim for share the
best and worst implications of this research conduction. I appreciate your patience,
perspective, trust, and continuous support. Sharing life with you makes everything easier.

To my parents, my sincere gratitude for helping me to get this far. I am also grateful
to my siblings and nephew for the friendship, care, presence, and encouragement many
times along the way.

vii

RESUMO

Embora a computação heterogênea seja uma poderosa abordagem para a resolução de
problemas computacionalmente intensivos, o seu desempenho e eficiência estão profun-
damente atrelados às propriedades da carga de trabalho a que são submetidos. O geren-
ciamento de grandes volumes de dados em ambientes heterogêneos implica na escolha
de algoritmos dinâmicos de escalonamento e particionamento que minimizem o tempo
de resposta e o volume de comunicação entre as unidades de processamento, ao mesmo
tempo em que assegurem escalabilidade. Esta exigência tem se tornado mais urgente à
medida que os dispositivos que compõem as plataformas heterogêneas se tornam mais
numerosos e diversificados. Este trabalho apresenta uma metodologia para a exploração
de técnicas de computação heterogênea em ambientes compostos por CPUs e GPUs para
aplicações de vinculação probabiĺıstica de grandes volumes de dados, bem como propõe
a integração deste método à ferramenta AtyImo, desenvolvida parcialmente durante esta
pesquisa. A metodologia proposta permite uma distribuição de dados e tarefas adequada
às aplicações que manipulam grandes conjuntos de dados, mais especificamente aplicações
de vinculação de registros (data linkage). Como prova de conceito, a solução implemen-
tada foi utilizada para integrar dados socioeconômicos em larga escala (100 milhões de
registros) com dados de saúde pública armazenados em diferentes fontes governamentais
brasileiras. Através da metodologia proposta foi posśıvel vincular 1× 1012 pares de reg-
istros em um tempo total próximo a uma hora, o que pode ser considerado um resultado
promissor em relação às ferramentas de vinculação de dados existentes. Estes resultados
demonstram que a solução desenvolvida possui bom desempenho e se apresenta como
alternativa viável para resolver problemas comuns de escalabilidade relacionados à vin-
culação de registros. A possibilidade de vinculação probabiĺıstica de grandes volumes
de dados sobre arquiteturas h́ıbridas, explorando a natureza heterogênea dos recursos
dispońıveis e com tempo de execução extremamente eficiente, constituem as principais
contribuições deste trabalho.

Palavras-chave: Vinculação de dados. Balanceamento de carga. Computação paralela
heterogênea. Aceleradores gráficos.

ix

ABSTRACT

Although heterogeneous computing is a powerful approach to solve computationally in-
tensive problems, its performance and efficiency highly depend on the workload to which
they are exposed. Managing large volumes of data in heterogeneous environments involves
choosing efficient scheduling and partitioning algorithms that minimize the response time
and the volume of communication among processing units while ensuring scalability. This
requirement has become more urgent as the devices composing such heterogeneous plat-
forms become more numerous and diversified. This work presents a methodology for using
heterogeneous computing techniques over hybrid CPU+GPU environments to allow for
data and task distribution within big data linkage applications. This methodology was
integrated into the AtyImo tool, which was partially developed during this research to
provide probabilistic record linkage. As proof of concept, the implemented solution was
used to integrate a large-scale (100 million records) socioeconomic database with public
health data from disparate governmental sources. The proposed methodology is able to
perform 1 × 1012 pairwise comparison in around one hour, which is a quite prominent
result amongst existing data linkage tools. Observed results evidence that the developed
solution achieves good performance and can be an alternative to solve scalability issues in
data linkage contexts. The possibility of probabilistically linking massive datasets using
hybrid architectures and exploring the heterogeneous nature of available resources with
an efficient execution time are the main contributions of this work.

Keywords: Data linkage. Load balancing. Heterogeneous parallel computing. Graph-
ical accelerators.

xi

CONTENTS

Chapter 1—Introduction 1

1.1 Contextualization . 1

1.2 Motivation . 3

1.3 Objectives . 4

1.4 Research Questions . 5

1.5 Technical Challenge . 5

1.6 Research Method . 5

1.6.1 Step 1 – Review of parallel probabilistic record linkage concepts . 6

1.6.2 Step 2 – Revision of the AtyImo data linkage tool 6

1.6.3 Step 3 – Parallel and heterogeneous modelling 6

1.6.4 Step 4 – Performance and accuracy evaluation 6

1.7 Datasets . 6

1.8 Metrics and Experimental Setup . 6

1.9 Contributions . 7

Chapter 2—Related Work 9

Chapter 3—Literature Review 11

3.1 Heterogeneous Computing Platforms . 11

3.1.1 Characterization of heterogeneous platforms 12

3.2 Algorithmic Issues concerning Heterogeneous Computing Platforms . . . 15

3.2.1 Workload-partitioning techniques over heterogeneous platforms . . 15

3.3 Big Data Processing and Analysis . 17

3.4 Data Integration in the Context of Big Data 19

3.5 Formulation of the Record Linkage Problem 21

3.5.1 Privacy preservation in probabilistic record linkage 21

3.5.2 Indexing and blocking construction 23

3.5.3 Similarity calculation . 24

Chapter 4—Case Study: Integrating Large Governmental Databases 27

4.1 Longitudinal Studies Based on Population Cohorts 27

4.2 Brazillian Governmental Databases . 28

4.3 The 100 Million Brazilian Cohort . 30

xiii

xiv CONTENTS

Chapter 5—AtyImo-H Data Linkage Tool 33

5.1 AtyImo-H . 33
5.2 Data Integration Model . 34
5.3 AtyImo-H Record Linkage Pipeline . 36

5.3.1 Application pipeline details . 37
5.3.1.1 Pre-processing . 37
5.3.1.2 Transformation . 38
5.3.1.3 Comparison . 38
5.3.1.4 Sorting . 38
5.3.1.5 Record retrieval . 38

Chapter 6—Parallel Modeling for Record Linkage 41

6.1 Probabilistic Record Linkage . 41
6.1.1 Cross-comparison . 43
6.1.2 Approximate similarity measurement 44

6.2 Heterogeneous Modelling . 45
6.2.1 Linkage pipeline adapted to a hybrid model 45
6.2.2 Data load and granularity . 46
6.2.3 Data partitioning . 48
6.2.4 Multicore parallel probabilistc comparison 50
6.2.5 Hybrid-parallel probabilistc comparison over heterogeneous envi-

ronment . 52
6.3 Discussion concerning technologies . 54

Chapter 7—Hybrid Record Linkage Experiments 55

7.1 Accuracy Analysis . 55
7.2 Performance Analysis . 56

7.2.1 Hybrid record linkage up to 20 million records 58
7.2.1.1 Experimental setup (test purpose) 58
7.2.1.2 Performance analysis . 58

7.2.2 Hybrid record linkage up to 70 million records 61
7.2.2.1 Experimental setup . 61
7.2.2.2 Performance analysis . 62

7.2.3 Hybrid record linkage up to 100 million records 68
7.2.3.1 Experimental setup . 68
7.2.3.2 Performance analysis . 69

7.2.4 Comparison with Spark-based AtyImo 75

Chapter 8—Conclusion 79

8.1 Final Considerations . 79
8.2 Future Work . 81

LIST OF FIGURES

3.1 Hybrid architecture with different interconnection links and PUs (CPUs
and GPUs). 13

3.2 Gap between ideal and actual abillity to analyze big data (LEMIEUX;
GORMLY; ROWLEDGE, 2014). 18

3.3 Generic big data pipeline and knowledge discovery process. 18
3.4 Pairwise comparison of two records (A and B) containing deterministic

(exact) and probabilistic (approximate) attributes. 20
3.5 Example of Bloom filters: applying hash functions to bigrams of a string. 22
3.6 Example of a blocking predicate implemented in this work. 24

5.1 Input and output of the three main modules of AtyImo-H’s pipeline. . . . 35
5.2 Execution pipeline for probabilistic record linkage. 37
5.3 Execution pipeline for hybrid model that performs probabilistic linkage on

heterogeneous platforms. 39

6.1 High-level overview of parallel linkage and deduplication using 3 Process-
ing Units (one CPU and two GPUs). a) Data partitioning considering
deduplication been performed on CPU. b) Data partitioning considering
2/3 of deduplication been performed by GPU. 49

6.2 Data transfer scheme considering available PUs on the heterogeneous en-
vironment. 50

7.1 Accuracy assessment in the integration of SIM-SE and CADU (cohort) data. 56
7.2 Accuracy assessment in the integration of SIM-SC and CADU (cohort) data. 57
7.3 Accuracy assessment in the integration of SIM-RO and CADU (cohort)

data. 57
7.4 Execution time for linkage step considering CPU, one GPU and two GPUs

executed in isolation and its comparison with the hybrid approach. . . . 60
7.5 Execution time for linkage step considering one GPU and two GPUs exe-

cuted in isolation and its comparison with the hybrid approach. 60
7.6 Speedup for the linkage step considering each approach implemented. . . 61
7.7 Execution time for each workload division between PUs in the sequence:

GPU, GPU, and CPU. 61
7.8 Execution time of the hybrid approach and its comparison with CPU and

GPU runtime in an environment composed of two P100 GPUs. 62
7.9 Performance gain of multi-GPU execution in comparison with CPU exe-

cution time. 64

xv

xvi LIST OF FIGURES

7.10 Execution time considering only multi-GPU execution, highlighting for
each of them a) complete execution time, b) data transfer time, and c)
kernel execution time, in an environment composed of two P100 GPUs. . 64

7.11 Kernel execution time of both GPUs in an environment composed of two
P100 GPUs. 65

7.12 Strong scaling given by the execution time for two different input sizes in
an environment composed of two P100 GPUs. 66

7.13 Strong scaling given by the speedup factor up to 80 threads for two different
input sizes in an environment composed of two P100 GPUs. 66

7.14 Strong scaling given by the speedup factor up to 40 threads for two different
input sizes in an environment composed of two P100 GPUs. 67

7.15 Weak scaling given by the execution time up to 64 threads and 64 million
records in an environment composed of two P100 GPUs. 68

7.16 Execution time of hybrid approach and its comparison with CPU and GPU
runtime in an environment composed of two V100 GPUs. 69

7.17 Performance gain of multi-GPU execution in comparison with CPU exe-
cution time in an environment composed of two P100 GPUs. 71

7.18 Execution time considering only multi-GPU execution, highlighting for
each of them: a) complete execution time, b) data transfer time, and c)
kernel execution time, in an environment composed of two V100 GPUs. . 72

7.19 Kernel execution time of both GPUs in a environment composed of two
V100 GPUs. 72

7.20 Strong scaling given by the execution time for two different input sizes in
a environment composed of two V100 GPUs. 73

7.21 Strong scaling given by the speedup factor up to 80 threads for two different
input sizes in a environment composed of two V100 GPUs. 73

7.22 Strong scaling given by the speedup factor up to 40 threads for two different
input sizes in a environment composed of two V100 GPUs. 74

7.23 Weak scaling given by the execution time up to 64 threads and 64 million
records in a environment composed of two V100 GPUs. 74

7.24 AtyImo-H CPU X GPU-based execution (pairwise comparison step only). 76

LIST OF TABLES

3.1 Advantages and disadvantages of a hybrid parallel application running on
a heterogeneous platform composed of multicore and manycore PUs. . . . 15

3.2 Qualitative difference between volume, velocity and variety of generated
data and ability to analyze it over time (Adapted from (KAY; HARME-
LEN, 2014)). 18

4.1 Government databases used in this research. 29

5.1 Availability of data cleansing functionality across different linkage tools. . 36

7.1 Execution time for different performance parameters (best values in bold). 58
7.2 Comparison of execution times (in seconds) (best values in bold). 59
7.3 Comparative performance, given by the gain with respect to time of mul-

ticore execution (best values in bold). 59
7.4 Execution time of each PU and time spent loading datasets into devices’

memory up to 70 million records (time in seconds. 63
7.5 Execution time of each PU and time spent loading datasets into devices’

memory until 100 million records (time in seconds). 70
7.6 Input data sizes loaded into each Processing Unit for different numbers of

records. 75

xvii

Chapter

1
This chapter introduces the topic of this PhD. research, presenting an overview of our motivation,

objectives, and the research questions that was pursued. Additionally, the research method employed

during this investigation is also described.

INTRODUCTION

1.1 CONTEXTUALIZATION

In recent years, we have faced the exponential growth of personal and corporate data.
Following this, the demand for scalable and efficient processing and analysis strategies has
also increased. Often both data- and compute-intensive problems that examine, analyze
and process very large scale datasets and are naturally parallelizable, increasingly use
parallel platforms and several paradigms that propose efficient distribution, processing,
and communication to deal with the big volumes of data in scenarios involving inten-
sive simulation, modeling, data mining, and other commercial and scientific applications.
Combining high-performance algorithms with efficient hardware that provides high band-
width access, storage and powerful processing capabilities can circumvent technological
limitations to accomplish this need.

A specific data-intensive problem applied to this context arises from the need of
linking data from disparate datasets. This class of data integration tasks aims at to
find data from two or more records representing the same real-world entity which are
usually stored in disparate sources (DOAN; HALEVY; IVES, 2012). When deterministic
record linkage is not possible due to the absence of common key attributes, probabilistic
strategies should be applied. For this purpose, a comparison approach and a function for
calculating similarity should be established to define an approximation degree between
examined information and to classify all pairs into specific affinity groups.

The record linkage process involves several steps: data acquisition and organization,
descriptive analysis, data quality assessment, standardization and cleansing, anonymiza-
tion (for sensitive data), block building (or indexing) for reducing the dimensionality
search space during pairwise comparison, and finally the comparison itself and similarity
analysis (to decide whether or not the records belong to the same entity).

Assuming that traditional technologies are not necessarily adequate or customizable
to address the immense volume of data that characterizes data-intensive computing, some

1

2 INTRODUCTION

technologies are presented as an alternative to meet these needs. The complexity of the
comparison step and the large volume of real datasets are major motivators for developing
parallel solutions to perform probabilistic record linkage. Deciding which approach en-
sures better efficiency and performance for this process generally involves several factors
such as response time, type of workload, communication, data granularity, and issues re-
lated to available hardware resources. Details such as input and output bottleneck caused
by the tendency to use centralized storage, data transfer and management/distribution
of tasks should be taken into account. The evolution of large-scale parallel and dis-
tributed systems has made it possible to support intensive computing, data distribution,
and resource management.

It is now clear that data-intensive problems of this class are benefiting from het-
erogeneous hardware composition made up of processors and coprocessors to accelerate
the computation. For a long time, graphics cards are no longer exclusively dedicated
to real-time rendering applications and became able to accelerate general-purpose high-
performance computing applications as well (BOLZ et al., 2003) (FUNG; TANG; MANN,
2002). Since then, several scientific applications have benefited from this composition to
mainly reduce execution time and generate timely responses. Such computational accel-
erators are built on different architectures and programming models, requiring an agile
strategy for data partitioning and task scheduling (ZHONG; RYCHKOV; LASTOVET-
SKY, 2015).

Hybrid models have been used to improve applications performance by increasing
parallel processing capabilities and optimizing the use of available resources by gather-
ing devices with different architectures and enabling instructions to be executed in the
architecture that best fits the requirements of the applications. The fact is that there
are several approaches providing data and task parallelization in a heterogeneous envi-
ronment. Also, there are many optimization models and workload distribution, so each
approach offers advantages in specific contexts. Besides, in heterogeneous computing
platforms, data partitioning and distribution strategy are largely responsible for the per-
formance of parallel applications. In scenarios where the volume of input data is large,
new challenges are introduced as optimal distribution is limited by the memory capacity
of the devices and the overhead imposed by data transfer, among other factors. There-
fore, another important challenge is the development of a strategy able to hide the latency
caused by the transfer of a large volume of data over the common interconnection bus.

The case study used as proof of concept and validation in this work is a data-intensive
application dedicated to perform a probabilistic record linkage of different governmental
datasets. Considering the high complexity of the steps composing this problem, many
researches have employed strategies to improve the overall performance and efficiency of
this kind of application. Compared to a simple dataset join, probabilistic record linkage
has a significant problem to be considered: once two records from two different datasets (A
and B) are matched and merged to C, C needs to be compared to the rest of records from
the original datasets A and B again since it may incur new correspondences (KIM; LEE,
2007). Blocking (or indexing) methods, for example, propose to reduce the search space
by making less pairwise comparison. The quadratic comparison in addiction to the size
of the input problem is prohibitive for any sequential execution, and parallel techniques

1.2 MOTIVATION 3

are required to generate timely responses useful for decision making, for example.

Many existing research considers the use of parallel and distributed computing plat-
forms to solve the probabilistic record linkage problem. Most of these studies are intended
to evaluate application performance in terms of execution time and accuracy, proposing
improvements that consider execution over distributed big data frameworks. Despite all
the efforts, few approaches consider the coordinated use of CPU and graphics accelerators
(GPUs) to solve this kind of problem efficiently and effectively.

The focus of this work was the systematic experimentation and investigation of het-
erogeneous computation techniques in environments composed of multicore processors
and multi-GPUs in order to accelerate the most costly steps of the probabilistic record
integration problem. We also aimed at to develop a solution that could be integrated into
the AtyImo tool˜(PITA et al., 2018). Specifically, the step that establishes a comparison
between all candidate pairs and calculates a similarity index for each of them to decide
whether the pairs belong to the same entity (match) or not (non-match) is the main
module considered for parallel optimization, since it corresponds to the majority of the
total execution time.

1.2 MOTIVATION

The recent rise and popularity of big data processing and analysis methodologies have
led the community to develop framework-oriented solutions that take advantage of an
easier implementation, transparency of parallel computing methods and fault tolerance
strategies avoiding data loss by eliminating the single points of failures. While this
accelerates the development of algorithms and the construction of analytical solutions, it
imposes a limitation for programmers in adapting the parallel solution to the specificities
of the underlying hardware.

Due to the new scenario imposed by the consolidation of big data and also the new
challenges that came with the exascale computing era, new research has been devoted to
investigating issues related to the integration of high-performance computing strategies
with big data needs. This new effort is also due to the fact that much of the data that has
emerged comes from scientific and industrial applications, forcing the high-performance
computing (HPC) community to keep up with these changes. To ensure efficient analysis
of data as large as those considered here, the hardware platform must be scalable and the
choice of the platform type becomes a crucial decision step. The large-scale employment
of heterogeneous computing techniques to accelerate high-performance applications relies
primarily on the expectation for reducing execution time without neglecting management
and cost issues.

The development of a more efficient solution to provide parallel and distributed com-
putation for data-intensive application is important to improve the quality of stored data
that will be used for future analysis since it is possible to test and experiment more pre-
processing models when building the data warehouse and also to improve performance
and generate responses in a reasonable time. Another advantage for the use of high-
performance solutions applied to big data scenarios is the possibility of having a cost-
effective pipeline since less time will be spent by analysts (human resources). Besides,

4 INTRODUCTION

heterogeneous computing approaches can provide less idleness of processing unities and
other hardware components, ensuring energy saving. In this sense, we sought to make
maximum use of the multiple computing resources (processing units) available in the plat-
form rather than investing exclusively in improving CPU performance. With the growing
popularity of GPUs as accelerators for scientific applications, this specialized hardware is
becoming more affordable. Due to the positive cost-effectiveness, many laboratories and
computing-intensive/HPC centers have been equipped with such accelerators.

The configuration of today’s accelerated architectures can be seen as a differential
in generating efficient models for processing and analyzing large volumes of data and
performing parallel computation on them. The recent propensity to apply heterogeneous
computing techniques to data-intensive problems has encouraged several researches in
this regard. Specifically, the vast majority of current efforts seek methods of combining
the use of such coprocessors to accelerate machine learning algorithms (CATANZARO;
SUNDARAM; KEUTZER, 2008)(CHEN et al., 2014).

The focus of this research is not only on studying methods for analyzing the perfor-
mance of GPU-accelerated algorithms but also on the parallel optimization of the most
costly steps of data-intensive problems, where probabilistic record linking is included.
Despite all recent research efforts, few studies have been directed at heterogeneous perfor-
mance analysis, parallel optimization, and scalability of such problems, since historically
the cost of data transfers has always limited the capacity of processing large datasets.

This research was firstly motivated by the limitation of current references devoted to
the in-depth study of partitioning techniques and load balancing applyed to data-intensive
applications on hybrid platforms.

1.3 OBJECTIVES

Considering the presented questions and the research opportunities associated with them,
the overarching goal of this work is the study and experimentation of heterogeneous
computation techniques in environments composed of multicore (CPUs) and manycore
(GPUs) processing units. Besides that, we also intended to examine models for data
partitioning and dynamic task scheduling among different processing units to support
applications with large workloads. Our specific research goals were as follows:

Research Goal 1: Ensure the scalability of the comparison step of big data linkage
applications by providing a high-performance alternative that can be integrated into the
AtyImo tool.

Research Goal 2: Propose an approach to ensure efficient data partitioning among
different processing units, as well as optimal resource allocation for tasks belonging to
probabilistic record linkage.

Research Goal 3: Contribute to the understanding of performance limitations in
heterogeneous architectures when scaling a big data application over GPU-accelerated
platforms.

1.4 RESEARCH QUESTIONS 5

1.4 RESEARCH QUESTIONS

During this research, we aimed at to answer two research questions:

A. Can data-intensive applications related to big data integration benefit from using a
hybrid approach that considers graphics processing units to efficiently speedup their
time-demanding steps?

B. The use of a native language and parallel programming paradigm specific to high-
performance applications will allow more efficient control of hardware resources so
that the performance improvements will be sufficient to compensate data transfer
overheads and limitations related to managing a massive workload in the memory
of different devices?

As we describe in the development of this work, using hybrid parallel architectures
enables better scalability and performance control for tasks involving the linkage of large
datasets. We show how to hide latency overhead caused by data transfer and we also
specify the limitations of keeping a massive workload at the devices’ main memory.

1.5 TECHNICAL CHALLENGE

Probabilistic record linkage, as well as most data integration problems, requires that
each record of a given dataset be compared with all records of the other dataset and a
similarity score be calculated. Since no duplicates exist, the comparison result for one
pair needs to be kept in the device’s memory until a higher similarity pair is identified.
The comparison that achieves the highest agreement stores the similarity value and the
indexes for retrieving each full record that makes up the pair. In large datasets, the
memory needed to store these cross join results becomes a limiting factor. The need to
perform intermediate disk I/O operations is a major disadvantage to the use of some big
data parallel frameworks, such as Hadoop (SHVACHKO et al., 2010).

In contrast, the effort to keep large amounts of data in device’s memory faces re-
strictions related to hardware capacity. Graphic cards, for example, traditionally have
restricted storage capacity, requiring alternative methods to ensure maximum use of its
global memory space. This was the first technical challenge faced in this research.

Further, it is necessary to consider the latency caused by data transfers. Accelerators
are traditionally connected to the host by the PCI-e bus through which data travels at a
speed that is not equivalent to the performance expected by the heterogeneous applica-
tion. To work around this problem, asynchronous transfer and algorithmic optimization
practices were employed to prevent overall application performance from being degraded.

1.6 RESEARCH METHOD

This section presents the methodology employed for conducting this research. We split
our work into four steps as follows.

6 INTRODUCTION

1.6.1 Step 1 – Review of parallel probabilistic record linkage concepts

This step sought to provide a literature review and a deepen knowledge of the state-of-
the-art for parallel methods. To accomplish this, we investigated the current data linkage
method applied by the Brazillian government and defined the limitations of their solution.
We also performed an exhausting literature review to identify approaches similar to ours.

1.6.2 Step 2 – Revision of the AtyImo data linkage tool

This step was dedicated to reviewing AtyImo, a Spark-based solution providing proba-
bilistic record linkage targeted to governmental datasets which was partially developed
during this research. AtyImo was created as an alternative data linkage tool to support
the integration of Brazilian governmental databases used in epidemiological studies. We
have studied the current limitations of AtyImo to identify potential improvements when
integrating our proposed methodology for exploring hybrid processors into the tool.

1.6.3 Step 3 – Parallel and heterogeneous modelling

This step was dedicated to the description of each algorithm developed during this re-
search. Firstly, we describe the algorithms targeted to CPU execution and some parallel
considerations useful to understand performance gains obtained in other processing units.
After that, we present the algorithms targeted to GPU, multi-GPU and heterogeneous
execution.

1.6.4 Step 4 – Performance and accuracy evaluation

One important step of this work was dedicated to providing some discussions about
hardware limitations and performance gains considering different workload placements
and parallel setups. We have also spent some time to the compararison between parallel
(heterogeneous) execution and AtyImo (Spark-based) execution.

1.7 DATASETS

The real datasets used as proof of concept were SIM (Mortality Information System) for
Brazilian states of Sergipe (SE), Santa Catarina (SC) and Rondônia (RO) and also a
5-year extraction of the CadastroÚnico (CADU) databases, totaling 100 million records).
This dataset was used for assessing the accuracy of the proposed data linkage method.
For the majority of scalability tests, we have used a synthetic dataset from different sizes
described in each experiment. The datasets used in this study are detailed in Chapter 4.

1.8 METRICS AND EXPERIMENTAL SETUP

We intended to evaluate application performance in terms of runtime and accuracy. The
parallel performance of the probabilistic comparison step is given by the speedup factor
and execution time. Accuracy is assessed by recall, precision and positive predictive value
(PPV) which refers to the number of true positives observed in the “match” set (i.e., the

1.9 CONTRIBUTIONS 7

number of record pairs correctly retrieved).
We have used three different configurations for testing our proposed methodology:

• Heterogeneous environment 1 - Test Purpose: Host Node: 4 Intel Xeon
Quadcore CPU, 2.93 GHz, 24M of cache memory, 130GB of main memory. De-
vice node: 2 Tesla k40 GPU with 28 Stream Multiprocessors (SM) and 64 Stream
Processors (SP), CUDA version 6.0.

• Heterogeneous environment 2: Host Node: 2 Intel Xeon Gold 6148, 2.40 GHz
with 20 cores each, 196GB of main memory. Device node: 2 Tesla P100-SXM2 with
16GB of main memory, 56 multiprocessors and 64 CUDA cores, CUDA version 10.0.

• Heterogeneous environment 3: Host Node: 2 Intel Xeon Gold 6148, 2.40 GHz
with 20 cores each, 196GB of main memory. Device node: 2 Tesla V100-SXM2 with
a total memory of 32GB and 5120 CUDA Cores, CUDA version 10.2.

1.9 CONTRIBUTIONS

This research significantly contributes to the state of the art by extending existing stud-
ies on functional performance analysis considering large workloads and the consequent
impact of factors such as data transfer overhead/prediction to construct an efficient data
partitioning model for environments comprised by heterogeneous processing units. An-
other important contribution is the application of this study to solve an open problem
related to the poor performance of traditional tools in probabilistic record linkage appli-
cations.

Our contributions can be summarized as follows:

• We extended our previous approach (Spark-based pipeline) to provide an efficient
parallel method to solve probabilistic record linkage that considers the computation
power of other processing units (besides CPU) and to use a native programming
language and parallel paradigms to make more efficient use of hardware.

• We developed a technique for splitting a traditional linkage pipeline at the compar-
ison step and performing efficient workload division depending on existig processors
and on the characteristics and volume of the input data.

• We have applied our solution on real government datasets in a project aiming at
to integrate large-scale (100 million records) socioeconomic data with public health
data split in disparate sources.

• The solution presented in this research has shown satisfactory recovery and clas-
sification metrics, reaching a minimum value of 97% and a maximum of 100% in
terms of accuracy.

Chapter

2
This chapter presents the updated references related to this work that was shared in the scientific com-

munity by the time of this thesis writing.

RELATED WORK

Current scientific researches that propose the investigation of high-performance tech-
niques improvements to solve probabilistic big data linkage are still insufficient to deal
with open problems imposed by recent big data specificities: i) scalability for large
databases, maintenance of a high-quality result for linked pairs (due to the variety of
big data sets), iii) ensuring privacy and confidentiality of the information being linked,
and performance necessary to guarantee timely responses, indispensable for dealing with
datasets in big data contexts.

Scalability, in general, is entrusted to big data frameworks that impose a specific
programming model (such as key/value pairs) and employ a high level of transparency
for development. On the other hand, high-performance implementations lack efficient
treatment for in-memory workload requirements. Even though HDFS be the engine used
by Hadoop, MapReduce, Spark, and others, It is also challenging rely on this distributed
file system when using HPC clusters given the need for a large amount of local storage
space (ISLAM et al., 2015).

However, we can find some works that seek to improve the traditional record linkage
application’s performance. We summarize the most relevant researches focusing on those
that propose improvements in traditional RL implementations and also those that ex-
ploit the high-performance computing architecture to reduce the execution time of such
applications.

Good scalability results are shown by (GSCHWIND et al., 2019) that employ a rule-
based record linkage method over a real-world system. They also propose a native pro-
gramming language and the load of the largest possible portion of the dataset in main
memory to maximize performance. Although this work presents satisfactory performance
analysis and results (linear scaling with the number of nodes added) for RL problem in
multicore environments, heterogeneous processing units specificities were not considered.

An OpenCL based application was proposed by (RASCH et al., 2019) that considers
modern high-performance architectures composed of multi-core CPU and many-core GPU

9

10 RELATED WORK

processing units. The authors achieved good speedups of up to 80 times. However, the
solution does not demonstrate scalability measures for large workloads, using input data
limited to 220 (number of records). (SEHILI et al., 2015) and (FORCHHAMMER et
al., 2013) also show OpenCL based implementation that has the advantage to unlink the
solution to a given manufacturer, but lacks scalability and heterogeneous optimization
considerations.

Considering that the cross-comparison required for the RL methods impose a quadratic
growth in the execution time, some strategies are adopted to reduce the search space’s
dimensionality. (KÖPCKE; RAHM, 2010) propose an approach to achieve better execu-
tion times, and different directions to accomplish this deed are presented in (CHRISTEN,
2011) and (MESTRE; PIRES; NASCIMENTO, 2015).

Despite presenting a study on the scalability of Record Linkage applications and a
parallel implementation based on the distributed framework Apache Flink (CARBONE
et al., 2015), the authors of (FRANKE et al., 2019) direct their efforts towards blocking
strategies capable of relieving the quadratic complexity of the comparison process and not
on the application’s capability to use an increasing number of processing units. (VAT-
SALAN; CHRISTEN; RAHM, 2020) also point out scalability limitations of previous
privacy-preserving Record Linkage methods, but its experimental evaluation considers
only the comparison between runtime and memory size required to linkage. Although
they propose an efficient approach to link large-scale datasets, the authors recognize the
need to better explore distributed computing and parallel processing approaches.

In-home approaches have proposed different methodologies to circumvent the same
problem when comparing all record pairs in a big data context. To reduce the search
space for integrating two datasets, (BARBOSA et al., 2019) recently proposed the use
of indexing methods based on predicates using the Lucene API (LUCENE, 2010). The
reduction of the search space significantly optimizes the cost of computing in the identi-
fication of pairs. However, there is a direct relationship with the accuracy penalty that
must be carefully considered, since the use of blocking increases the chances of false neg-
atives (i.e. records with a great probability of being similar are placed in blocks that
are never compared by the algorithm), especially in studies that require maximum ex-
actness. Besides, timely responses with the guarantee of privacy preservation include
new challenges in building an efficient and versatile integration tool. As blocking is more
beneficial for reducing the execution time, the parallelization of computation becomes
the main strategy to guarantee optimum performance without losing accuracy.

Chapter

3
This chapter presents the theoretical foundation for the development and understanding of the developed

research.

LITERATURE REVIEW

3.1 HETEROGENEOUS COMPUTING PLATFORMS

Nowadays, HPC ecosystems rely on the coordinated use of different PUs (processing units)
to promote cost-effectiveness and accelerate applications that demand high computational
capabilities. This new composition of high-performance computing scenarios is also the
result of the scientific and industrial constant search for increasingly specialized hardware
concerning the computational power reflected by the theoretical performance and number
of floating-point operations per second.

According to (MAHESWARAN et al., 1999), heterogeneous computing can be under-
stood as the coordinated use of different types of machines, networks, and interfaces to
maximize the combined performance and efficiency of an application. In this work, we
consider as heterogeneous computing the collaborative use of different processing units
to speed up related tasks. Therefore, the goal is to deliver to each architecture the most
appropriate tasks, considering the advantages and disadvantages of each hardware, as
well as to prevent any available PU from remaining idle while parallel tasks are waiting
in the execution queue. In addition to the performance gain, power efficiency is also an
extremely important point when using hybrid environments. In most applications, the
average utilization of a single GPU or CPU remains low. This is because after tasks start
running on the GPU, the CPU remains idle waiting for result data, which means a large
waste of computing power. Similarly, while the device waits for data that is taking to
long to arrive (due to the low throughput of the interconnect channel), it remains idle.

Heterogeneous computing techniques seek to minimize these problems. Not surpris-
ingly, heterogeneous computing environments represent ever-increasing numbers on the
two lists of the highest performing and most efficient supercomputers: TOP5001 and
Green5002, respectively. The success of this type of computing infrastructure depends on
the ability to design, implement, and assign particular tasks to specific resources.

1https://www.top500.org
2https: //www.top500 .org / green500

11

12 LITERATURE REVIEW

However, the biggest challenge to achieving efficient collaborative computing is related
to the difficulty of surrounding the differences between the architectures that make up
the heterogeneous supercomputing environment and the provision of a single layer of
abstraction for different paradigms and specific programming models. Not surprisingly,
unique optimizations for a particular processor are extremely inefficient when used in
a hybrid environment. The fact is that, in terms of performance, power efficiency and
development (programmability and portability), a great effort is needed to achieve an
effective solution because heterogeneous environments are still difficult to manipulate.
New heterogeneous computing techniques have been presented to exploit the potential of
these systems and meet future performance goals in a exascale context (BERGMAN et al.,
2008). In order to utilize the resources of such multiprocessing systems efficiently, parallel
applications need to be re-engineered, as well as it is needed the development of new
programming models, tools, and algorithms since hardware resources are usually built for
a specific architecture. Besides, it is necessary to take into account the workload between
different PUs (ZHONG; RYCHKOV; LASTOVETSKY, 2015) using data partitioning
and load balancing methods.

3.1.1 Characterization of heterogeneous platforms

Multiprocessor systems have made High-Performance Computing (HPC) an increasingly
enhanced reality. In practice, it is possible to add computational power according to the
need, availability, and nature of the application. In today’s HPC scenario, it is common
to add manycore processing units, called accelerators, to distributed computing nodes
composed of traditional multicore processors. Because they have a massively parallel
architecture, such coprocessors are often used to improve the performance of algorithms
with high independence between their tasks. Figure 3.1 demonstrates an example of a
hybrid platform consisting of different interconnect links and multicore and manycore
(GPU) processing units.

Ideally, the use of different multicore and manycore processing units should be trans-
parent to developers by the use of automatic partitioning and load balancing methods
capable of efficiently distribute parallel tasks over the heterogeneous hardware. Also, it
would be appropriate for parallel application modeling to fit the architecture in which it
is running, considering that each platform requires a unique resource management model.

While multicore processors are optimized for latency, manycore processors are opti-
mized for bandwidth. In other words, one can take advantage of the fact that CPUs
operate at a higher frequency and have a larger cache size to minimize latency issues.
In this way, it is possible to allow small parallel tasks to be performed by the CPU in a
low time. Although the number of cores in a GPU is much higher than in CPUs, GPU
cores operate at a much lower frequency and their cache size is reduced as the main mem-
ory. Therefore, for a GPU compensate the time spent with data transfers from the host
memory to its local memory, a good strategy is to send large tasks that can be processed
using the SIMD (Single Instruction Multiple Data) paradigm. Through this approach it
is possible to solve large scale problems that traditional computational solutions would
not be able to do. In this context, a challenge is how to best distribute the application

3.1 HETEROGENEOUS COMPUTING PLATFORMS 13

Figure 3.1 Hybrid architecture with different interconnection links and PUs (CPUs and
GPUs).

tasks among the processing groups of cores ensuring better performance (considering the
shared and distributed memory usage), as well as ensuring scalability and portability
across multiple platforms and operating systems.

In the literature, infrastructure solutions that consider the shared use of CPUs and
GPUs are commonly referred to as Collaborative Computing, Hybrid/Heterogeneous
Computing, or Co-Processed Computing (MITTAL; VETTER, 2015). In general, the
idea prevails that since GPUs are coupled to traditional multicore nodes, and considering
that most general purpose applications are still primarily optimized for multicore execu-
tion, such boards are the units classified as ”accelerators”. In this work, the term PU
(Processing Unit) is used to generalize both CPU and GPU.

To clarify the evolution of heterogeneous multiprocessor systems, it is important to
consider the evolution of parallel hardware concerning the number of transistors, the
number of cores and memory hierarchy.

• Number of Transistors: Until recently, the number of transistors on a comercial CPU
processing unit integrated circuit was around 1 billion (WENDEL et al., 2010). In
2019, AMD’s Zen 2 Epyc Processor (SUGGS; SUBRAMONY; BOUVIER, 2020)
reached the mark of 39.54 billion transistors, being 8.34 billion transistors on a
single die. In accelerated processing units, this account reaches much larger values:
54 billion transistors in 2020 Nvidia’s A100 (KRASHINSKY et al.,) and 43,3 billion
transistors in 2019 Intel’s Stratix 10 GX 10M FPGA (INTEL, 2019).

• Number of cores: Initially, CPUs contained only one or two computation cores. In

14 LITERATURE REVIEW

2019, the AMD Zen 2 had, in turn, 64 cores (128 threads). Compared to NVIDIA’s
Ampere-based A100 accelerator, the number of CUDA cores reached 6912.

• Memory Hierarchy: As the number of cores increased, the size of the Last Level
Cache (LLC) has also significantly increased. Currently, it is possible to find mi-
crochips with 144 MB of L3 cache, like the AMD Ryzen Threadripper 3970 (AMD,
2019) processor. As for GPUs, the Nvidia Tesla V100 graphics card with 32 GB of
memory and 6144 KB of cache size is popular in current production environments
and the Nvidia Ampare-based A100 graphic card with 40 GB of memory must
become popular in the futere as wall.

• Bandwidth: In 2018, the TOP500’s fastest supercomputer was composed of a het-
erogeneous NVlink high-speed link architecture not only between graphics cards but
also between CPU and GPU PUs. In practice, the NVlink connection between two
Tesla P100 cards, for example, provides a transfer rate of approximately 40 GB/s,
while for cards connected by a PCI-standard, this rate is around 10 GB/s. Be-
sides, memory bandwidth for the latest Nvidia GPU until this day A100 is around
1555GB/sec.

Given their highly parallel architecture, graphics processing units can use thousands of
threads to process a job in parallel, speeding up a job that would run up to 64 threads on
a modern CPU. Also, for applications appropriately built for benefiting from this kind of
architecture, GPUs are often more power-efficient when considering the Watt/instruction
ratio. Seeking performance optimization is a critical and challenging task, especially
when the same workload is launched to processors with different speeds and memory
configurations.

Initially, to add computational power to a high-performance node using GPUs, it was
common to connect different devices to the CPU through a PCI-e bus/switch, where it
was possible to get around 533 MB/s. As workloads become larger (especially Artificial
Intelligence training data) and GPUs become more robust, performance gains will only
be proportional if interconnection technologies keep up with this evolution.

Currently, the bandwidth provided by the PCI-e bus is known to be a bottleneck for
the performance of GPU applications. Especially for applications that perform several
small-data transfers between CPU and GPU in an iteratively way (GREGG; HAZEL-
WOOD, 2011). However, to compensate for this loss, a NVlink high-speed interconnect
offering up to 12 times faster bandwidth than PCI-e connections has been proposed. This
interconnection links both GPU and CPU processing units and GPUs arranged on the
same computational node.

Table 3.1 presents a summary considering general characteristics of PUs and archi-
tectures. For each row in the table we consider which PU is most suitable in terms of the
following metrics: a) Affordability defines the lowest current price at which this kind of
processing unit can be bought or sold; b) Small files performance defines the PU that best
handles data parallelism for small files; c) Throughput optimization defines the PU that
optimized for delivery computation for a high number of instruction simultaneously; and

3.2 ALGORITHMIC ISSUES CONCERNING HETEROGENEOUS COMPUTING PLATFORMS 15

Relevant characteristics PU multicore PU manycore
Affordability x
Small files performance x
Throughput optimization x
Latency optimization x

Table 3.1 Advantages and disadvantages of a hybrid parallel application running on a hetero-
geneous platform composed of multicore and manycore PUs.

d) latency defines the amount of time for a PU access instruction and data and deliver
appropriate answers.

3.2 ALGORITHMIC ISSUES CONCERNING HETEROGENEOUS COMPUTING
PLATFORMS

One of the biggest challenges in building parallel and distributed solutions for big data
scenarios is the computational infrastructure dedicated to data-intensive computing. Over
the years, it has been possible to observe a constant evolution in the processing capability
of computer systems. Until recently, Moore’s Law (SCHALLER, 1997) matched the
reality, periodically showing faster and increasingly dense processors. However, in the
current state of the art related to building integrated circuits, there are several obstacles to
miniaturization. On the other hand, the scientific and industrial community is embracing
other alternatives such as specialized architectures designed specifically for one sort of
algorithms. Today, computer architectures have evolved to support parallel applications
through manycore and multicore PUs.

In the big data era, HPC has evolved to deal with a different scenario since there is
a significant challenge to manage, store and operate on the data to perform large scale
data analysis (ISLAM et al., 2015). Despite this, the requirement for disk writing and
reading (I/O) remains a bottleneck: their access speed and the impact caused by their
controllers continue to negatively impact overall applications performance. That is the
main disadvantage in using Hadoop for processing in-memory workloads interactively
since Reduce tasks are I/O-bound when processing many large output files. The need for
real-time responses to support decision making in the analysis steps has forced developers
to find effective alternatives. Therefore, it is desirable that while processing and analysis
are being performed, data (or at least most of it) remains stored in main memory and
less I/O operations be performed. This strategy is adopted by current and widely used
big data processing frameworks such as Spark (ZAHARIA et al., 2010). Opportunely, the
cost of main memory resources has declined significantly, while the storage capacity has
increased, allowing for the popularization of in-memory big data processing and analysis
systems.

3.2.1 Workload-partitioning techniques over heterogeneous platforms

Considering the specific characteristics of multicore and manycore hardware presented
in subsection 3.1.1, it is clear that there are more appropriate parallel problems for

16 LITERATURE REVIEW

one architecture than another. Due to these factors, different load distribution settings
between CPU and GPU can lead to very different performance.

The chosen model for partitioning and load distribution will largely determine whether
the overall performance of the heterogeneous application will be satisfactory. Data de-
composition approaches consider, at a first level, how to partition data into heterogeneous
processors to avoid load unbalances. This imbalance is common when an improper distri-
bution is done and the processes involved in computing finish their work at very different
times. Static load balancing strategies are useful when data location is important (data
cannot shift between heterogeneous PUs) or when application performance for specific
workloads is well defined. A major advantage of static approaches is that they incur
less communication overhead between processes in a distributed memory environment as
fewer messages need to be sent.

In practical terms, small problems are not suitable for running on GPUs. That is
because the small blocks that will be processed in parallel do not utilize the full parallel
potential of the hardware. Besides, small problems can better exploit the memory hier-
archy locality in CPU environments, optimize cache usage and help to increase process
throughput and thereby, improve response time. Parallel problems of coarse granularity
can also be a problem to scalability in manycore environments, as they are made up of
fewer blocks and more serialization for each execution flow. Tasks with non-uniform mem-
ory access pattern also need to be carefully allocated to avoid communication overhead
and data search from main memory (high latency).

To achieve satisfactory performance, it is necessary to balance the load between the
PUs involved in the heterogeneous environment. For this, it is of fundamental impor-
tance to consider four points: retention of shared resources, limitation of available GPU
memory, the bandwidth of communication channels (both host-to-device/device-to-host
and device-to-device) and the impact of non-uniform memory access (NUMA).

The application investigated in this work is parallel and data-intensive, consisting of
in-memory workloads. This means that the expected workload is proportional to the size
of the input data. Also, it can be expected that there is a fixed amount of computation
that will be distributed among different threads.

Partitioning models propose load balancing based on the theoretical performance
characteristics of processors. In this research, we consider constant performance mea-
surement models based on historical execution time. When considering these types of
models, it is necessary to start from two important assumptions. The first ensures that
the absolute speed of PUs does not depend on the size of the task to be performed, but can
be represented by a constant value. The second ensures that the processing elements are
independent of each other and therefore their speeds and performance can be measured
independently. Functional performance models were considered as they generate a char-
acterization of the application workload and also a characterization of the hardware that
makes up the target system. The objective is to model the performance of the specified
application considering a certain amount of parallel threads and their allocation.

To achieve a better throughput rate – the number of tasks a processor can handle in
a given time, which can be measured by the amount of data transferred from one node
to another – it is common to use batching and streaming (PINNECKE; BRONESKE;

3.3 BIG DATA PROCESSING AND ANALYSIS 17

SAAKE, 2015). In practice, these strategies alleviate the problem of having to store the
entire workload in memory at one time, as these loads are variable in size and PUs have
limited main memory capacity (especially GPU accelerators).

Column-driven rather than row-oriented data transfers also contribute to reducing the
overhead of communication channels compared to whole-table oriented transfers. How-
ever, in modeling real problems, row-oriented data structures (such as multi-dimensional
arrays) are more common due to issues related to access speed, space optimization, and
representation. To explore the partitioning of data to be transferred to the GPU, for
example, it is necessary to alternate the shape of these structures concerning the ori-
entation of their representation. Considering the memory limitation of graphics cards,
the window size used for data transfers should not be too large. Therefore, the optimal
window size should be set according to the memory capacity of the target device.

While Constant Performance Models (CPM) assume that the relative speed of pro-
cessors does not depend on the size of the tasks handled, Functional Performance Models
(FPM) models assume that such speeds may vary due to the processor and memory
heterogeneity. In these scenarios, the speed of a PU may depend on the load assigned
to other PUs due to resource contention. The speed of each processor, then, is repre-
sented as a function of the problem size. Speed is defined as the number of calculation
units performed by the processor in a given unit of time. (CLARKE; LASTOVETSKY;
RYCHKOV, 2011), (CLARKE et al., 2013).

3.3 BIG DATA PROCESSING AND ANALYSIS

It is possible to state that the big data phenomenon has changed the way how personal
and corporate data are kept, managed, analyzed and valued, producing what we know
today as the fourth industrial revolution. This context brought the recognition that
understanding a dataset means to extract insights and answer questions. By 2020, there
will be about 40 trillion gigabytes of data, i.e. 40 zettabytes and, despite statistics and
forecasts, it is difficult to measure how fast data is growing. Throughout this process, the
technology and data science community have dedicated a comprehensive effort to provide
solutions that are compatible with the growing demand not only in terms of data volume
but also related to the complexity of the analytical algorithms. Still, as illustrated by
Figure 3.2, our ability to analyze this data grows at a much slower rate than it is required
to keep up with data demand. Table 3.3 shows the evolution of big data processing and
analysis technologies, highlighting examples of some products launched for this purpose.

Build fast data integration and analytical processes is particularly important due
to two main reasons. The first one is related to the speed that data is generated. In
many scenarios, data collection is continuous and the processing and analysis steps need
to deliver results at the same pace, with the same quality, accuracy, performance, and
efficiency, without incurring major delays. Secondly, it is important to note that the
purpose of such integration is to provide a timely response compatible with decision
making. This means that the person submitting a query needs to get the answers as soon
as possible to ensure his applications moves forward.

The application of big data brought significant changes to the industry, making pro-

18 LITERATURE REVIEW

1997 The problem of Big Data was defined by NASA. (COX; ELLSWORTH, 1997)
1998 Google was founded.
1999 Apache Software Foundation was established.
2001 The 3Vs were defined by Doug Laney. (LANEY, 2001)
2003 The Google File System was presented. (GHEMAWAT; GOBIOFF; LEUNG, 2003)
2004 Development of Google’s Big Table.
2004 MapReduce was presented. (DEAN; GHEMAWAT, 2008)
2006 Hadoop was presented.
2006 Yahoo developed Apache Pig on Hadoop.
2007 MongoDB was presented.
2008 Apache Hive, HBase and Cassandra was presented. (HIVE, 2013)
2010 Apache Spark was presented. (ZAHARIA et al., 2010)
2020 Exascale era. (ALOWAYYED et al., 2017)

Table 3.2 Qualitative difference between volume, velocity and variety of generated data and
ability to analyze it over time (Adapted from (KAY; HARMELEN, 2014)).

Figure 3.2 Gap between ideal and actual abillity to analyze big data (LEMIEUX; GORMLY;
ROWLEDGE, 2014).

Figure 3.3 Generic big data pipeline and knowledge discovery process.

duction processes more efficient, reducing costs, increasing production and allowing better
efficiency in the use of expensive resources such as electricity. In administrative and man-
agement fields such as the case study presented in this research, the use of efficient big
data technologies enable fraud detection/reduction, better employment of public money
and evaluation of the impact of previous investments. In this context, data analysis refers
to the application of some kind of data transformation intending to discover and extract
knowledge (AMARAL, 2016). The analysis provided by the record integration process is

3.4 DATA INTEGRATION IN THE CONTEXT OF BIG DATA 19

classified as ”explicit” and has a low complexity if compared to the ”implicit” analysis
provided by prediction and inference methods that often use machine learning techniques
to achieve a goal. A common process to all analysis methods, however, is the exploratory
data analysis (initially proposed by (TUKEY, 1970)) which seeks to quantitatively or
qualitatively extract the main characteristics of the data being analyzed.

Another important feature of big data analytics is the challenge posed by the cleanup
and standardization step. Due to its immense volume and origin (various heterogeneous
sources), it is always assumed that all data in this context is subject to inconsistencies,
noise, and missingness. Poor data quality will significantly impact the accuracy of any
integration process even if the developed algorithms have maximum accuracy. Prepro-
cessing techniques, therefore, are part of a generic big data pipeline presented by Figure
3.3 and that can be explained by the following list:

• Data collection and access: It is the online or offline process dedicated to performing
the systematic collection of data produced by multiple heterogeneous sources. Data
storage devices and architectures currently used to keep and access these data also
have changed after the big data era. It is no longer possible to rely on traditional
filesystems since I/O speed is a limiting factor. The information must be accessed
easily and promptly. Therefore, distributed filesystems are a proper option and
should be considered.

• Preprocessing: Common operations for data harmonization include string format-
ting, standardization of fields, removal of special characters, insertion of specific
values for missing data, removing stop words etc. This step is particularly impor-
tant to improve the input data quality and reduce the negative consequences that
noise may cause to this process. After preprocessing, data can be handled by data
mining functions and stored for future analysis.

• Transformation: This process is related to all kinds of alteration of an event from
one form to another including translation (it performs a single event in, single
event out operation), splitting (takes a single incoming event and emits a stream
of multiple events), aggregation (takes a stream of incoming events and produces
one output event that is a function of the incoming events), composition (takes two
streams of incoming events and operates on them to produce a stream of output
events) etc.

• Processing: This procedure concern the data mining process, aimed at to analyse
data using big data analytics techniques.

• Evaluation: This step includes procedures to analyze how accurate and precise are
the results generated at each step. It must be used to provide a metric to validate
the quality of the whole pipeline.

3.4 DATA INTEGRATION IN THE CONTEXT OF BIG DATA

Turning raw data into useful information that can add value and support decision making
is an increasingly urgent requirement. The problem of correlating records from different

20 LITERATURE REVIEW

dataset domains representing the same real-world entity is known as data linkage or record
linkage. This problem is a critical step in the integration process, especially when con-
sidering the huge volume of associated data. In addition to the volume, another major
challenge is the lack of a unique identification key able to ensure a deterministic link-
age between the different datasets. Therefore, it is necessary to have a set of attributes
through which a matching probability can be determined. This method is called prob-
abilistic record linkage and demands a planning step to reasoning about which linkage
keys should be used to decide about match or non-match.

The probabilistic linkage model is a technique widely used in various industrial, com-
mercial and scientific scenarios. The literature presents several methods and tools capable
of adapting traditional join operations and cartesian products to the specificities of big
data integration applications. Generally, these problems have a high complexity regarding
I/O, memory consumption and runtime.

Government, finance, and health have experimented with various methodologies for
employing more efficient data integration strategies along these lines. Specifically, in the
healthcare domain, efficient data integration allows integrated management and moni-
toring of outpatient records, as well as longitudinal follow-up of the epidemiological and
socioeconomic history of the population, generating indicators of significant importance
concerning the determinants of an outcome (a disease of interest, for example).

There are two main strategies for performing data correlation: the most flexible to
design and implement is deterministic, which links two or more records using one or more
exact match keys. When it is not possible to rely on common linkage keys, the strategy
used is to compare secondary identifier attributes through probabilistic methods. Figure
3.4 describes the attributes of two records A and B and indicates that, ideally, values for
which there are only two possible responses (equal or not equal), such as date of birth
and county code, are more suitable for exact comparison using the deterministic method.
For values that allow an approximate result (ranging from 0 to 100% of similarity), such
as names, probabilistic methods are more suitable.

Figure 3.4 Pairwise comparison of two records (A and B) containing deterministic (exact) and
probabilistic (approximate) attributes.

The main challenge for probabilistic data integration is the true-pair hit ratio since

3.5 FORMULATION OF THE RECORD LINKAGE PROBLEM 21

there is a high chance of duplicates between the attributes used in the comparison and
the possibility of divergences in the representations of the same record in different con-
texts. Besides, in order to obtain maximum accuracy, the probabilistic method needs to
perform a large number of comparisons (quadratic order) and perform complex similarity
calculations between the compared records. These two factors make probabilistic linkage
methods computationally demanding, resulting in high execution times for generating a
resulting output containing the desired true pairs. To better understand the challenges
involved in this process, we formalize the main problems of probabilistic record linkage
in the 3.5 section.

3.5 FORMULATION OF THE RECORD LINKAGE PROBLEM

The theoretical basis underlying the probabilistic record linkage method was first pre-
sented by (FELLEGI; SUNTER, 1969) and its guidelines are still widespread. Let A
and B be two separate datasets and let Ra and Rb be the set of all records of A and B,
respectively. The probabilistic record linkage method aims to classify all pairs (a, b) from
the product A x B into two distinct sets: M being the set of positive pairs (matches) and
U being the set of non-matches. It is also possible to classify pairs as “doubtful” (false
positives and false negatives) into a third set. The expected cardinality for the linkage
operation is 1 : 1 (assuming no duplicates will be included), which means that the set of
linked pairs will have the size of the small dataset at most.

Considering that pairwise comparison is performed using identifier attributes common
to both datasets (such as name, residence information, date of birth and parents name)
it is necessary to establish a similarity index to decide whether or not a pair represents
the same real-world entity. In probabilistic linkage, the similarity index represents how
permissive the method will be when adding pairs to the true pair group (M). In deter-
ministic linkage, the associated similarity index is a boolean value, since there are only
two link possibilities: match: 1 and non-match: 0. Deterministic linkage can be used for
all types of attributes. However, to increase the reliability of the method, it is recom-
mended to use it only for those values of short variation and less susceptible to errors,
such as gender, race/color, binary fill values (yes/no) etc.

3.5.1 Privacy preservation in probabilistic record linkage

Preserving the privacy of nominal and identified data is a fundamental requirement
in many contexts. Computer systems are therefore committed to implementing solu-
tions that ensure efficient and secure data management. The implementation of data
anonymization routines should be strong enough to make it impossible to re-identify the
original data by using irreversible transformations of plain text data into code. In this
way, data that was previously confidential and followed strict curation criteria can be
shared with other parties.

These anonymization and de-identification methods are common, for example, in epi-
demiological, hospital and outpatient studies in various health sectors. In applying prob-
abilistic linking procedures for data integration, the most relevant data are precisely those

22 LITERATURE REVIEW

considered as identifiers. Thus, the implementation of de-identification methods is not
applicable, since such methods require the removal of the attributes of interest, called
quasi-identifiers. The anonymized data is expected to be sufficiently representative, i.e.
the similarities and differences between the records are represented in the same propor-
tion. For this, coding methods should be developed aiming at to generate anonymized
records with maximum accuracy (plain text data representation). The record correla-
tion process, in this case, is known as privacy-preserving record linkage and imposes new
requirements on the traditional correlation methods (HALL; FIENBERG, 2010).

Another factor that should be considered in the study and development of anonymiza-
tion approaches concerns the computational performance required for record generation
and manipulation. The first challenge is to build the transformation routines. In this
sense, it is necessary to consider the cost for decomposing the plain text and the al-
gorithms that map the text that has been decomposed, in fixed-length code. These
procedures involve conventional one-way encryption, for example, and hash functions are
a common strategy in composing such algorithms. However, the reliability of anonymiza-
tion methods varies for each implementation.

Bloom Filters (BLOOM, 1970) appears in this context as a viable alternative, not only
to protect personal information and ensure data privacy but also to improve comparison
performance, since comparing two strings is a high costly operation. The method guar-
antees a satisfactory result regarding the execution time and storage space of the records
to be compared. Bloom filters are effective in maintaining the correct distance between
represented strings while solving privacy preserving issues.

Figure 3.5 Example of Bloom filters: applying hash functions to bigrams of a string.

The approach is to represent any record using an encoded data structure, represented
in a vector bitmap V of size S. At first, all elements of the vector are zeroed. The string
to be transformed must, therefore, be decomposed into bigrams (consecutive character
pairs, including blanks). The decomposition into bigrams comes from studies concerning
the natural language process. Each bigram is then submitted to H encryption (hash)
functions (MD5 and SHA1, for example) that will generate a summary. The process of
constructing a string transformation key in a Bloom filter code should be kept isolated
from the application to increase security and prevent attacks. Figure 3.5 demonstrates
the process of transforming a flat string into a bit vector.

3.5 FORMULATION OF THE RECORD LINKAGE PROBLEM 23

An entry E is submitted to a function Q, generating an encoded record. So if Q(E1)
= V1 and Q(E2) = V2, and V1 ≡ V2, it is considered V2, and V1 are positive pairs. The
equivalence between two records in Bloom filters will be given by a similarity function
that will calculate how similar the two records are. This numerical result ranges from 0
to 1 and represents the percentage of agreement between two records. The Bloom filter
method does not allow false negatives and false positives, in turn, can be reduced by
setting an appropriate length for the vectors.

3.5.2 Indexing and blocking construction

Historically, much has been investigated and developed to reduce the dimensionality
search space for candidate peers and reduce the total execution time for linkage methods
applied to large datasets. This method, also known as indexing (ELFEKY; VERYKIOS;
ELMAGARMID, 2002), applies some criteria to increase the chance that true pairs will
be compared first, to increase accuracy. The most widespread strategy used for this
purpose is to group or sort records into blocks according to some similarity rule. Several
strategies for blocking and indexing are proposed by scientific community (CHRISTEN,
2011).

The justification for the use of this strategy is because the vast majority of comparisons
made between candidate pairs to establish a single equivalence are unnecessary. Since
the attributes differ sufficiently to exclude that pair from the set of positive matches
(matches), excluding them from the search space represents a significant gain in overall
performance. The standard approach to building blocking functions is based on a subset
of common attributes to both datasets used as blocking keys (or predicates). Figure 3.6
demonstrates the predicate-based blocking strategy. This approach ensures that errors in
one of the clauses do not prevent that record from being correctly grouped into the same
group as its true pair. Pairs removed from the same block are automatically classified
as non-match. That is a reasonable fact since it is known that the vast majority of
comparisons (without blocking) would be performed between records that do not match.
Pairs that belong to the same group are then, compared, following the similarity measure
function established and classification rules previously defined.

The disadvantage of using blocking methods is that if a true pair is mistakenly in-
cluded in separate blocks, they will never be compared, even if the similarity calculation
is sensitive enough to identify them as a true pair. This can occur when a pair cannot
be represented by the chosen blocking keys. A simple example is to apply excluding at-
tributes such as gender (in case of identifying people) in the composition of the blocking
key. If there is an imputation error in filling that individual’s gender, it will be automati-
cally excluded from the comparison. To mitigate this issue, one can implement composite
blocking keys, such as predicate blocking, for example. However, the only way to ensure
that all true pairs will be compared is by comparing all the records that make up the
domain.

Thus, whenever it is possible to apply similarity comparisons considering all available
records in the search space instead of applying blocking strategies, this is the alternative
that will bring better accuracy results. The two main factors that make this approach

24 LITERATURE REVIEW

Figure 3.6 Example of a blocking predicate implemented in this work.

unfeasible are domains with a high number of records and insufficient hardware architec-
tures. A hardware infrastructure and software solution capable of executing massively
parallel algorithms is therefore not a recommendation but a crucial requirement for a
wide range of applications.

3.5.3 Similarity calculation

To quantify the similarity between two-string symbols, several measurement approaches
have been proposed in the literature. Most similarity calculating methods are based
on edit distance, i.e. the number of editing operations that are required to transform
one string into another, the length of the longest common string, and the number of
n-grams (common substrings). The edit distance method (RISTAD; YIANILOS, 1998),
also known as the Levenshtein distance method, is effective for short strings (where few
differences between strings are expected). Regarding binary similarity measures, many
approaches can be found in the literature. Such approaches consider definitions expressed
by matching values between two strings to be compared in a binary fashion.

The Sørrensen-Dice (DUARTE; SANTOS; MELO, 1999) index guarantees equal out-
puts for equal vectors and ensures a more generic representation for the similarity between
common strings. When applied to binary data, such as the bit vector generated by the
transformation using Bloom filters (3.5.1), this function returns a floating value between
0 and 1. Whereas N bg a is the number of bigrams of a string that has been mapped to
1 in a given binary vector a. Assuming that N bg b is the number of bigrams of a string

3.5 FORMULATION OF THE RECORD LINKAGE PROBLEM 25

that has been mapped to 1’s in a given binary vector b. The Sørrensen-Dice similarity
index is given by the equation ..

SD =
2|N bg a ∩N bg b|
N bg a + N bg b

, (.)

In practice, the Dice Index is a more sensitive measure in heterogeneous data (MC-
CUNE; GRACE; URBAN, 2002). However, the accuracy and representativeness of the
method largely depends on the number of sub-clusters produced to compose the vectors
to be compared. This number must not be so small to harm the representativeness of the
original string, nor so large to harm performance, as it is expected that a large number
of calculation and comparison operations will be performed over this data.

Chapter

4
This chapter describes the case study applied in this research which corresponds to the probabilistic inte-

gration of records from large government databases. We discuss the main challenges and open issues in

this context to link such databases with maximum accuracy.

CASE STUDY: INTEGRATING LARGE
GOVERNMENTAL DATABASES

One domain where probabilistic record linkage is frequently applied is Public Health. In
impact assessment studies, for example, it is necessary to use individual search methods
in the analysis group to prove hypotheses, observe events, and discover unknown pat-
terns. Similarity functions applied to records should circumvent minor variations from
possible imputation errors, abbreviations, and different conventions. The goal is to obtain
a method that can minimize false positives and false negatives. Analyzing a large amount
of data is not a trivial task. Extraction, transformation, storage, processing, retrieval,
and distribution techniques need to be increasingly accurate while ensuring satisfactory
performance. In Subsection 4.3 we demonstrate the problem of linking Brazilian govern-
ment databases, the main challenges encountered and open problems. The pipeline and
data flow description of our proposed solution is presented in Section 5.

4.1 LONGITUDINAL STUDIES BASED ON POPULATION COHORTS

Being classified as longitudinal analysis, cohort studies stand out as a commonly applied
method in Epidemiology to follow-up individuals and explore evidence-based answers. In
such studies, individuals are classified following some exposure status and then they are
tracked over a period of time (hours, days, years) to confirm the incidence of a given
observation.

According to (OLIVEIRA; PARENTE, 2010), the specific advantages of a cohort
study are i) the possibility of distinguishing the temporal relationships between exposure
and outcome, since the former precedes the latter; ii) the possibility of assessing multiple
outcomes; and iii) the possibility of assessing multiple exposures. In this context, the
cohort used as the basis of our case study focuses on the incidence of a given epidemio-
logical occurrence (such as a disease). Through the incidence results observed for both

27

28 CASE STUDY: INTEGRATING LARGE GOVERNMENTAL DATABASES

groups (exposed and non-exposed), it is possible to identify which exposures precede the
outcome and which causal relationships can be established.

Such studies generally use longitudinal datasets to track individuals over a period of
time. The longer the time period and the greater the number of records covered by the
study, the greater the complexity in building the unified dataset. Observational studies
applied to health seek to answer details about when, where, and how a disease or outcome
occurs and also to observe how the occurrence of a certain disease varies according to
the existence of an event of interest, using primary care (clinic) and secondary care
(hospital) data. This association as a way of establishing a causal relationship between
the occurrence of the disease and the event of interest commonly requires the use of
integration methods between primary and secondary data.

Some Brazilian studies, which follow the observational method for relating adminis-
trative datasets containing socioeconomic data with health indicators, show that the use
of the Bolsa Famı́lia (PBF) – one of the largest conditional cash transfer programmes
in the world, which provides monthly payments for poor families – is associated with a
reduction in homicides, hospitalizations for violence and mortality for infectious diseases.
The study presented by (MACHADO et al., 2018) shows that for each percentage in-
crease in the uptake of the Bolsa Familia payment, the homicide rate decreased by 0.3%
and hospitalizations from violence by 0.4%. (CARTER et al., 2019) considers the social
protection of PBF as a non-negotiable component to reach the tuberculosis elimination.

(LIVINGSTONE et al., 2015)(HAWKINS et al., 2016)(HOLMAN et al., 2008) high-
lighted the value of using cohorts built from the information combined from multiple
domains, to allow significant knowledge acquisition from the studied dataset. The case
study of this research aggregates health information with socioeconomic data from the
Brazilian population. The importance of integrating this information, in addition to sta-
tistically improving the quality of the study, is essential to establish conclusions that guide
evidence-based decisions, especially in contexts where the organization, maintenance and
availability of data is precarious.

4.2 BRAZILLIAN GOVERNMENTAL DATABASES

Different from most developed countries, Brazil is characterized by its high number of
people (around 209 million inhabitants according to the 2010 Census), as well as by the
large social inequality of its population. Over the past 20 years, structural (social and
economic) changes have also reflected in a considerable improvement in the health of
the population (RASELLA et al., 2013). This sort of research requires the longitudinal
study of existing information in several different information systems. Applied to epi-
demiological studies, cohort studies seek to track specific health occurrences in a large
group of people. In Brazil, a major challenge was building a cohort of 114 million indi-
viduals in a state of poverty or extreme poverty who have received payments from PBF
between 2006 and 20151. The objective of this effort was to understand the impact of
cash transfers on health outcomes and to assess the effectiveness of public policies, as well
as provide evidence for future decision making about the destination of public resources.

1〈https://cidacs.bahia.fiocruz.br/en/platform/cohort-of-100-million-brazilians/〉

4.2 BRAZILLIAN GOVERNMENTAL DATABASES 29

Information
System

Coverage Description

Cadastro Único
(CadUnico)

2007
to

2015

National registrar for social benefits that manages in a
centralized way socioeconomic information of the
population in poverty or extreme povertyor able to
benefit from more than 20 social and protection
programmes.

Bolsa Famı́lia
(PBF)

2007
to

2015

Conditional cash transfer programe serving families in
poverty or extreme poverty identified in CADU.

Hospitalizations
(SIH)

1998
to

2011

State-level coverage of hospitalization. information
on individuals admitted to public or private hospitals
pertaining to the SUS network.

Mortality
(SIM)

2000
to

2012

National coverage of Brazil’s mortality data. It includes
time of death, type of death, cause of death, date of death,
date of birth, gender, race, education, pregnancy, and others.

Disease
Notifications

(SINAN)

2000
to

2010

It is filled with episodes on diseases of compulsory
notification (a list of 52 different diseases). In this
research, we have used data on Tuberculosis and Leprosy.

Live births
(SINASC)

2001
to

2012

Epidemiological information regarding live births reported
throughout the country. This database includes information
on individuals at time of birth, including maternal
information.

Table 4.1 Government databases used in this research.

To achieve this goal, the Cadastro Único (CadUnico) database, which corresponds to a
central registrar storing socioeconomic information (demographics, family composition,
education, housing characteristics, sanitation, among others) of individuals eligible for
several Brazilian social programmes, was used as a starting point (baseline).

By 2015, 114 million Brazilians in about 40 million families were registered in CadUnico,
which is equivalent to approximately half of the entire Brazilian population. To build a
single longitudinal dataset, a year-by-year merge was made from 2003 to 2015, tracking
temporal modifications of the same record (duplication from exiting identification keys,
as well as re-entries) and data harmonization between different versions and schemes. It
was considered as inclusion criteria the date of the first registration of each individual.
The construction of this cohort, therefore, took into account the full range of Brazilian
municipalities representing a high-level of population coverage. Bolsa Famı́lia records are
stored in monthly payrolls for the period from 2004 to 2015 and are linked to CadUnico
in a deterministic way through the citizen’s Social Identification Number (NIS). There
are several conditions for an individual to be eligible for PBF payments, including school
attendance of children and adolescents, as well as vaccinations and nutritional surveil-
lance2.

2http://mds.gov.br/acesso-a-informacao/mds-pra-voce/carta-de-servicos/gestor/bolsa-
familia/condicionalidades

30 CASE STUDY: INTEGRATING LARGE GOVERNMENTAL DATABASES

The integration of health datasets with the socioeconomic information of CadUnico al-
lows not only to assess the impact of assistance and conditional cash transfer programmes
but also to identify the social determinants for each outcome. To provide a tool able to
handle such diversity of information, we had access to datasets from the Brazilian Public
Health System (SUS), comprising data on mortality, live births, compulsory notifications
of certain diseases, and hospitalizations. These datasets were provided by the Institute
of Collective Health of the Federal University of Bahia and later by CIDACS - Center for
Data Integration for Health (reference) that also offered statistical and epidemiological
support to validate the results. During the development of the first stage of this research,
we used datasets listed in Table 4.2 to identify the data patterns for each specific domain
and map the transformations necessary and adjust the parameters of the probabilistic
comparison to ensure the best accuracy values for epidemiological research.

An important feature that makes the integration of these datasets an extremely com-
plex process is the variation in data quality. While mortality datasets have high quality,
other datasets, such as hospitalization, have unsatisfactory quality for many states and
specific health units. Among socioeconomic information, it can be expected a high rate of
missing values for groups such as the homeless and children, inconsistent coding patterns,
different schemes for datasets from independent domains. Thus, a strict preprocessing
criterion must be applied to all domains involved in the integration. Besides, the absence
of a unique identifier that could provide a deterministic linkage between health and ad-
ministrative datasets is also expected. These challenges must be taken into account when
selecting common attributes to probabilistically integrate these datasets.

4.3 THE 100 MILLION BRAZILIAN COHORT

The linkage involving the presented datasets was intended to collaborate with the 100
Million Brazilians Cohort (CIDACS, 2015), a joint Brazil-UK cooperation started in
2013 intending to build a population cohort to be used in several types of epidemiolog-
ical surveillance studies. The linkage between these databases allows for obtaining data
that relate to various outcomes and specific occurrences with the social determinants
associated to them.

The linkage between CadUnico and PBF can be made deterministically, as there is
an obligatory identifier key in both datasets – the Social Identification Number (NIS).
However, for linking CadUnico or PBF to health care databases (from SUS) we should
apply probabilistic methods, considering that there is no common identifying key.

Due to technological limitations in managing a cohort that encompassed the entire
CadUnico cohort, as well as given the bureaucracy of gaining access to datasets since the
promulgation of the Information Access Law 3 and new data privacy protection rules, few
research studies have employed linkage methods to evaluate how governmental policies
targeting the social determinants of health can affect health outcomes (ALMEIDA et
al., 2019).

The business rules for all stages of linking (including cleansing, standardisation, har-
monisation, blocking, selection of cut-off points, and data retrieval) depend on the domain

3http://www.planalto.gov.br/ccivil 03/ ato2011-2014/2011/lei/l12527.htm

4.3 THE 100 MILLION BRAZILIAN COHORT 31

to which researchers belong to, typically epidemiologists and statisticians.

Chapter

5
This chapter describes the development of the multiplatform tool AtyImo-H that implements a probabilistic

data linkage pipeline for structured datasets. We discuss the overview of our solution, the data integration

model, and the pipeline stages implemented.

ATYIMO-H DATA LINKAGE TOOL

5.1 ATYIMO-H

AtyImo is a pipeline-based tool that provides linkage methods for massive datasets. As
stated in the Chapter 4, it was initially developed to support the linkage of socioeconomic
data and public epidemiological data (health care) to build the 100 Million Cohort (BAR-
RETO et al., 2017). The granularity of the integration is focused on the individual’s data
– candidates or beneficiaries of social programmes and their medical episodes (hospitali-
sation, diagnosis of a disease of compulsory notification, live births, and deaths).

This kind of data integration has a significant requirement for high performance due
to the huge volume and diversity/heterogeneity of datasets domains and schemes that
demand complex routines to perform similatiry calculations. Besides, to deliver a result
with maximum accuracy and avoid false negatives as much as possible, several procedures
are performed in a redundant manner: two verification steps over dubious records, for
instance, penalizing even more the overall performance of the application.

AtyImo is originally built over Spark and runs in a distributed fashion. In this work,
we have extended AtyImo to allow for the execution in a hybrid way over heterogeneous
platforms composed of accelerators. Thiw new version is called AtyImo-H. If the dis-
tributed pipeline is used, AtyImo-H follows the conventional execution flow using the
Spark-based solution to transparently distribute parallel tasks across the CPU cores of
different computation nodes. If the hybrid pipeline is used and coprocessors are available
on that specific compute node where the application runs, it invokes a subroutine that
executes in parallel using multicore or manycore parallel API calls.

The proposed solution operates in two distinctive ways: deterministic and proba-
bilistic comparison. In the deterministic comparison, attributes are exactly matched.
Information systems that manage benefits often use a unique identifier that can be used
as a key for integration between these separate records. However, due to the lack of a com-
mon and unique identifier, the integration between administrative and health datasets is

33

34 ATYIMO-H DATA LINKAGE TOOL

achieved through probabilistic routines using a set of linkage keys, such as name, mother’s
name, date of birth, gender etc. The routines implementing the probabilistic linkage were
built after an exhaustive statistical study of the characteristics of each dataset involved
and the understanding of the relevance of each attribute for the pairwise comparison
step. As a result of the linking routine, a new dataset containing an identification key
plus complimentary data from the linked records is generated.

AtyImo-H differs from existing tools in terms of i) the heterogeneity of data domains
(diverse information systems) and the volume and dimensionality of datasets; ii) demand
for highly-accurate results, since there is no gold standards; iii) efficient parallel and
distributed implementation in order to solve technological limitations of previous tools;
iv) high-performance implementation for the most time demanding tasks within the data
linkage pipeline; and v) cross-platform hybrid execution.

5.2 DATA INTEGRATION MODEL

We originally designed and implemented AtyImo-H as a modular pipeline, encapsulating
components for data analysis, data pre-processing (cleansing, standardization, blocking,
and anonymization), pairwise comparison and matching decision (PITA et al., 2018).

Prior to linkage, all input datasets pass through a data quality analysis stage which
performs data integrity checks. This stage is intended to identify attributes suitable for
linkage, considering their coexistence in other datasets, the percentage of missing values
(especially from linkage attributes), multiple imputation problems, and their ability to
uniquely identify individuals.

The next stage is related to data preprocessing (sometimes referred to data standard-
ization) and involves correcting, normalizing, and standardizing field values to improve
data quality. In AtyImo-H, this stage aims to circumvent errors, address missing data
through imputation, and turn records from different datasets as similar as possible to
provide an accurate and fair comparison.

The program consists of a text-mode interface that receives the initial parameters
for the two datasets to be linked, identified as larger dataset and smaller dataset. The
identification by size (number of rows) is important to define the directionality and cardi-
nality of integration and to decide the best data partitioning strategy. It is also necessary
for the user to define which linkage attributes will be used and how standardization
should occur: date transformation, gender transformation, municipality (or state) code
or name transformation, among other settings. Using date transformation as a brief ex-
ample, AtyImo-H can manage different patterns: a) yearmonthday ; b) daymonthyear ; c)
day-month-year ; d) day/month/year ; e) year-month-day ; f) year/month/day ; g) month-
year-day ; g) month/year/day. AtyImo-H documentation is available with the source code
with comprehensive directions1.

In addition, the user also defines which cut-off points will be used for pair classification
and whether the blocking/indexing strategy will be used or not. Other system parameters
are also configurable if needed. It is possible to determine, for instance: i) maximum disk
and memory size (in GB) for intermediate data on different nodes and utilization of CPU

1Available: https://github.com/atyimo-lab/atyimo-h

5.2 DATA INTEGRATION MODEL 35

cores by computation nodes. The intention with this high customization of AtyImo is to
allow its use in different search contexts with guaranteed performance and accuracy.

Figure 5.1 shows AtyImo-H’s dataflow and its main inputs and outputs format. Pre-
processing is responsible for the harmonization and normalization of records. The proce-
dures implemented in the preprocessing step should return a new view of the dataset to
be linked. The transformation stage is responsible for ensuring two important require-
ments: i) reduction of the search space (use of blocking, for example) and anonymization
of identifiable attributes. By the end of this step, all records will consist of a retrieval
code and an associated binary vector. Details for Atyimo-H’s pipeline will be presented
later.

Figure 5.1 Input and output of the three main modules of AtyImo-H’s pipeline.

The data used as input to the application is structured tables in text format, using
any delimiter as a field separator. As an output, the tool stores metadata for linked
records into three groups:

• positively linked pairs, which are those records classified as “true matches” as they

36 ATYIMO-H DATA LINKAGE TOOL

Febrl FRIL RECLink AtyImo
Reformat values Yes Yes Yes Yes
Remove punctuation Yes Yes Yes Yes
Remove missing values Yes Yes No Yes
Phonetic encoding Yes Yes Yes Yes
Name/Address Standardisation Yes No Yes Yes
Nickname lookup Yes No No Yes
Gender imputation Yes No Yes Yes

Table 5.1 Availability of data cleansing functionality across different linkage tools.

present a similarity value above the upper cut-off point;

• non-linked records, which are those records presenting a similarity value below the
lower cut-off point;

• “dubious” records, which correspond to records classified as false positive or false
negative as their similarity values fall between the upper and lower cut-off points.
Usually, this group of records is subject to manual (clerical) review to certify
whether they can be considered a true positive or a true negative case. In our
case, this manual review is prohibitive (given the size of our datasets), so Aty-
Imo can use a machine-learning routine to automatically perform such verification
(PITA et al., 2017).

Table 5.2 demonstrates that compared to the three most widely used probabilistic
records linkage tools in clinical studies and epidemiological surveillance, AtyImo-H stands
out from the rest on issues related to the quality of data processing.

5.3 ATYIMO-H RECORD LINKAGE PIPELINE

During this research, we have developed a solution that implements routines for proba-
bilistic and deterministic linkage of massive datasets, ensuring maximum accuracy, scal-
ability, and performance. Initially, the solution was developed to support the 100 Million
Brazilian Cohort, as the existing tools at that time do not allow for managing the ex-
pected volume of data, as well as address other technical issues identified in the Brazilian
governmental datasets, such as bespoke data cleansing and standardisation.

The linkage solution should be able to handle large volumes of heterogeneous datasets,
circumventing poor quality records filling, missing identifier keys, and so on. To solve this
problem and provide a scalable and most accurate integration, a modular pipeline solution
was implemented, isolating the main steps that make up the integration into independent
blocks performing pre-processing, transformation, pairwise comparison, classification and
record retrieval.

5.3 ATYIMO-H RECORD LINKAGE PIPELINE 37

5.3.1 Application pipeline details

This section presents the description of the modules implemented in AtyImo-H, with em-
phasis on the core parts: preprocessing, transformation, comparison, sorting and record
retrieval (Figure 5.2). The methods that will be taken into account in subsequent chap-
ters are highlighted in a darker shade of gray. It is important to register that other two
steps – data analysis and accuracy assessment – are execute before and after these core
modules, respectively.

Figure 5.2 Execution pipeline for probabilistic record linkage.

Since it is not possible to establish a gold standard – how many individuals from the
social programmes (CadUnico or PBF) will link to any public health care database –, it is
necessary to check the completeness of the variables that will be used in the comparison
step, as well as to verify the integrity of the data to determine which variables are more
appropriate and which could degrade the accuracy of the method. Besides, this analysis is
critical to establishing the most appropriate cut-off points (similarity index) for a specific
correlation. For these steps, traditional statistical analysis tools such as Stata or R were
used.

5.3.1.1 Pre-processing The first step that makes up the linkage pipeline is data
pre-processing, responsible for the harmonization and normalization of records. First
of all, the datasets pass through cleansing and standardization routines comprising en-
coding harmonization, removal of special characters, elimination of duplicate records,
uniformization of date representations, formatting for expected codes values (such as
municipalities), imputation of missing values, etc.

The implementation of blocking is optional and depends on the size of the input
file. In practice, if the dataset is small enough to allow for unblocked linkage and if the

38 ATYIMO-H DATA LINKAGE TOOL

hardware infrastructure is suitable, this approach should be used as it ensures better
results. However, in our case studies, we have used blocking due to the size of the
datasets involved. Among the various blocking approaches we tested, the one with better
results was the predicate blocking. The procedures implemented in the preprocessing step
return a new view of the datasets to be linked, which are represented as files (in case
of blocking) or a single, error-free and small file since it contains only the information
needed for comparison and information required for retrieving the records in the original
files.

5.3.1.2 Transformation The transformation stage is responsible for ensuring two
important requirements: i) speed for pairwise comparison, and ii) anonymization of at-
tributes capable of identifying the records. For this, the attributes selected for comparison
are mapped into a binary vector using the Bloom filter method. Strings are decomposed
into bigrams and each bigram is mapped to a specific vector position through hash func-
tions. At the end of this step, all records will consist only of a retrieval code and an
associated binary vector. Thus, this approach favors anonymization and generalizability,
as it is possible to perform the comparison step in computing environments with few
security resources.

5.3.1.3 Comparison The comparison step can be done deterministically and/or prob-
abilistically, depending on the data being linked and the presence of common key at-
tributes. The user can also set up which method she wants to use. In the probabilistic
approach, each pair of records in the search space is submitted to a function that cal-
culates the similarity index between them. The Sørensen-Dice Index was used as an
approximation to evaluate how similar two pairs are. If two datasets A and B are com-
pared, all pairs (a, b) obtained from the A x B product will have an associated similarity
value. Therefore, it is necessary to eliminate duplicate records from a, first considering
that there are no duplicate records in the original dataset (they were deleted in the pre-
processing step) and also considering that the higher similarity index is the most likely
candidate to be a true pair. At the end of this step, all pairs and their respective similarity
indexes are stored.

5.3.1.4 Sorting While the comparison step receives views of two anonymized files as
input and returns the similarity index of each pair, the sorting step seeks to determine
whether that pair is a true pair or a false pair. It is also possible to establish a gray
area containing “dubious” records that can be recheck if their similarity indexes are not
sufficient to determine if they are true or false. At the end of the process, pairs rated as
true are stored for later retrieval.

5.3.1.5 Record retrieval Finally, the record retrieval step uses peer codes and the
similarity index to retrieve the attributes of interest for the search and ensure an efficient
view of linked records that is sufficient to meet business rules.

Figure 5.3 illustrates the execution pipelene of AtyImo-H designed on a heterogeneous

5.3 ATYIMO-H RECORD LINKAGE PIPELINE 39

Figure 5.3 Execution pipeline for hybrid model that performs probabilistic linkage on hetero-
geneous platforms.

computing platform with direct host-device communication. We developed a methodol-
ogy for splitting the traditional linkage pipeline at the comparison step to provide timely
responses for massive, scalable datasets.

Chapter

6
This chapter describes in detail the progress of the solution that implements a probabilistic record linkage

method, demonstrating through pseudo-codes the development of several approaches associated with their

underlying processing units.

PARALLEL MODELING FOR RECORD LINKAGE

This chapter presents considerations for data parallelization and partitioning in hetero-
geneous computing environments composed of CPUs processing nodes and accelerated
by graphic processors GPUs. Initially, we present the strategies to implement multi-
core and manycore parallelism to achieve the performance requirements of probabilistic
record linkage comparison. We highlight the techniques responsible for minimizing the
communication and synchronization overhead between specific PUs. Besides that, we
also describe the main algorithms developed in each phase that make up the probabilistic
record linkage comparison.

6.1 PROBABILISTIC RECORD LINKAGE

As discussed before, one must carefully evaluate the use of Big Data frameworks when
developing solutions with high demand for performance and when response time is crucial
for the decision-making stage. If, on the one hand, such frameworks guarantee transparent
management of the distributed execution infrastructure, its analytical operations incur in
a massive execution time slow down, being an order of magnitude (or more) slower when
compared with native parallel implementations (ANDERSON et al., 2017). Because of
that, there is a need to circumvent the performance gap for Big Data applications without
losing sight of security, fault tolerance, and scalability issues that are also application
requirements that must be considered. According to (SINGH; REDDY, 2015) when
deciding which platforms to use, one has to investigate, among other things: i) how
quickly the application must provide results; ii) how big is the data to be processed;
iii) how many iterations will be performed on the same data; iv) what is the scalability
limitation for the current solution; v) what are the data transfer pattern/rate and memory
footprint expected for this specific workload.

The type of workload considered in this paper can be classified as in-memory. In tra-
ditional scaling models, it is assumed that there are always two portions of the workload:

41

42 PARALLEL MODELING FOR RECORD LINKAGE

a serial portion with fixed execution time and constant internal scaling, that is commonly
identified as initialization phase; and a parallelizable portion (or external scaling) that
grows together with the workload. However, when dealing with data-intensive workloads,
both portions (serial and parallelizable) increase at the same proportion, which is known
as in-proportion scaling (LI et al., 2019). This investigation focuses on in-memory data-
parallel scientific application, characterized by a divisible computational workload. It is
also expected that this computational workload is proportional to the size of the input
data. The partitioning approach we have applied was a static load-balancing method
based on functional performance and historical data from previous calibration runs.

Data-intensive tasks built with native parallel implementations, usually demand ac-
celerated responses (to support decision-making process) and require the adaptation of
solutions considering this type of workload to handle data while in the main memory
without incurring in overheads. Writing to and reading from disk, in this case, degrades
the performance of such applications and should be avoided. Parallel optimization for
data-intensive problems is limited by several aspects, including: i) the serialization of
fine-grained parallel tasks when executing in multicore PU; ii) the amount of local mem-
ory available in each PU considered for performing parallel tasks; iii) the data locality
and inefficiency of CPU cache hierarchy; and iv) data transfer overhead between host and
device.

In a practical context, developing a parallel solution to a data-intensive problem with
the premise of generating timely results compatible with decision-making by managers
is not a trivial task and involves several obstacles. The deduplication of intermediate
results from the different processing units, for example, is another bottleneck since it
requires a synchronization of all PUs envolved. Therefore, deduplication can only start
after the comparison of all pairs has ended. Another problem is that the most robust
computing infrastructure for timely responses (complex cluster environment) may not be
widely available to all communities. Even the industrial and scientific community has
heterogeneous or custom hardware (commodity) to perform complex algorithms.

Ideally, applications requiring high-performance solutions would be targeted at the
hardware that could scale in parallel in a shared and distributed context as the problem
size increase. In real-world, applications could benefit from a multiplatform solution that
runs not only on different processing units (taking advantage of the processing power of
specialized devices, if they exist, as well as of horizontal and vertical scalability), but also
with different programming paradigms, better exploring the hardware characteristics,
since offloading computation from a framework like Spark to native C running parallel
threads can accelerate user-defined functions as discussed by (ANDERSON et al., 2017).
The efficiency of this choice is due to the fact that it is known that the performance of
a Big Data application is directly associated with the characteristics of its workload and
the nature of the parallel tasks (ALKATHERI; ABBAS; SIDDIQUI, 2019).

A significant advantage of Big Data frameworks is the ability to move computation to
the data avoiding data movement costs (such as energy) since data movement corresponds
to a significant fraction of 20% of the total workload energy in a memory-bound applica-
tion, as discussed by (WANG; SCHMIDL; MÜLLER, 2015). However, one can develop
solutions with a minimum data transfer, considering intra-node optimizations strategies,

6.1 PROBABILISTIC RECORD LINKAGE 43

also motivated by the low cost and ever-increasing capacity of DRAM. In practice, solu-
tions able to take advantage of remnant heterogeneous hardware, which would otherwise
be idle, and offering adaptable alternatives to accelerate applications high-performance
is considered beneficial.

6.1.1 Cross-comparison

Concerning the computational demand, the most critical step in the whole process of prob-
abilistic linkage is pairwise comparison, which requires high availability of main memory
and parallel processing resources. Since the complexity of this algorithm is O(n × m),
the number of iterations and the size of intermediate data that needs to be stored grow
quadratically. This characteristic, common to many Big Data in-memory applications,
is a limiting factor in the use of traditional linkage technologies, leading developers and
designers to use massive parallelism architectures and tools, as well as the development
of specialized software to ensure scalability and optimized runtime.

The comparison step involves checking all possible pairs to decide whether or not they
refer to the same real-world entity. For probabilistic record linkage comparison step an
independent task can be defined as the similarity analysis that will be performed on a
single candidate pair. Each pair can, therefore, be processed separately and its partial
result must be stored for future analysis. If no blocking strategy is used, all records in
one datasets will be compared with all records in the other datasets. The total amount
of comparisons in this case is (n−1)× (n−2)/2. Given that in real datasets this number
can be considerably large, it is necessary to build an execution infrastructure capable
of distributing tasks across available hardware using the advantages of distributed and
parallel programming to generate timely responses.

Algorithm 1 demonstrates a simplified schema of comparing all records in two datasets
(A and B) represented by attributes of the same name. The sequential routine inputs
are: datasets A and B, nlines a, indicating the number of lines for dataset A, nlines b,
indicating the number of lines for dataset B and size bloom, representing the Bloom
filter fixed size that comprises a single record. The outermost loop (line 1) iterates over
each line of dataset A, and the innermost loop (line 3) iterates over each position of
a single record of dataset A records. Since this process occurs after the Bloom filter
transformation step, all records have the same size. Each record from dataset A is then
stored in a temporary vector bloomA (line 5). While the bloomA vector keeps in main
memory the first element of dataset A, the loop described in line 7 iterates over all
records from dataset B. The innermost loop (line 9) iterates over each position of a single
record of dataset B records, storing its elements in a temporary vector bloomB (line
10) and performing the comparison for the already stored pair of vectors by invoking
the procedure get dice (line 11). This procedure returns a similarity index based on the
Sorensen Dice coefficient. The procedure described by deduplicate dice(line 12) maintains
only the highest Dice index value found among all records compared in the search space
of dataset B. Finally, store dice values (line 16) stores the dice value for a given pair.

44 PARALLEL MODELING FOR RECORD LINKAGE

Algorithm 1 Sequential probabilistic linkage routine.

Input: ∗A, ∗B, nlines a, nlines b, size bloom in
Output: ∗dice array out

Initialisation : bloomA← bloomB ← ∅;
1: for i = 0 to nlines a do
2: id bloomA← A[i ∗ (size bloom + 1)];
3: for j = 1 to size bloom do
4: bloomA← A[i ∗ (size bloom + j)];
5: end for
6: dice← 0.0;
7: for k = 0 to nlines b do
8: id bloomB ← B[k ∗ (size bloom + 1)];
9: for l = 1 to size bloom do

10: bloomB = B[k ∗ (size bloom + l)];
11: cur dice = get dice(bloomA, bloomB);
12: dice array = deduplicate dice(cur dice, dice,
13: id bloomA, id bloomB);
14: end for
15: end for
16: store dice values(dice array, i)
17: end for

6.1.2 Approximate similarity measurement

Algorithm 2 demonstrates an implementation that performs the approximate-based sim-
ilarity calculation, taking as input a pair of records transformed into Bloom filter format
and generating the respective similarity index for that specific input pair. We rely on the
Sorensen Dice index to give an approximation measure between two sets of data. The
function takes as input bloomA and bloomB that hold one record from dataset A and
B, respectively. Both attributes are already coded into Bloom filters by this moment.
size bloom is also an input parameter for this procedure. Variables a (line 3) and b (line
9) count the amount of 1’s contained in bloomA and bloomB vectors, respectively, while
h (line 5) counts how many 1’s occurred at the same index position for both vectors.
The measurement calculated by line 12 is the basis of Sorensen Dice equation described
by Equation 2.1. Algorithm 3 demonstrates a näıve implementation of the deduplication
procedure considering a single pair (cur dice and dice) as input data. This procedure
ensures that the Dice attribute always stores only the highest index value for a specific
attribute of dataset A in the search space of dataset B. It is important to notice that the
algorithm works for single blocks in practice. If the comparison’s directionality remains
the same 1 ⇒ 1, and dataset A is considered the reference, additional synchronization
steps are necessary to eliminate duplicates.

Given the number of iterations associated with the method, it can be seen that the
sequential routine naturally requires several cycles (depending on the size of the files
involved) to finish its execution. However, a reasonable solution is to explore the in-

6.2 HETEROGENEOUS MODELLING 45

Algorithm 2 Similarity calculation routine.

Input: ∗bloomA, ∗bloomB, size bloom in
Output: cur dice out

Initialisation : a← b← h← dice← 0.0;
1: for i = 0 to size bloom do
2: if (bloomA[i] == 1) then
3: a + +;
4: if (bloomB[i] == 1) then
5: h + +;
6: end if
7: end if
8: if (bloomB[i] == 1) then
9: b + +;

10: end if
11: end for
12: cur dice← ((h ∗ 2.0)/(a + b)) ∗ 10000;

Algorithm 3 Deduplication routine.

Input: cur dice, dice in
Output: dice out

1: if (cur dice > dice) then
2: dice = cur dice
3: end if

trinsic parallelism of the interactions, distributing each pair of records for independent
comparison using the available parallel threads.

6.2 HETEROGENEOUS MODELLING

This section proposes an approach for the coordinated use of multicore and manycore pro-
cessors considering our application’s specificities. We took as starting point performance
limitations of the current Spark-based implementation (AtyImo) and proposed some im-
provement opportunities by applying explicit parallelism and controlling mechanisms for
data movement, communication, and synchronization in a heterogeneous environment.

6.2.1 Linkage pipeline adapted to a hybrid model

The module that performs probabilistic comparison starts on the host (CPU), where
all input data is loaded. The execution remains on CPU until the data is partitioned
and transferred to the device’s global memory space and until an explicit instruction
that calls a device execution (GPU kernel) be invoked. All GPU-accelerated functions
are also executed in CPU. The workload division is an input parameter for comparison
main program. Being customizable, the user can easily specifify parameters related to
the workload, application, and hardware characteristics. To identify the ideal input

46 PARALLEL MODELING FOR RECORD LINKAGE

parameters, we consider a calibration step that adjusts the SP and AP values. As System
Parameters (SP), we considered i) the number of OpenMP threads, ii) the threads/block
ratio, and iii) GPU’s global memory. Finally, one, none, or several calls to the parallel
kernel are expected to be made. The strategy used to define the tasks’ granularity and
the data partitioning method will be discussed later.

The GPU accelerated linkage module (that performs cross-comparison, similarity mea-
sure and deduplication) requires the transfer of a large amount of data from the main
memory (CPU) to the GPU global memory. In the approach presented by this work (and
if there is a significant amount of work to justify the time spent on the transfer), the host
seeks to maximize the amount of data transferred to the GPU at once. Nevertheless, in
real cases, the size of datasets can be considerably large, depending on the number of
attributes used to compose the Bloom filter, making the overall memory size of GPUs a
limiting factor for application scalability. In these cases, it is necessary to use an adap-
tive approach that keeps the remaining tasks waiting for an available PU and continue
sending them to be processed in the GPU if the performance gain is still guaranteed. The
application and study of this type of optimization are outside the scope of this work. Oth-
erwise, the tasks will be executed on the CPU. By the end of GPU-assigned instruction
execution, a new communication step is required to transfer the intermediate data back
to the host so that the linked pairs can be deduplicated and retrieved. Deduplication
between GPUs is also an improvement that enhances overall performance. Since at the
end of the execution pairwise comparison each GPU has a copy of the dice vector, instead
of GPUs sending their intermediate results to be deduplicated by the host, we use the
existing high-speed communication between GPUs to speed up partial deduplication, so
that the host is in charge of deduplicating only two sets: its own result and the result of
GPUs calculation.

It is important to consider that the GPU will produce intermediate data that must be
kept in a shared global memory. These intermediate data in addiction with the input and
output data sent explicitly by the routines invoking the kernels represent the actual GPU
memory consumed by the application and can be defined as GPU memory footprint. The
fixed size of the data transfer and the expected performance can be previously estimated
to establish the best scheduling strategy between processors and coprocessors, considering
that the memory demand of a task (footprint) or application is known, i.e. the input,
output and intermediate data generated by parallel kernels have a predefined size.

6.2.2 Data load and granularity

Parallel multithread algorithms have their performance defined by the granularity and
distribution of data and the asynchrony of their communication. Fine granularity operates
on small portions of a general problem, which facilitates data breakdown between PUs.
Ideally, for such a high parallelizable environment, it is convenient to avoid serialized
instructions as much as possible and force data parallelism by building applications able
to take advantage of a large number of parallel threads.

Therefore, in a finer-grained record linkage implementation, it would be appropriate
to represent each record through a set of identifying attributes independently. However,

6.2 HETEROGENEOUS MODELLING 47

this strategy incurs two significant deadlocks. The first concerns the vulnerability in
the identified information anonymization, as it facilitates dictionary attacks, especially
for short attributes such as gender or date of birth. The second concerns the storage
required to a different Bloom filter for each attribute in a record. In our approach, we
merge several attributes in a single Bloom vector to avoid dictionary attacks while keeping
record linkage optimal accuracy. The Bloom filter efficiency was discussed by ˜(PITA et
al., 2018) and is out of the scope of this research.

Algorithm 4 Host environment data load.

Input: percentage each gpu, qtd gpus, nlines a, nlines b, size bloom, size bloom in
Output: ∗A GPU, ∗A CPU,B out

1: pu edges = get pu edges(nlines a, qtd gpus, percentage each gpu)
2: nlines a cpu = pu edges[(0 ∗ 2)+ 1]− pu edges[0 ∗ 2]
3: for i = 0 to qtd gpus do
4: nlines a gpu[i]= pu edges[((i + 1) ∗ 2)+ 1]− pu edges[(i + 1) ∗ 2]
5: end for
6: A CPU= allocate host memory(nlines a cpu ∗ size bloom
7: for i = 0 to qtd gpus do
8: A GPU [i]= allocate host memory(nlines a gpu[i] ∗ size bloom)
9: end for

10: dice cpu = allocate host memory(nlines a ∗ size bloom)
11: dice device = allocate host memory(nlines a ∗ size bloom)
12: load file a(file dataset a, A CPU, pu edges[0 ∗ 2], nlines a cpu)
13: for i = 0 to qtd gpus do
14: load file a(file dataset a, A GPU [i], pu edges[(i + 1) ∗ 2], nlines a gpu[i])
15: end for

We decided to maintain an intermediate granularity considering that all attributes
are represented within the same bit vector, on which some sequential instructions will
be executed. Data blocks transferred between different devices, in turn, consider a pre-
determined grouping of these records. In this sense, it is necessary to carefully consider
the transfer time between the host (processing unit where the application is started and
the data is loaded) and the other PUs that make up the environment. In principle, it
is preferable to store all records in a one-dimensional dataset (A and B) in contiguous
memory. This facilitates data transfers between PUs when a heterogeneous execution
approach is required on a heterogeneous platform.

The main program takes as input parameters: i) the GPU grid partitioning informa-
tion, ii) the relative path for datasets A and B, iii) the definition of CPU threads, iv) the
workload percentage assigned to each GPUs, and v) the number of GPUs involved in the
computation. Algorithm 4 describes the data load step performed at the beginning of the
execution. The pd edges (line 1) vector takes nlines a, qtd gpus, and percentage each gpu
as input and divides the dataset A for each UP identifying the upper and lower limits
by the line number. The first two elements of pd edges vector (if filled with valid values)
identifies the limits of dataset A assigned to CPU while the following pairs (if filled with

48 PARALLEL MODELING FOR RECORD LINKAGE

valid values) identify the limits of A assigned to GPUs. Lines 6 and 8 carry out the ma-
trix’s memory allocation that will store subdivided A records in the host memory. Lines
10 and 11 allocate host memory for the Dice vector that will store the result of parallel
computation corresponding to each pair’s similarity index. Lines 12 and 14, in turn, load
the input files into their respective matrix.

6.2.3 Data partitioning

In heterogeneous platforms, data transfer and consequently data locality are the major
degradation factors for scalability, performance, and energy efficiency (issues related to
energy efficiency are not part of the scope of this research). In this sense, it is extremely
important to devise the best strategy for allocating parallel hardware resources when the
workload is known, as well as to adapt this workload to the hardware, identifying the
best task distribution (based on their characteristics) to the underlying hardware.

Given this, one of the open research challenges in this area is to provide optimal load
balancing across all available PUs using data partitioning strategies based on functional
performance and historical data. Another related issue is the need to ensure minimal
overhead of communication channels and data synchronization by implementing commu-
nication strategies suited to the topology over which the application is running.

Since a certain set of different tasks can be performed on both CPU and GPU, the
partitioning decision must be made firstly considering which PU provides the best perfor-
mance and which distribution ensures the best balance. If tasks and instructions diverge,
on the other hand, there is probably a more appropriate PU for each. Sequential tasks,
for instance, are more appropriate to run on CPUs while highly parallel and fine-grained
tasks are more appropriate for GPUs. In some cases, characteristics of the application
itself are decisive factors to explain why the allocation of a task to a specific PU is pro-
hibitive, such as when the memory demand of a task (footprint) exceeds the PU capacity.

Initially, considering that there is no previous information about the theoretical per-
formance of each processor and considering that all instructions are identical, the tasks
that make up the probabilistic comparison step will be performed either on the CPU or
GPU without a preferential PU. In this case, what determines the dataset partitioning
strategy is the available memory on the GPU and the combined performance of all PUs,
obtained through the total execution time of this step.

Figure 6.1 describes how data and tasks are partitioned and distributed to multiple
PUs. To maximize the performance of a given application, tasks and data should be
evenly shared among processing units from the same type. This is essential to balance
the workload between homogeneous PUs. Given two inputs (A and B), each processing
unit PUi has a partition of A, called Ai and a copy (or a vision) of B. Each PUi

performs the tasks related to parallel and sequential steps for cross-comparison, similarity
measurement and deduplication needed for record linkage. Figure 6.1 (a) shows a high
level model for data and task division considering three processing units using PCI-e to
transfer all intermediate blocks of linked pairs and performing deduplication in CPU.
In that first example, the deduplication of GPU portion will only start after the CPU
finishes its execution. Figure 6.1 (b), on the other hand, shows a synchronization step

6.2 HETEROGENEOUS MODELLING 49

Figure 6.1 High-level overview of parallel linkage and deduplication using 3 Processing Units
(one CPU and two GPUs). a) Data partitioning considering deduplication been performed on
CPU. b) Data partitioning considering 2/3 of deduplication been performed by GPU.

between GPU devices to perform intermediate deduplication of all pairs linked by these
processing units. However, this option is only feasible, in terms of performance gain, if
there is a NVLINK interconnecting the GPU devices.

Figure 6.2 illustrates a parallel allocation and division scheme between PUs considered
on the heterogeneous platform in a scenario where the entire workflow is loaded into the
host and special threads are allocated exclusively to coordinate data movement (transfer
and synchronization) between host and device. In the empirical tests presented in this
text, we always used an heterogeneous environment composed of one host PU and two
devices (two coprocessors and a host). As suggested, it is possible to take advantage of
direct communication between two or more devices, considering the existence of a higher
speed link instead of a standard PCI-e bus. This communication is useful for sharing

50 PARALLEL MODELING FOR RECORD LINKAGE

among GPUs the similarity indexes obtained from comparing each pair and eliminating
duplicates, keeping only the highest indexing pair (or another strategic decision making).

Figure 6.2 Data transfer scheme considering available PUs on the heterogeneous environment.

6.2.4 Multicore parallel probabilistc comparison

To exploit the existing parallelism in multicore processing units, the first parallel ap-
proach implemented aimed at to distribute the workload assigned to the GPU between
the parallel threads of the physical and logical cores of a CPU processor. Algorithm 5
describes the parallel call of the multicore comparison function (line 6), which is invoked
by each parallel thread (created by the constructor of line 3) in an approach that imple-
ments coarse granularity over the input data. Considering that multicore processors have
fewer physical cores compared to graphics card processors and also considering the large
number of records in the datasets used as input, this approach implies higher serializa-
tion of the instructions executed for each thread. Line 1 defines in the quantum variable
the fraction of the largest file assigned to each thread, resulting from the exact division
(integer) of the number of records and the number of parallel threads that was defined
as system parameters and are available for computation. Line 2, in turn, defines in the
leftover variable the number of remaining records so that it can be evenly distributed
among all threads that will execute with no more than one record in comparison with
the others.

Algorithm 6.2.4 describes the division step for the parallel comparison in which start
and end values are calculated. These values define define on which fraction indexes of the
data block each thread will act. Algorithm 7 receives as input the start and end indixes,
previously calculated, to iterate over the records and performs the pairwise comparison.

6.2 HETEROGENEOUS MODELLING 51

Algorithm 5 Multicore parallelization for CPU portion of dataset A.

Input: A CPU,B, nlines b, pu edges, threads cpu, id pu, size dice in
Output: dice cpu out

Initialisation : ∗dice acc← ∅;
Initialisation : quantum← leftover ← 0.0

1: quantum= pu edges[(id pu ∗ 2)+ 1]/threads cpu
2: leftover= (quantum− (integer)quantum) ∗ threads cpu
3: # start parallel region
4: {
5: id nested= get thread num()
6: multicore comparison(A CPU,B, dice cpu, nlines b, id nested,
7: ∗dice acc, size dice, (interger)quantum, (interger)leftover)
8: store dice values(dice acc, id nested)
9: }

10: deduplicate dice set(dice acc, dice cpu)

Algorithm 6 Definition of start and end positions for each multicore thread.

Input: id nested, leftover, quantum in
Output: start, end out

Initialisation : ∗dice acc← ∅;
Initialisation : quantum← leftover ← 0.0

1: if (id nested < leftover) then
2: start = id nested ∗ (quantum + 1)
3: end = quantum + 1 + start
4: else if (id nested == leftover) then
5: if (leftover = 0) then
6: start = id nested ∗ quantum
7: end = start + quantum
8: else
9: start = id nested ∗ (quantum + 1)

10: end = start + quantum
11: end if
12: else
13: if (leftover == 0) then
14: start = id nested ∗ (quantum)
15: end = start + quantum
16: else
17: start = id nested ∗ (quantum + 1) - (id nested - leftover)
18: end = start + quantum
19: end if
20: end if

52 PARALLEL MODELING FOR RECORD LINKAGE

All threads will access the same shared copy of A CPU fraction and dataset B. The
dice cpu vector will be returned to the master thread that will perform the deduplication.

Algorithm 7 Parallel comparison for each multicore thread.

Input: start, end,A CPU,B, size bloom, nlines b in
Output: ∗dice cpu out

1: while start < end do
2: id bloomA = A CPU [start ∗ size bloom]
3: for j = 1 to size bloom do
4: bloomA[j − 1] = A[start ∗ size bloom + j];
5: end for
6: dice← 0.0
7: for k = 0 to nlines b do
8: id bloomB = B[k ∗ size bloom];
9: for l = 1 to size bloom do

10: bloomB[l − 1] = B[k ∗ size bloom + l];
11: end for
12: cur dice = dice multicore(bloomA, bloomB)
13: dice = deduplicate dice(cur dice, dice,
14: id bloomA, id bloomB)
15: end for
16: store values dice(dice cpu, start)
17: start++;
18: end while

6.2.5 Hybrid-parallel probabilistc comparison over heterogeneous environment

Algorithm 8 demonstrates the scheme used to partition the workload between two dif-
ferent PUs. In this case, matrix A will be divided (CPU will take A CPU and GPUs
will take A GPU< id pu >) and its computation will be in charge of each PU, while
the matrix B will be sent entirely to all devices avoiding inconsistencies and duplicated
results. The pu edges vector stores the fraction (initial and final indexes) of the dataset
A CPU and A GPU< id pu > associated with each available PU. In this approach a
static distribution strategy has been implemented, considering that the performance of
each PU can be known a priori. One CPU thread is needed to manage each PU involved
in the computation; so the execution starts with a number of threads equal to the num-
ber of available devices (GPUs) plus one. The threads controlling the GPUs will execute
the block code from line 8 to 10 and the remaining threads will cordinate the openMP
paralelism, executing the block code from line 4 to 7.

Still considering the workload distribution among the different PUs described by Al-
gorithm 8, qtd gpu+ 1 threads are initially created as indicated by line 2. The first thread
(thread 0) is tied to multicore execution and is responsible for creating a nested CPU
thread set. Thread 0 calls cpu execution procedure and generate a dice cpu vector (line

6.2 HETEROGENEOUS MODELLING 53

Algorithm 8 Definition of threads controlling the workload division for each PU.

Input: qtd gpu, ∗pu edges in
Output: ∗dice array out

1: omp set nested(1)
2: #pragma omp parallel num threads(qtd gpu+1)
3: id pu = omp get thread num()
4: if ((id pu == 0) ∧ (pu edges[id pu ∗ 2] 6= −1)) then
5: dice cpu = cpu execution(A CPU,B, nlines b,
6: pu edges, threads cpu, id pu)
7: end if
8: if (id pu 6= 0) ∧ (pu edges[id pu] 6= −1) then
9: dice gpu = gpu execution(id pu,A GPU(id pu),

10: pu edges);
11: end if
12: deduplicate dice array(dice cpu, dice gpu)

Algorithm 9 Definition of the device attached to each GPU thread, device allocation,
copy and kernel invocation.

Input: size dice, nlines b, bloom size, id pu,B,A GPU, pu edges, threads per block
in

Output: ∗diceGPU out
1: setDevice(id pu − 1)
2: B d = allocate device memory(nlines b, bloom size)
3: A d = allocate device memory(pu edges, bloom size, id pu)
4: dice GPU d = allocate device memory(nlines b, size dice)
5: copy host to device(B d,B)
6: copy host to device(A d, A GPU(id pu))
7: define kernel dimension(pu edges, id pu, threads per block)
8: call kernell(dice GPU d,A d,B d, (pu edges[(id pu ∗ 2) + 1]−
9: pu edges[id pu ∗ 2]), nlines b)

10: copy device to host(diceGPU, diceGPU d2)
11: free device memory(B d,A d,dice GPU d)

6) which has the same size as the number of lines of dataset B (nlines b). The other
threads are tied to GPU execution and are responsible for invoking GPU kernels. GPU
threads call gpu execution procedure and receive dice gpu vector which has the same
size as the number of lines of dataset B (nlines b). If there is NVLINK interconnection
between the GPU devices, GPU threads will generate only one partially deduplicated
dice gpu vector (line 9); otherwise, each GPU thread will generate a different dice gpu
vector. In a multi-GPU environment composed of two GPUs, two threads manage the
GPUs while the others perform CPU computation. Each processing unit will perform its
computation if pu edges [id pu * 2]!= −1, that is, if there is data to be processed for that
specific PU.

54 PARALLEL MODELING FOR RECORD LINKAGE

The computation performed by the GPU are invoked by Algorithm 9. It takes as
input the size of one record of the Dice array, the number of records of dataset B, the size
of the Bloom filter, the thread id of the specific device, the entire dataset B, a portion of
dataset A (assigned for that device), pd edges and the number of threads per block to be
launched. For the implementation developed in this work, we use a size dice = 3 to store
the indexes of each record of a pair and its respective similarity index. As output, the
procedure will generate diceGPU array which has the same size as the number of lines of
dataset B. Each multicore thread id pu sets its respective GPU device. It is important
to noticee that, in different environments, GPU devices can be set in a different order
than was described by Algorithm ??. We considered that cards were set in an orderly
manner starting at 0 (line 1). For each structure that will be copied to the GPU global
memory (line 5 and 6), we allocate respective GPU memory (line 2 to 4). After that, we
define the grid and blocks dimension (line 7) and finally call the GPU kernel to operate
on each dataset portion. A copy back to the host main memory is needed to bring the
result (dice GPU).

6.3 DISCUSSION CONCERNING TECHNOLOGIES

The algorithms described in this section refer to source codes implemented using the C
programming language chosen due to its high portability in multiple environments and
comprehensive support offered to APIs and parallel programming paradigms, facilitat-
ing the application’s maintenance in future steps and promoting code reuse for specific
modules. We used the well-known OpenMP API to implement the parallelism, synchro-
nization, and communication of tasks in the multicore execution environment. The codes
running in GPU, in turn, were implemented using the CUDA API, and the most recent
tests used the most updated versions of all mentioned APIs.

Despite this, throughout this chapter, we attempt to describe the algorithms in a
generic way aiming to characterize the solution as technology-independent, as assumed
in the research proposal. In future works, one can apply tests with different API.

Chapter

7
In this section, we evaluate the Hybrid Record Linkage module considering performance, accuracy and

hardware usage. We present the progress of our solution in a chronological arrangement, showing the

limitations and improvements for each approach.

HYBRID RECORD LINKAGE EXPERIMENTS

In order to analyze the results achieved from the developed approaches, two important
and distinct metrics are taken into consideration. The first concerns accuracy, which is
directly influenced by the number of different values that will be used to identify a given
record, by the quality of attributes completion, which must be analyzed and improved
by the pipeline actions that are performed before the comparison step and finally by the
quality of transformation and classification algorithms. The second evaluation concerns
the performance delivered by the execution time, scalability and hardware usage. We
show in this chapter the relationship between parallel time and sequential time, given by
the speedup factor (when comparing different devices, speedup factor is given considering
the ratio between parallel time and the execution time for the other processing unit) and
we also present a comparison with an alternative Spark-based execution. Parallel exe-
cutions, even when using Spark as an execution framework, use a single computational
node. This guarantee a fair comparison between native code solution and Spark frame-
work since we deal only with shared-memory parallelism. Issues related to distributed
communication are out of the scope of this work.

7.1 ACCURACY ANALYSIS

As a proof of concept, this approach was first applied to a real scenario consisting of
a 5-year extraction of the CadastroUnico (CADU) socioeconomic dataset1. These
data were linked to mortality data from the Mortality Information System (SIM)
dataset provided by the Ministry of Health2. Whereas these two systems were not pre-
viously designed for integration, there is not a unique key capable of promoting reliable
deterministic correlation. In this way, the probabilistic linkage becomes a requirement.

1〈http://www.caixa.gov.br/cadastros/cadastro-unico/Paginas/default.aspx〉
2〈https://www.saude.gov.br/saude-de-a-z/mortalidade〉

55

56 HYBRID RECORD LINKAGE EXPERIMENTS

We have been linking Brazilian databases for seven years so far, and have relied on past
works to validate our results (PITA et al., 2018), (BORATTO et al., 2018), (PINTO
et al., 2017c), (PINTO et al., 2017a), (PINTO et al., 2017b), (PINTO; BARRETO;
BORATTO, 2016), (PITA et al., 2015).

In this research, the accuracy evaluation is influenced by four main factors: i) quantity
and quality of the attributes selected for comparison; ii) predetermined size of Bloom filter
and the respective number of hash functions chosen for mapping bigrams; iii) reliability of
the similarity index; and iv) decision to use or not blocking methods. Accuracy is assessed
by recall, precision and positive predictive value (PPV), which refers to the amount of
true positives observed in the matches set. For this integration, data from the Brazilian
states of Sergipe (SE), Santa Catarina (SC) and Rondônia (RO) were used. These states
were chosen for having high representativeness of the Brazilian population, for the great
divergence regarding the quality of the stored information and the viability for manual
verification.

Figure 7.1 Accuracy assessment in the integration of SIM-SE and CADU (cohort) data.

Figures 7.1, 7.2 and 7.1 describe the accuracy (hit rate) given by ROC curves for the
probabilistic linkage solution. The maximum value below the curve (Figure 7.3) reached
1.00 with an accuracy of up to 100%, which means that no pair has been classified as
false negative or false positive. The minimum value below the curve was 9.9 (Figure 7.2)
with an accuracy of 97% with similar recall and precision values.

7.2 PERFORMANCE ANALYSIS

Since the main purpose of this research is the provision of scalable and efficient pairwise
comparison routines to be inclued in the AtyImo-H tool, accelerating the probabilistic
comparison stage, this section will be dedicated to the performance analyzes, tests and
considerations on specificities and limitations of the approaches developed for the specific
domain. Considering the weak scalability, the ability of the application to maintain a

7.2 PERFORMANCE ANALYSIS 57

Figure 7.2 Accuracy assessment in the integration of SIM-SC and CADU (cohort) data.

Figure 7.3 Accuracy assessment in the integration of SIM-RO and CADU (cohort) data.

58 HYBRID RECORD LINKAGE EXPERIMENTS

stable performance was analyzed as it increases two parameters in the same proportion:
the size of the problem and the level of parallelism/number of processors. In tests of
strong scalability, on the other hand, we analyzed the ability of the application to achieve
better performance as more processing units are added. In general, we considered as
scalable an algorithm that is able to adjust the parameters of the system to maintain a
satisfactory efficiency and performance as the problem size grows.

7.2.1 Hybrid record linkage up to 20 million records

7.2.1.1 Experimental setup (test purpose) The tests presented in this section
were performed on a system comprised of 4 Intel Xeon CPU, 2.93 GHz. Each processor
is a quadcore with 24 MB of cache. The DDR3 main memory has a total of 130 GB.
The system is also comprised of Two Tesla k40 GPU graphic cards with 28 Stream
Multiprocessors (SM) and 64 Stream Processors (SP). The CUDA version 4.0 was used.
Updated versions were applied in subsequent tests.

Table 7.1 Execution time for different performance parameters (best values in bold).

w = 45, 45, 10 w = 40, 40, 20 w = 35, 35, 30
s c t(s, c, w) c t(s, c, w) c t(s, c, w)

1, 000.000 30 7,90 30 5,48 30 5,39
2, 000.000 30 11,38 30 7,89 30 7,36
4, 000.000 30 17,95 30 11,69 30 10,43
6, 000.000 30 17,95 30 11,69 30 10,43
8, 000.000 30 25,62 30 22,06 30 15,68
10, 000.000 30 26,59 30 28,95 30 20,90
12, 000.000 30 26,87 30 20,02 30 19,87
14, 000.000 30 30,95 30 29,10 30 21,89
16, 000.000 30 40,36 30 30,30 30 27,25
18, 000.000 30 51,83 30 28,01 30 26,19
20, 000.000 30 59,42 30 37,49 30 25,12

7.2.1.2 Performance analysis In the initial scalability tests we used the parallel
version that considers and compares: i) an isolated execution of CPU using OpenMP;
ii) one GPU using CUDA; iii) two GPUs and iv) an hybrid approach, using the CPU
and two GPUs collaboratively on the heterogeneous platform presented in the subsec-
tion 7.2.1.1. The first runs were dedicated to the calibration step. For this, different
configurations were used for Algorithm Parameters (AP) and System Parameters (SP).
Different thread allocations (1,2,...,30) were tested using the enabled mode for Intel Hyper-
Threading (ÉTIENNE, 2012). The workload (w) was split into different percentages
ranging from 10% to 45% for each GPU. In all experiments, the remaining percentage of
the workload was directed to multicore (CPU) execution. The number of linked records

7.2 PERFORMANCE ANALYSIS 59

Table 7.2 Comparison of execution times (in seconds) (best values in bold).

s CPU cores 1GPU 2GPUs Hybrid
1, 000.000 43,94 9,15 6,71 5,49
2, 000.000 85,99 10,03 10,63 7,37
4, 000.000 162,37 15,47 17,37 10,44
6, 000.000 245,09 17,79 24,54 13,18
8, 000.000 318,04 20,76 30,66 15,69
10, 000.000 402,60 25,69 32,64 17,90
12, 000.000 510,74 29,44 37,94 19,87
14, 000.000 620,78 31,40 38,71 21,89
16, 000.000 682,10 35,34 40,10 25,25
18, 000.000 766,58 34,65 52,81 26,19
20, 000.000 850,94 38,58 68,07 27,12

(comparisons and classifications) in these experiments ranged from 1 to 20 millions as
shown by column s. Table 7.1 shows the values used as parameters and the execution
times associated with each execution.

Table 7.3 Comparative performance, given by the gain with respect to time of multicore
execution (best values in bold).

s 1GPU 2GPUs Hybrid
1, 000.000 4.33 6.55 8.01
2, 000.000 8.57 8.09 11.68
3, 000.000 10.89 9.44 14.62
4, 000.000 10.50 9.34 15.56
5, 000.000 14.44 10.23 17.65
6, 000.000 13.78 9.99 18.59
7, 000.000 14.84 9.84 19.79
8, 000.000 15.32 10.37 20.27
9, 000.000 18.53 11.53 25.03
10, 000.000 18.01 11.38 22.13
12, 000.000 17.35 13.46 25.70
14, 000.000 19.77 16.04 28.35
16, 000.000 19.68 17.01 27.15
18, 000.000 21.69 14.51 29.26
20, 000.000 22.05 12.50 31.22

In general, the value of c depends on the size of the problem. However, as in this
comparison step, all the instructions used are identical and follow the SIMD paradigm,
and also considering that there is always a workload big enough to be shared between
the parallel threads of a processor. The value of 30 threads was set specifically for this

60 HYBRID RECORD LINKAGE EXPERIMENTS

execution environment. On the other hand, for different s values (and on different plat-
forms), there may be appropriate w settings, given that a different load will be launched
to each PU.

Table 7.2 and Table 7.3 show the execution time and the gain with respect to time
of multicore execution, respectively, considering each PU presented. The time regarding
using multicore threads isolated is given by CPU colors. The time for execution in
only one GPU is given by the 1GPU column, while the simultaneous execution time
using two GPUs is given by 2GPUs column. The last column, Hybrid, demonstrates
the runtime considering the three PUs defined above. The results demonstrate that the
hybrid approach achieves superior results compared to running exclusively on CPU or
GPUs, especially for large data volumes, reaching a maximum gain of 31.22 times.

For comparison purposes, each execution was performed on isolated PUs (CPU, one
GPU, and two GPUs) and then in an hybrid way. Figures 7.4 and 7.5 show the execution
times respectively considering all PUs except the CPU (for better viewing purposes). In
the experiments presented in this section, the performance gain is obtained considering
only the CPU execution time (multicore). Figure 7.6 presents the parallel gain for linkage
considering all parallel approaches implemented, including the hybrid one. Figure 7.7, in
turn, illustrates the runtime disparity for different workload distributions.

Figure 7.4 Execution time for linkage
step considering CPU, one GPU and two
GPUs executed in isolation and its com-
parison with the hybrid approach.

Figure 7.5 Execution time for linkage
step considering one GPU and two GPUs
executed in isolation and its comparison
with the hybrid approach.

7.2 PERFORMANCE ANALYSIS 61

Figure 7.6 Speedup for the linkage step
considering each approach implemented.

Figure 7.7 Execution time for each work-
load division between PUs in the sequence:
GPU, GPU, and CPU.

The results presented by these experiments demonstrate the superiority of the hybrid
approach given by the inclusion of GPU accelerators. It is important to notice when
considering the execution time of isolated PUs that the execution using only one GPU
has better performance when compared to the use of two GPUs collectively. This fact
can be explained considering that, for this size of problem, the cost of data transfer and
device management by the CPU (and consequent synchronization required for parallel
tasks) can harm overall performance. Subsequent sections will present alternatives to
mitigate this effect.

7.2.2 Hybrid record linkage up to 70 million records

Seeking the purpose of comparing a larger number of pairs to enable the probabilistic
link of 100 million records (quantity compatible with the size of the 100 Million Brazil-
ian Cohort) without using blocking methods, the work was focused on improving the
algorithm concerning dataset load, partitioning, transfer between the available PUs and
updating the hardware and software. In this subsection, the evolution of the development
and tests related to the hybrid comparison of the probabilistic linkage is presented. To
achieve these results, we updated the code to be compatible with CUDA 10 which adds
more features, performance improvements, bug fixes, in addition to improvements to the
standalone tools for debugging and profiling. Another important improvement concerns
the support offered by CUDA 10 for peer-to-peer communication between GPUs using
NVLINK: an interconnection with much higher bandwidth. This is a powerful feature,
especially for large memory workloads, that allow data to be split across the frame buffer
of both GPUs.

7.2.2.1 Experimental setup The tests presented in this section were performed on a
GPU node consisting of two sockets Intel Xeon Gold 6148, with a frequency of 2.40GHz;
20 cores in each socket (representing a total of 40 cores in a single node); cache with
28MB; main memory equal to 192GB. The GPU node is composed of two Tesla P100-
SXM2 graphic cards with global memory of 16GB, 732GB/s of memory bandwidth, 3584

62 HYBRID RECORD LINKAGE EXPERIMENTS

CUDA Cores and NVLINK bus interconnectivity.

7.2.2.2 Performance analysis In this subsection, we describe the performance eval-
uation results associated with the computing time of the comparison step from AtyImo-H
pipeline when executed exclusively using the hybrid option. As system parameters (SP),
the property that varies is related with the multicore and manycore parallelism. In this
context, we have considered: number of OpenMP threads and the ratio of threads/block.
As application parameters (AP), the variable properties of the input problem were con-
sidered: number of records in the largest dataset and the proportion of the load to be
assigned to each PU involved in the computation given by the size of the data stored
in the memory of the devices for each problem. input. For the scalability tests, the
number of OpenMP threads varied from 1 (serial execution) to the logical thread limit
of the processor. Considering the use of hyperthreading, this maximum amount reached
80 threads, while the maximum number of physical threads was 40 (double).

The input problem ranged from 1 million records to 70 million records. The smaller
base was fixed at 10,000 records in all experiments. From 1 million to 20 million records,
the sizes of the input problem were divided into regular intervals of 2 million records.
From 20 million to 70 million the problem sizes were divided into regular intervals of
10 million records in order to allow a better visual and numerical analysis of the results
obtained.

Figure 7.8 Execution time of the hybrid approach and its comparison with CPU and GPU
runtime in an environment composed of two P100 GPUs.

In the first step of this study, the execution times of the hybrid approach are demon-
strated when the size of the input problem varies. The time of the hybrid approach

7.2 PERFORMANCE ANALYSIS 63

Input Size Load time CPU GPU Hybrid
1000000 0.904837 13.477709 8.338676 14.390918
2000000 1.801966 27.174393 15.50223 28.986045
4000000 3.671854 52.83951 29.365366 56.522866
6000000 5.350599 77.816935 43.368177 83.181235
8000000 7.214579 103.603251 57.443239 110.833397
10000000 9.117034 128.562706 71.442332 137.697658
12000000 10.830713 153.836007 85.693925 164.687291
14000000 12.798385 179.161539 99.532884 191.981039
16000000 14.541385 204.856424 113.555748 219.425947
18000000 17.299208 230.360265 128.040982 247.686059
20000000 18.057199 256.373002 141.854134 274.462408
30000000 27.565059 382.892001 212.334932 410.501801
40000000 36.214255 510.442144 282.638174 546.708405
50000000 45.113597 635.613141 352.563669 680.787612
60000000 53.76732 1055.390382 423.232657 1086.24251
70000000 61.164862 1230.217209 493.336969 1266.463188

Table 7.4 Execution time of each PU and time spent loading datasets into devices’ memory
up to 70 million records (time in seconds.

considers the complete execution time of the comparison stage and comprises the exe-
cution time of the block that performs loading (reading the data and partitioning), the
execution time of the multi-GPU block (for this experiment only two GPUs were consid-
ered), and the execution time of the multicore block. The execution time of each of these
blocks is highlighted in the graphs and tables so that one can achieve the most realistic
understanding of the high-performance hybrid solution and the impact of each block in
the total performance.

Figure 7.8 establishes a comparison between the total execution time of the hybrid
approach concerning the multicore block that runs on the CPU and the manycore multi-
GPU block that runs on two GPUs. We can note that the multicore execution largely
limits the execution time of the hybrid approach. Figure 7.9 shows more clearly the
performance gain for the multi-GPU block when compared to the block that runs on the
CPU. In the smallest size of the problem, the gain fluctuates around 1.6x while in the
largest size of the input problem the gain is around 2.49x. An important consideration
point is that even with 2.49x of gain, it is not correct to say that transferring the load
from the CPU to the GPU would compensate the high CPU execution time since this
would generate a greater overhead and a significant increase in execution time. The use of
streams also does not benefit applications of this nature, since the instructions executed
on the GPU are simple and are completed in a few cycles.

Regarding multi-GPU execution, it is necessary to understand the impact that each
step has on the execution time. For this purpose, Figure 7.10 differentiates for each input
problem: a) the time spent by the GPU; b) the time spent with transfers between host

64 HYBRID RECORD LINKAGE EXPERIMENTS

Figure 7.9 Performance gain of multi-GPU execution in comparison with CPU execution time.

Figure 7.10 Execution time considering only multi-GPU execution, highlighting for each of
them a) complete execution time, b) data transfer time, and c) kernel execution time, in an
environment composed of two P100 GPUs.

7.2 PERFORMANCE ANALYSIS 65

Figure 7.11 Kernel execution time of both GPUs in an environment composed of two P100
GPUs.

and device (dataset to be compared) and device and host (file containing the recovery
IDs of the pair and their associated similarity index); and c) the time spent exclusively
on the kernel that performs the probabilistic comparison. These metrics are repeated
for the two GPUs involved in the process and the last bar in each set demonstrates the
complete execution time for both GPUs. It is possible to observe that the execution time
of each GPU is significantly influenced by the accumulated data transfer time (host to
device and device to host). This finding reinforces the need to establish methods capable
of minimizing the impact of data transfer time.

Figure 7.11 demonstrates more visually the execution time of the kernels executed by
GPU 1 and GPU 2. Although the kernel executed in GPU 2 always has a slightly higher
execution time, this fact will not be discussed, since both kernels execute at the same
order of magnitude (10-5).

The scalability tests presented here were performed considering only the load at-
tributed to the CPU and using multicore parallel execution (40% of each input problem).
The implemented solution employs the OpenMP paradigm to perform multithreading
parallelism. The hardware used and described in the section 7.2.2.1 allows hyperthread-
ing (MARR et al., 2002), that is why the system parameter concerning the number of
threads varied from 1 to 80, with 1 being considered the serial time and 80 twice the
amount of physical cores.

When performing strong scalability tests, the same input problem is applied to an
increasing number of parallel threads. The purpose of this test was to analyze the per-
formance gain of the application, given by the relationship between serial and parallel

66 HYBRID RECORD LINKAGE EXPERIMENTS

Figure 7.12 Strong scaling given by the execution time for two different input sizes in an
environment composed of two P100 GPUs.

Figure 7.13 Strong scaling given by the speedup factor up to 80 threads for two different input
sizes in an environment composed of two P100 GPUs.

7.2 PERFORMANCE ANALYSIS 67

Figure 7.14 Strong scaling given by the speedup factor up to 40 threads for two different input
sizes in an environment composed of two P100 GPUs.

execution (speedup factor), and the scalability limit, identifying when the gain stops
being considerable. Through these tests, it is possible to observe the communication
overhead and synchronization that are necessary to manage the load partition and the is-
sues regarding the efficient use of shared resources. For the scalability tests demonstrated
in this subsection, two input sizes were used. The first, described as ”init size”, refers to
the 1 million records dataset and the second, described as ”2x (init size)”, refers to the
2 million records dataset.

Although the hardware used allows hyperthreading, the graph described in Figure
7.12 demonstrates that there is no performance gain when using this approach. The
speedup graph described by Figure 7.13 and Figure 7.14, show more clearly that up to 15
threads, the application scales in a way compatible with the ideal speedup and between
15 and 40 threads there is still performance gain that compensates the parallelism.

In tests of weak scalability, the size of the input problem is increased in the same
proportion of the increasing in the parallel resources (threads). Ideally, the use of shared
resources should remain constant. In practice, however, the algorithms include extra steps
of serialization, creation of threads, and communication that can occasionally increase
execution time. The graph described in Figure 7.15 shows the results of weak scalability.
The initial input problem has a size of 1 million records and is executed serially using 1
thread (”1x” on the horizontal axis). Each point on the horizontal axis considers twice
the previous value for both parameters w and s. The ideal scalability curve, in this
context, is a constant of the serial execution time. However, for higher problem size an
overhead of w and s can be expected. Similar to the strong scalability tests, it is possible

68 HYBRID RECORD LINKAGE EXPERIMENTS

Figure 7.15 Weak scaling given by the execution time up to 64 threads and 64 million records
in an environment composed of two P100 GPUs.

to observe that the use of hyperthreading is not useful to achieve performance gains.

7.2.3 Hybrid record linkage up to 100 million records

In this subsection, we describe the most recent tests of the GPU-accelerated hybrid
probabilistic comparison that guarantees a comparison of 100 million records (larger
database) without the use of blocking strategies. The evolution of the research focused
on the optimization of data transfer, using NVLINK communication between devices to
perform the deduplication step of the classified pairs for those blocks executed by the two
GPUs. This incurs additional time in kernels execution but reduces time spent with data
transfer for structures that store the similarity index of each classified pair, generating
a positive impact on the total execution time of the application and optimizing the use
of the PCI-e as a shared resource. The use of superior hardware was also decisive for
storing a larger number of records in GPUs’ global memory at once.

7.2.3.1 Experimental setup The tests presented in this subsection were performed
on a GPU node consisting of two sockets Intel Xeon Gold 6148, with a frequency of
2.40GHz; 20 cores in each socket (representing a total of 40 cores in a single node); cache
with 28MB; main memory equal to 192GB. The GPU node is composed of two Tesla
V100-SXM2 graphic cards with global memory of 32GB, 900GB/s of memory bandwidth
and 5120 CUDA Cores.

7.2 PERFORMANCE ANALYSIS 69

7.2.3.2 Performance analysis As shown in previous experiments, this subsection
describes the performance evaluation results associated with the computing time of the
comparison step from AtyImo-H pipeline when executed exclusively using the hybrid op-
tion. The number of OpenMP threads and the ratio threads per block are still used as
system parameters (SP), and their amount is changed to observe scalability and perfor-
mance issues. We varied the number of threads from 1 to 80. As application parameters
(AP), we varied the input size defined by the number of records of the largest dataset.
We varied the input size from 1 million to 100 million records. The smaller dataset still
remained fixed in 10.000 records for all experiments. From 1 million to 20 million records,
the sizes of the input problem were divided into regular intervals of 2 million records.
From 20 million to 70 million the problem sizes were divided into regular intervals of 10
million records.

Figure 7.16 Execution time of hybrid approach and its comparison with CPU and GPU
runtime in an environment composed of two V100 GPUs.

To analyze the execution time, as a start point, we varied the input problem size.
Figure 7.16 shows the time of the hybrid approach (green) and the time spent with CPU
execution (red) and GPU execution (yellow). The time spent in the block that performs
loading was also considered in the total execution time and can be observed by Table 7.5.
The multicore execution still limits the execution time of the hybrid approach and its
isolated execution time is nearly the execution time for execution presented in subsection
7.2.2. This is due to the fact that the CPU characteristics for two computational environ-
ments are similar and the multicore algorithm had no significant changes. However, GPU
execution time presented a significant execution time reduction and, besides that, it was
possible to store the maximum number of records (100 million) required by AtyImo-H.

70 HYBRID RECORD LINKAGE EXPERIMENTS

Load Time CPU GPU Hybrid
1000000 2.236366 15.494517 8.949632 17.730507
2000000 3.428926 29.724551 13.418631 33.033304
4000000 5.547809 57.639354 22.389282 65.078163
6000000 7.105531 85.692782 31.308873 96.963078
8000000 9.804489 114.362579 40.328894 128.043082
10000000 12.859495 145.207225 49.337498 162.496411
12000000 15.785569 171.74601 58.263239 192.983175
14000000 18.349736 198.941357 67.335637 221.650761
16000000 21.293881 229.644019 76.402831 257.01596
18000000 24.5141 256.534511 85.512677 286.556365
20000000 37.506317 286.967554 95.066702 320.102923
30000000 49.592786 425.214275 139.498266 475.522523
40000000 58.844083 571.237995 184.521669 639.577269
50000000 71.902747 708.678306 232.654532 792.365382
60000000 83.054827 921.038331 274.735558 1019.378748
70000000 92.73407 1091.54025 321.594864 1209.430932
80000000 104.808594 1214.556377 378.462944 1348.359932
90000000 115.721562 1404.636898 436.912878 1564.787347
100000000 132.238598 1541.50828 491.608563 1713.792103

Table 7.5 Execution time of each PU and time spent loading datasets into devices’ memory
until 100 million records (time in seconds).

7.2 PERFORMANCE ANALYSIS 71

Figure 7.17 Performance gain of multi-GPU execution in comparison with CPU execution
time in an environment composed of two P100 GPUs.

Figure 7.2.3.2 shows the performance gain for GPU execution when compared to CPU
execution. The performance gain varies from 1.73x (small case with 1 million records) to
3.13x (largest case with 100 million records).

The graph described by Figure 7.18 shows the impact that each step has on the
execution time: a) the time spent by the GPU; b) the time spent with transfer between
host and device (dataset to be compared) and device and host (file containing the recovery
IDs of the pair and their associated similarity index); and c) the time spent exclusively on
the kernel that performs the probabilistic comparison. We can observe that the time that
GPU 1 spends on data transfer is significantly reduced since only one GPU is sending
data back to CPU. Figure 7.19 demonstrates in more details the execution time of both
kernels.

To evaluate scalability for CPU execution we performed tests considering the runtime,
the input size given by the number of records set to be compared and classified, the
memory size required for each record set and the number of parallel threads. Similar to
the computational environment presented in the previous section, the hardware used in
this evaluation and described in the subsection 7.2.3.1 allows hyperthreading. Therefore,
we varied the number of threads from 1 (serial execution) to 80 (maximum number of
logical threads). Figure 7.20 shows a significant performance gain up to 20 threads and a
slight performance gain up to 40 threads. From 40 to 80 threads, there is no performance
improvement. The performance gain can be observed in more details in Figure 7.21 and
Figure 7.22.

For the strong scalability tests demonstrated in this subsection, two input sizes were

72 HYBRID RECORD LINKAGE EXPERIMENTS

Figure 7.18 Execution time considering only multi-GPU execution, highlighting for each of
them: a) complete execution time, b) data transfer time, and c) kernel execution time, in an
environment composed of two V100 GPUs.

Figure 7.19 Kernel execution time of both GPUs in a environment composed of two V100
GPUs.

7.2 PERFORMANCE ANALYSIS 73

Figure 7.20 Strong scaling given by the execution time for two different input sizes in a
environment composed of two V100 GPUs.

Figure 7.21 Strong scaling given by the speedup factor up to 80 threads for two different input
sizes in a environment composed of two V100 GPUs.

74 HYBRID RECORD LINKAGE EXPERIMENTS

Figure 7.22 Strong scaling given by the speedup factor up to 40 threads for two different input
sizes in a environment composed of two V100 GPUs.

Figure 7.23 Weak scaling given by the execution time up to 64 threads and 64 million records
in a environment composed of two V100 GPUs.

7.2 PERFORMANCE ANALYSIS 75

data size
data size

CPU
data size
GPU1

data size
GPU2

1000000 0.424 0.1696 0.1272 0.1272
2000000 0.848 0.3392 0.2544 0.2544
4000000 1.696 0.6784 0.5088 0.5088
6000000 2.544 1.0176 0.7632 0.7632
8000000 3.392 1.3568 1.0176 1.0176
10000000 4.24 1.696 1.272 1.272
12000000 5.088 2.0352 1.5264 1.5264
14000000 5.936 2.3744 1.7808 1.7808
16000000 6.784 2.7136 2.0352 2.0352
18000000 7.632 3.0528 2.2896 2.2896
20000000 8.48 3.392 2.544 2.544
30000000 12.72 5.088 3.816 3.816
40000000 16.96 6.784 5.088 5.088
50000000 21.2 8.48 6.36 6.36
60000000 25.44 10.176 7.632 7.632
70000000 29.68 11.872 8.904 8.904
80000000 33.92 13.568 10.176 10.176
90000000 38.16 15.264 11.448 11.448
100000000 42.4 16.96 12.72 12.72

Table 7.6 Input data sizes loaded into each Processing Unit for different numbers of records.

used following the same structure described in section 7.2.2.2 (1 million records and 2
million records).

For weak scalability tests, the input size grows at the same proportion as the number
of parallel threads grows. Figure 7.23 demonstrates a satisfactory performance gain up to
32x (horizontal axis) using 32 threads and a dataset with 32 million records, reaffirming
that the use of hyperthreading is not advantageous at any stage of the parallel execution.
The scalability measures presented here are useful to indicate the ability of AtyImo-H
(GPU) to deliver greater computational power when the amount of resources is increased.

AtyImo-H (GPU) is a GPU-accelerated multicore system controlled by host threads
executed on dedicated CPU cores. The workload is partitioned between host and devices
(CPU and GPUs). The devices have a separate memory, therefore, it is needed to transfer
input data to the devices and then transfer resulting data back to the host. Table 7.6
shows the input data size loaded into each Processing Unit for different numbers of
records.

7.2.4 Comparison with Spark-based AtyImo

The presentation of AtyImo-H as a hybrid tool seeks to offer a scalable and high-
performance alternative to meet the requirement for timely responses, which is one of
the main requirements for the employment of this type of application. It is necessary

76 HYBRID RECORD LINKAGE EXPERIMENTS

to emphasize, however, that the Spark-based AtyImo pipeline, built with a technology
that explores iterative algorithms and in-memory computation, benefits the application
in different requirements such as failure management, data recovery, and maintenance.

The data replication management offered by Spark has proven performance and ben-
efits several applications that need to scale on different nodes of a distributed cluster
composed of CPU processing units. Spark’s superior performance compared to other
MapReduce jobs has already been punctuated in several works since this tool keeps the
data in memory, avoiding reloading when searching for data from disk in intermediate
steps, as done by other distributed frameworks like Hadoope. Therefore, this solution
must be taken into account when developing generic big data applications.

Nevertheless, solutions based on a native implementation offer consistent performance
and transcend Spark-based solutions concerning processing speed (REYES-ORTIZ; ONETO;
ANGUITA, 2015). If, on the one hand, such solutions are capable of offering superior
performance, on the other, they lack fault tolerance, as already mentioned, requiring a
cautious use of distributed message passing approaches.

The heterogeneity of execution platforms and the current architecture diversity are
essential factors to justify the exploration of multiple levels of parallelism, to extract
maximum performance from the resources used, since the execution time is an indispens-
able requirement for most applications involving big data analysis, such as record linkage,
mainly in the pipeline stage dedicated to probabilistic comparison. The exploration of
the heterogeneous platform also provides higher throughput, allowing a single comput-
ing node to process a large volume of data in less time, reducing the need for process
distribution.

Figure 7.24 AtyImo-H CPU X GPU-based execution (pairwise comparison step only).

7.2 PERFORMANCE ANALYSIS 77

Figure 7.24 establishes a performance comparison between AtyImo-H and the Spark-
based AtyImo. It is possible to observe that the hybrid execution (triangle line) surpasses
the Spark-based solution in a meaningful manner. We test Spark-based in a single-node
environment (x- line) to provide a fair comparison with a single node AtyImo-H execution.
Due to this scenario, it was possible to perform a probabilistic comparison with an input
size of up to 40 million records (dataset equivalent to 16.96GB) due to the framework’s
memory limitation. When compared to single-node execution, AtyImo-H’s performance
ranged from 46.5x to 10.2x when the input size ranged from 0.424GB (smaller dataset) to
16.96 GB (larger dataset). The Spark-based execution was also submitted in a distributed
environment (dots line) using 40 cores per node and 10 computational nodes. In this
execution, it is possible to observe that the application performance improved as the
input data volume increased. When compared to distributed execution, AtyImo-H’s
performance ranged from 61x to 4x when the input size ranged from 0.424GB (smaller
dataset) to 42.4GB (larger dataset). The variation of the execution time in different input
sizes reaffirms the distributed framework’s effectiveness to process huge volumes of data.
When the volume of data increases, the speedup for high performance execution tend
to be smaller. The graph highlights the feasibility of AtyImo-H as a hybrid tool relying
on different programming paradigms and processing units to offer high-performance for
big data applications. Thus, it is possible to adapt the application parameters to the
execution infrastructure available in that specific scenario.

Chapter

8
This chapter presents a summary of the goals, development and results obtained by the execution of

this work. Subsequent sections present the challenges encountered and the strategies to overcome them.

Future work is also presented.

CONCLUSION

8.1 FINAL CONSIDERATIONS

The objective of this work was to present technological alternatives to enable the im-
plementation and execution of the module that performs the probabilistic comparison of
records contextualized in a Big Data scenario, in heterogeneous environments composed
by multicore (CPU) and manycore (GPU) processing units. It was also intended to inte-
grate the developed solutions and apply the considered studies to the AtyImo (PINTO et
al., 2017c) tool pipeline, previously presented and partially developed during the develop-
ment of this work. This integration allows researchers already using AtyImo to speed up
the execution of the linkage process over large datasets whenever heterogeneous hardware
is available.

One of the main advantages of frameworks like Spark is related to fault tolerance. But,
in HPC clusters dedicated to scientific research, the high-quality of high-end hardware
ensures that failures are not a problem for information security and jobs execution. On
the other hand, security must be ensured by physical infrastructure (redundancy etc.), as
well as through a certain level of control in the execution environment (queues, checkpoint
etc.). Due to that, fault tolerance is not presented as a drawback for the proposed solution.

The scope of this work is the probabilistic processing of structured datasets simi-
lar to those generated by government information systems managed by the Ministry of
Health and the Ministry of Development. In this research, we used as proof of concept,
datasets of the Hospital Information System (SIH), the Mortality Information System
(SIM), the Notification Information System (SINAN), the Live Births Information Sys-
tem (SINASC), the Unified Registry for Social Programmes (Cadastro Unico) and the
Bolsa Famı́lia Program (PBF). The developed solutions were applied over real bases (for
proof of concept and accuracy analysis), as well as over synthetic bases (for scalability
analysis and performance matters). Chapter 7, for example, presents results of a linkage

79

80 CONCLUSION

between CADU and SIM to gather socioeconomic information and mortality data from
Sergipe (SE), Santa Catarina (SC) and Rondônia (RO) state registries. Considering that
data obtained from government-based information systems vary regionally in quality, it
is important to select data from different regions to ensure that the obtained accuracy
results represent the quality of the method for all cases.

Still in Chapter 7, different aspects of the hybrid application behavior (CPU and GPU
acting collaboratively) were demonstrated for the comparison step that performs the
probabilistic linkage of records. First, a preliminary approach was shown through which
it possible to compare and classify up to 20 million records. An initial calibration fixed a
static workload division, which achieved optimum performance in the test environment,
showing results superior to multicore-only execution and manycore-only. For replicating
the experiments in environments with a different configuration, however, a new calibration
(installation) step was required.

The applied static division distributed 70% of the workload to GPUs (35% for each
GPU) and the remaining to the host for CPU processing. Other distributions were also
tested (40% for each GPUs and 20% for one CPU and 45% for each GPU and 10%
for the CPU), however, the results did not exceed the results presented. So far, the
definition of the workload division between the involved PUs is decided in a calibration
step performed before the executions themselves. Through the history of calibration runs,
one can determine the initial parameters. The disadvantage of this approach is that for
each new execution environment (different hardware) a new calibration is required to
verify the results obtained for the performance metrics considered.

For runs that scaled up to 70 million records, the ratio of 35% for each GPU and 30%
for the CPU was maintained. For these tests, an execution environment consisting of
two GPUs and one CPU node was also maintained. However, the hardware configuration
and software versions have been updated. Tesla K80 graphics cards were replaced by two
Tesla P100-SXM22 cards interconnected via NVLINK. The node consisting of four Intel
Xeon CPUs with 2.93 GHz and 40 cores was replaced by a node consisting of two Intel
Xeon Gold 6148 CPUs, 2.40GHz with 20 cores each, also representing a total of 40 cores.
DDR3 main memory capacity of 130 GB was replaced by one with capacity of 196 GB.
The CUDA version used has been updated from 4.0 to 9.0.

Finally, developments in parallel implementation and improvements in the comparison
and synchronization function between devices have allowed 100 million records to be
paired without any blocking or indexing method in less than an hour. To the best of our
knowledge, no tool was found in the literature capable of linking this amount of records
with the performance offered by AtyImo-H.

The results presented demonstrate that the hybrid approach has superior performance
in comparison with executions on a CPU or GPU exclusively. It is clear from tests that a
significant reduction in runtime is sufficient to compensate for the extra time spent with
data transfer, synchronization, and communication between PUs. The results section
also demonstrated the superiority of AtyImo-H when compared to Spark-based AtyImo
in terms of execution time.

8.2 FUTURE WORK 81

The AtyImo-H tool is available in a public repository1 along with test data and user-
guide and aims to meet different demands for integrating structured datasets. Although
it has been calibrated to handle datasets from specific government domains, AtyImo-H
can be customizable to suit different sources. Since the application execution is grouped
in well-defined blocks and present a pipeline-based design, it is even easier to use and
integrate its functionalities.

8.2 FUTURE WORK

This work intends to cooperate for research projects that require probabilistic record
linkage in large government datasets (or similar).

Future developments can involve:

• fully validate the proposed approach using other linkage scenarios, to check for
accuracy and performance;

• providing an integrated, fully customizable implementation of AtyImo-H allowing
the user to easily define application parameters (AP) that can influence on the
linkage methods and workload distribution calibration;

• linking multiple (> 2) datasources simultaneously, through the coordinated use of
multiple GPUs and a bespoke workload balancing strategy;

• optimize memory management by exploring CUDA unified memory and zero-copy
memory as alternative data transfer modality.

1〈https://github.com/atyimo-lab/atyimo-h〉

BIBLIOGRAPHY

ALKATHERI, S.; ABBAS, S.; SIDDIQUI, M. A comparative study of big data frame-
works. International Journal of Computer Science and Information Security (IJCSIS),
v. 17, n. 1, 2019.

ALMEIDA, B. de A. et al. The center for data and knowledge integration for health
(cidacs). International Journal of Population Data Science, v. 4, n. 2, 2019.

ALOWAYYED, S. et al. Multiscale computing in the exascale era. Journal of Computa-
tional Science, Elsevier, v. 22, p. 15–25, 2017.

AMARAL, F. Introdução à Ciência de Dados: mineração de dados e big data. [S.l.]: Alta
Books Editora, 2016.

AMD. AMD Ryzen™ Threadripper™ 3970X Processor. 2019. Dispońıvel em: 〈https://
www.amd.com/en/products/cpu/amd-ryzen-threadripper-3970x/〉.

ANDERSON, M. et al. Bridging the gap between hpc and big data frameworks. Proceed-
ings of the VLDB Endowment, VLDB Endowment, v. 10, n. 8, p. 901–912, 2017.

BARBOSA, G. C. et al. CIDACS-RL: A novel search engine-based record linkage sys-
tem for huge datasets with high accuracy and scalability. In: WILEY 111 RIVER ST,
HOBOKEN 07030-5774, NJ USA. Pharmacoepidemiology and Drug Safety. [S.l.], 2019.
v. 28, p. 118–118.

BARRETO, M. E. et al. Assessing the accuracy of probabilistic record linkage of so-
cial and health databases in the 100 million brazilian cohort. International Journal of
Population Data Science, v. 1, n. 1, 2017.

BERGMAN, K. et al. Exascale computing study: Technology challenges in achieving
exascale systems. Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Tech. Rep, v. 15, 2008.

BLOOM, B. H. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, v. 13, n. 7, p. 422–426, 1970.

BOLZ, J. et al. Sparse matrix solvers on the gpu: conjugate gradients and multigrid.
v. 22, n. 3, p. 917–924, 2003.

BORATTO, M. et al. Exploring hybrid parallel systems for probabilistic record linkage.
The Journal of Supercomputing, Springer, p. 1–13, 2018.

83

84 BIBLIOGRAPHY

CARBONE, P. et al. Apache flink: Stream and batch processing in a single engine.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, IEEE
Computer Society, v. 36, n. 4, 2015.

CARTER, D. J. et al. The impact of a cash transfer programme on tuberculosis treatment
success rate: a quasi-experimental study in brazil. BMJ global health, BMJ Specialist
Journals, v. 4, n. 1, p. e001029, 2019.

CATANZARO, B.; SUNDARAM, N.; KEUTZER, K. Fast support vector machine train-
ing and classification on graphics processors. In: ACM. Proceedings of the 25th interna-
tional conference on Machine learning. [S.l.], 2008. p. 104–111.

CHEN, Y. et al. Dadiannao: A machine-learning supercomputer. In: IEEE COMPUTER
SOCIETY. Proceedings of the 47th Annual IEEE/ACM International Symposium on Mi-
croarchitecture. [S.l.], 2014. p. 609–622.

CHRISTEN, P. A survey of indexing techniques for scalable record linkage and dedu-
plication. IEEE transactions on knowledge and data engineering, IEEE, v. 24, n. 9, p.
1537–1555, 2011.

CIDACS. Coorte de 100 Milhões de Brasileiros. 2015. Dispońıvel em: 〈https://cidacs.
bahia.fiocruz.br/plataforma/coorte-de-100-milhoes-de-brasileiros/〉.

CLARKE, D.; LASTOVETSKY, A.; RYCHKOV, V. Column-based matrix partitioning
for parallel matrix multiplication on heterogeneous processors based on functional perfor-
mance models. In: SPRINGER. European Conference on Parallel Processing. [S.l.], 2011.
p. 450–459.

CLARKE, D. et al. Fupermod: A framework for optimal data partitioning for parallel
scientific applications on dedicated heterogeneous hpc platforms. In: SPRINGER. Inter-
national Conference on Parallel Computing Technologies. [S.l.], 2013. p. 182–196.

COX, M.; ELLSWORTH, D. Application-controlled demand paging for out-of-core visu-
alization. In: IEEE. Proceedings. Visualization’97 (Cat. No. 97CB36155). [S.l.], 1997. p.
235–244.

DEAN, J.; GHEMAWAT, S. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, ACM, v. 51, n. 1, p. 107–113, 2008.

DOAN, A.; HALEVY, A.; IVES, Z. Principles of data integration. Elsevier Science, 2012.
Dispońıvel em: 〈http://books.google.com.br/books?id=s2YCKGrO10YC〉.

DUARTE, J. M.; SANTOS, J. B. d.; MELO, L. C. Comparison of similarity coefficients
based on rapd markers in the common bean. Genetics and Molecular Biology, SciELO
Brasil, v. 22, n. 3, p. 427–432, 1999.

ELFEKY, M. G.; VERYKIOS, V. S.; ELMAGARMID, A. K. Tailor: A record linkage
toolbox. In: IEEE. Proceedings 18th International Conference on Data Engineering. [S.l.],
2002. p. 17–28.

BIBLIOGRAPHY 85

ÉTIENNE, E. Y. Hyper-threading. [S.l.]: TurbsPublishing, 2012.

FELLEGI, I. P.; SUNTER, A. B. A theory for record linkage. Journal of the American
Statistical Association, v. 64, p. 1183–1210, 1969.

FORCHHAMMER, B. et al. Duplicate detection on gpus. HPI Future SOC Lab, v. 70,
n. 3, 2013.

FRANKE, M. et al. Scads research on scalable privacy-preserving record linkage.
Datenbank-Spektrum, Springer, v. 19, n. 1, p. 31–40, 2019.

FUNG, J.; TANG, F.; MANN, S. Mediated reality using computer graphics hardware for
computer vision. In: IEEE. Wearable Computers, 2002.(ISWC 2002). Proceedings. Sixth
International Symposium on. [S.l.], 2002. p. 83–89.

GHEMAWAT, S.; GOBIOFF, H.; LEUNG, S.-T. The google file system. In: Proceedings
of the nineteenth ACM symposium on Operating systems principles. [S.l.: s.n.], 2003. p.
29–43.

GREGG, C.; HAZELWOOD, K. Where is the data? why you cannot debate cpu vs.
gpu performance without the answer. In: IEEE. Performance Analysis of Systems and
Software (ISPASS), 2011 IEEE International Symposium on. [S.l.], 2011. p. 134–144.

GSCHWIND, T. et al. Fast record linkage for company entities. In: IEEE. 2019 IEEE
International Conference on Big Data (Big Data). [S.l.], 2019. p. 623–630.

HALL, R.; FIENBERG, S. E. Privacy-preserving record linkage. In: SPRINGER. Inter-
national conference on privacy in statistical databases. [S.l.], 2010. p. 269–283.

HAWKINS, S. S. et al. The linked century study: linking three decades of clinical and
public health data to examine disparities in childhood obesity. BMC pediatrics, Springer,
v. 16, n. 1, p. 32, 2016.

HIVE, A. Apache hive. 2013.

HOLMAN, C. D. J. et al. A decade of data linkage in western australia: strategic de-
sign, applications and benefits of the wa data linkage system. Australian Health Review,
CSIRO, v. 32, n. 4, p. 766–777, 2008.

INTEL. NVIDIA Ampere Architecture In-Depth. 2019. Dispońıvel em: 〈https://www.
intel.com/content/www/us/en/products/programmable/fpga/stratix-10/gx.html/〉.

ISLAM, N. S. et al. Accelerating i/o performance of big data analytics on hpc clusters
through rdma-based key-value store. In: IEEE. 2015 44th International Conference on
Parallel Processing. [S.l.], 2015. p. 280–289.

KAY, D.; HARMELEN, M. v. Activity data: Delivering benefits from the data deluge.
Accessed: Jan, 2014.

86 BIBLIOGRAPHY

KIM, H.-s.; LEE, D. Parallel linkage. In: ACM. Proceedings of the sixteenth ACM confer-
ence on Conference on information and knowledge management. [S.l.], 2007. p. 283–292.

KÖPCKE, H.; RAHM, E. Frameworks for entity matching: A comparison. Data &
Knowledge Engineering, Elsevier, v. 69, n. 2, p. 197–210, 2010.

KRASHINSKY, R. et al. NVIDIA Ampere Architecture In-Depth.

LANEY, D. 3d data management: Controlling data volume, velocity and variety. META
group research note, v. 6, n. 70, p. 1, 2001.

LEMIEUX, V. L.; GORMLY, B.; ROWLEDGE, L. Meeting big data challenges with
visual analytics: The role of records management. Records Management Journal, Emerald
Group Publishing Limited, v. 24, n. 2, p. 122–141, 2014.

LI, Z. et al. Ipso: A scaling model for data-intensive applications. In: IEEE. 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS). [S.l.], 2019.
p. 238–248.

LIVINGSTONE, S. J. et al. Estimated life expectancy in a scottish cohort with type 1
diabetes, 2008-2010. Jama, American Medical Association, v. 313, n. 1, p. 37–44, 2015.

LUCENE, A. Apache lucene-overview. Internet: http://lucene. apache.
org/iava/docs/[Jan. 15, 2009], 2010.

MACHADO, D. B. et al. Conditional cash transfer programme: Impact on homicide rates
and hospitalisations from violence in brazil. PloS one, Public Library of Science, v. 13,
n. 12, p. e0208925, 2018.

MAHESWARAN, M. et al. Dynamic mapping of a class of independent tasks onto het-
erogeneous computing systems. 1999.

MARR, D. T. et al. Hyper-threading technology architecture and microarchitecture. Intel
Technology Journal, v. 6, n. 1, 2002.

MCCUNE, B.; GRACE, J.; URBAN, D. Analysis of ecological communities. MJM Soft-
ware Design, 2002.

MESTRE, D. G.; PIRES, C. E.; NASCIMENTO, D. C. Adaptive sorted neighborhood
blocking for entity matching with mapreduce. In: Proceedings of the 30th Annual ACM
Symposium on Applied Computing. [S.l.: s.n.], 2015. p. 981–987.

MITTAL, S.; VETTER, J. S. A survey of cpu-gpu heterogeneous computing techniques.
ACM Computing Surveys (CSUR), ACM, v. 47, n. 4, p. 69, 2015.

OLIVEIRA, M. A. P. de; PARENTE, R. C. M. Cohort and case-control studies in the
evidence-based medicine era. 2010.

BIBLIOGRAPHY 87

PINNECKE, M.; BRONESKE, D.; SAAKE, G. Toward gpu accelerated data stream
processing. In: GvD. [S.l.: s.n.], 2015. p. 78–83.

PINTO, C.; BARRETO, M.; BORATTO, M. Auto-tuning trsm with an asynchronous
task assignment model on multicore, multi-gpu and coprocessor systems. In: IEEE.
2016 IEEE/ACS 13th International Conference of Computer Systems and Applications
(AICCSA). [S.l.], 2016. p. 1–8.

PINTO, C. et al. Scaling probabilistic record linkage on multicore and multi-gpu system.
17th International Conference on Computational and Mathematical Methods in Science
and Engineering, CMMSE, 2017.

PINTO, C. et al. Accuracy of probabilistic record linkage applied to the brazilian 100
million cohort project. In: IEEE ENGINEERING IN MEDICINE AND BIOLOGY SO-
CIETY (EMBS). [S.l.], 2017.

PINTO, C. et al. Probabilistic integration of large brazilian socioeconomic and clini-
cal databases. In: IEEE. 2017 IEEE 30th International Symposium on Computer-Based
Medical Systems (CBMS). [S.l.], 2017. p. 515–520.

PITA, R. et al. A machine learning trainable model to assess the accuracy of probabilistic
record linkage. In: SPRINGER. Big Data Analytics and Knowledge Discovery – DaWak
2017). [S.l.], 2017. p. 214–227.

PITA, R. et al. A spark-based workflow for probabilistic record linkage of healthcare data.
p. 17–26, 2015.

PITA, R. et al. On the accuracy and scalability of probabilistic data linkage over the
brazilian 114 million cohort. IEEE journal of biomedical and health informatics, 2018.

RASCH, A. et al. High-performance probabilistic record linkage via multi-dimensional ho-
momorphisms. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Com-
puting. [S.l.: s.n.], 2019. p. 526–533.

REYES-ORTIZ, J. L.; ONETO, L.; ANGUITA, D. Big data analytics in the cloud: Spark
on hadoop vs mpi/openmp on beowulf. In: INNS Conference on Big Data. [S.l.: s.n.],
2015. v. 8, p. 121.

RISTAD, E. S.; YIANILOS, P. N. Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence, IEEE, v. 20, n. 5, p. 522–532, 1998.

SCHALLER, R. R. Moore’s law: past, present and future. IEEE spectrum, IEEE, v. 34,
n. 6, p. 52–59, 1997.

SEHILI, Z. et al. Privacy preserving record linkage with ppjoin. Datenbanksysteme für
Business, Technologie und Web (BTW 2015), Gesellschaft für Informatik eV, 2015.

SHVACHKO, K. et al. The hadoop distributed file system. In: IEEE. 2010 IEEE 26th
symposium on mass storage systems and technologies (MSST). [S.l.], 2010. p. 1–10.

88 BIBLIOGRAPHY

SINGH, D.; REDDY, C. K. A survey on platforms for big data analytics. Journal of Big
Data, Nature Publishing Group, v. 2, n. 1, p. 8, 2015.

SUGGS, D.; SUBRAMONY, M.; BOUVIER, D. The amd “zen 2” processor. IEEE Micro,
IEEE, v. 40, n. 2, p. 45–52, 2020.

TUKEY, J. W. Exploratory Data Analysis: Limited Preliminary Ed. [S.l.]: Addison-
Wesley Publishing Company, 1970.

VATSALAN, D.; CHRISTEN, P.; RAHM, E. Incremental clustering techniques for multi-
party privacy-preserving record linkage. Data & Knowledge Engineering, Elsevier, v. 128,
p. 101809, 2020.

WANG, B.; SCHMIDL, D.; MÜLLER, M. S. Evaluating the energy consumption of
openmp applications on haswell processors. In: SPRINGER. International Workshop on
OpenMP. [S.l.], 2015. p. 233–246.

WENDEL, D. et al. The power7 tm processor soc. In: IEEE. IC Design and Technology
(ICICDT), 2010 IEEE International Conference on. [S.l.], 2010. p. 71–73.

ZAHARIA, M. et al. Spark: Cluster computing with working sets. HotCloud, v. 10, n.
10-10, p. 95, 2010.

ZHONG, Z.; RYCHKOV, V.; LASTOVETSKY, A. Data partitioning on multicore and
multi-gpu platforms using functional performance models. IEEE Transactions on Com-
puters, IEEE, v. 64, n. 9, p. 2506–2518, 2015.

