UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOQUÍMICA: PETRÓLEO E MEIO AMBIENTE

EILEEN ROCÍO NIÑO ZAMBRANO

POTENCIAL GERADOR DA FORMAÇÃO PIMENTEIRAS (DEVONIANO), BACIA DO PARNAÍBA, ESTADO DO TOCANTINS, E APLICAÇÃO DE BIOMARCADORES SATURADOS COMO INDICADORES DE EVENTOS DE INUNDAÇÃO MARINHA

> Salvador 2015

EILEEN ROCÍO NIÑO ZAMBRANO

POTENCIAL GERADOR DA FORMAÇÃO PIMENTEIRAS (DEVONIANO), BACIA DO PARNAÍBA, ESTADO DO TOCANTINS, E APLICAÇÃO DE BIOMARCADORES SATURADOS COMO INDICADORES DE EVENTOS DE INUNDAÇÃO MARINHA

Dissertação apresentada ao Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO), Instituto de Geociências, Universidade Federal da Bahia, como requisito para obtenção do grau de Mestre em Geoquímica do Petróleo e Ambiental.

Orientadora: Profa. Dr. Olívia Maria Cordeiro de Oliveira

Co-Orientador: Prof. Dr. Hélio Jorge Portugal Severiano Ribeiro

> Salvador 2015

Ficha catalográfica elaborada pela Biblioteca do Instituto de Geociências - UFBA

N716	
	Niño Zambrano, Eileen Rocío Potencial gerador da Formação Pimenteiras (Devoniano), Bacia do Parnaíba, estado do Tocantins, e aplicação de biomarcadores saturados como indicadores de eventos de inundação marinha / Eileen Rocío Niño Zambrano Salvador, 2015. 109 f. : il. Color.
	Orientador: Profa. Dra. Olívia Maria Cordeiro de Oliveira Co-orientador: Prof. Dr. Hélio Jorge Portugal Severiano Ribeiro Dissertação (Mestrado) – Universidade Federal da Bahia. Instituto de Geociências, 2015.
	1. Geoquímica - Tocantins. 2. Devoniano. 3. Formação Pimenteiras. I. Oliveira, Olívia Maria Cordeiro de. II. Universidade Federal da Bahia. Instituto de Geociências. III. Título. CDU: 550.4(812.2)

POTENCIAL GERADOR DA FORMAÇÃO PIMENTEIRAS (DEVONIANO), BACIA DO PARNAÍBA, ESTADO DO TOCANTINS, E APLICAÇÃO DE BIOMARCADORES SATURADOS COMO INDICADORES DE EVENTOS DE INUNDAÇÃO MARINHA

Eileen Rocío Niño Zambrano

(Engenheira Química, Universidade Intrustrial de Santander, UIS - 2011, Colômbia)

Orientadora: Profa. Dra. Olívia Maria Cordeiro de Oliveira Co-Orientador: Helio Jorge Portugal Severiano Ribeiro

DISSERTAÇÃO DE MESTRADO

Submetida em satisfação parcial dos requisitos do grau de

MESTRE EM GEOQUÍMICA DO PETRÓLEO E AMBIENTAL

À Câmara de Ensino de Pós-Graduação e Pesquisa da Universidade Federal da Bahia

APROVAÇÃO BANCA EXAMINADORA Profa. Dra. Olívia Maria Cordeiro de Oliveira (UFBA) MMpr Prof. Dr. Antônio Fernando de Souza Queiroz (UFBA) Profa. Dra. Eliane Soares de Souza (UENF) Prof. Dr. İcaro Thiago Andrade Moreira (UNIFACS)

Data da Defesa Pública: 10/12/2015

SALVADOR-BAHIA DEZEMBRO/2015

Dedico este trabajo a mis padres, mis hermanos, mis sobrinos Nicolás y María Paula y mi amor Cristian. Ustedes iluminan mi vida. Los amo! Dedico este trabalho a meus pais, meus irmãos, sobrinhos Nicolás e María Paula, e ao meu amor, Cristian. Vocês iluminam minha vida. Amo vocês.

AGRADECIMENTOS

A Energia criadora por me ensinar que não existem limites para quem quer. Somente amando o que você faz, junto com a coragem de enfrentar a todo um mundo novo, virá o sucesso. Obrigada, por me dar a oportunidade de conhecer pessoas maravilhosas, as quais fizeram parte desta pesquisa.

A meus pais Esperanza Zambrano e Milton Niño, por terem me presenteado com a vida e me darem o melhor de vocês. A meus irmãos e sobrinhos pelo amor incondicional, apoio e parceria.

Ao Cristian Ariza por seu amor, por ser meu parceiro em todos os aspectos da minha vida e minha motivação nos momentos difíceis, pela ajuda no laboratório aos sábados, domingos e feriados. Obrigada pela cumplicidade, pelos cuidados, apoio e paciência. Você é uma pessoa maravilhosa.

Agradecimento de coração à minha orientadora e amiga Olivia Cordeiro, por acreditar em mim, por sua valiosa ajuda, conselhos e brindar todo seu apoio durante estes dois anos.

Ao professor Helio J. Severiano, por me acolher como co-orientanda, acreditar neste trabalho e me ajudar constantemente.

Ao professor Antônio Fernando por sua compreensão, apoio e paciência nos momentos de dificuldade.

A Claudia Yolanda Reyes pela amizade e contribuição na minha formação profissional. Pelo apoio incondicional e ajuda ilimitada, por isso você faz parte desta vitória.

À professora Eliane Soares de Souza, do Laboratório de Engenharia e Exploração de Petróleo (LENEP), da Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), pelos conhecimentos, orientações e pela disposição sempre para responder rapidamente minhas dúvidas.

Ao professor Cerqueira, pela orientação acadêmica e disposição para contribuir com esta pesquisa.

Ao professor Cicero Paixão, por sua ajuda, preocupação e orientação acadêmica. Admiro muito o senhor e algum dia gostaria de ser uma parte do ser humano que é você.

Ao Diego Vendramini por sua amizade incondicional e grande contribuição durante todo este período de tempo. Você é um exemplo como pessoa e profissional.

Um enorme agradecimento à professora Karina, por me permitir quase morar no laboratório rsrs. Sempre disposta a ajudar e contribuir em todos os aspectos. Muito obrigada.

A Carol e Alexandre, pelo incentivo, dedicação e amizade. Eu me sinto grata a vocês, por me acompanhar nas largas horas no laboratório, acreditando e fazendo as coisas o melhor possível para que esta pesquisa fosse bem sucedida.

A todos os Professores do Programa de Pós-Graduação POSPETRO, pelos conhecimentos e orientação acadêmica.

Aos meus amigos, em especial a João, Jefferson e Wilma, que sempre estiveram ao meu lado com gestos de conforto e valiosa ajuda. Nossa amizade vai durar toda a vida em qualquer lugar que a gente se encontre.

Agradecimento a meus amigos por ser o grupo de pessoas fantásticas, que se converteram na minha família no Brasil.

Aos meus colegas, pela amizade e companheirismo.

Aos professionais do LEPETRO, pelo apoio no desenvolvimento deste trabalho. Estiveram sempre disponíveis para ajudar.

A BG E&P Brasil Ltda., que apoiou este trabalho através do Projeto GEOPETROL "Programa de Formação do Centro de Excelência em Geoquímica do Petróleo do Instituto de Geociências da Universidade Federal da Bahia".

Agradeço a CAPES pela bolsa que me permitiu estudar durante o período do Mestrado e ao Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO), pelas oportunidades e confiança.

Gratidão a todas as pessoas que contribuíram para que este trabalho tenha sido um sucesso.

"Trabalhe duro e em silêncio. Deixe que o seu sucesso faça barulho."

Dale Carnegie

RESUMO

O presente trabalho é derivado do subprojeto 3 intitulado "Calibração de Parâmetros Ópticos e Moleculares de Maturação de Rochas Geradoras Não Convencionais", do Projeto "Programa: Formação do Centro de Excelência em Geoquímica do Petróleo do Instituto de Geociências da Universidade Federal da Bahia (UFBA) – GEOQPETROL", em associação com a BG Brasil como apoiadora financeira, através do convênio BG E&P Brasil Ltda – UFBA – FAPEX.

A Bacia do Parnaíba está situada na região Nordeste do Brasil, compreendendo uma área de aproximadamente 665.888 Km². Nessa bacia os primeiros poços comerciais de gás foram descobertos em 2010, e atualmente é a quinta maior produtora de gás natural do Brasil. Esta Dissertação busca ampliar o conhecimento geoquímico para a geração de hidrocarbonetos da Bacia do Parnaíba e, portanto aumentar sua atratividade exploratória. O principal objetivo deste trabalho foi determinar a quantidade, qualidade e maturidade termal da matéria orgânica das 27 amostras de rocha coletadas em dois afloramentos da Formação Pimenteiras (Devoniano), na borda oeste da Bacia do Parnaíba. Devido à relevância geoquímica, foram apresentados os resultados de biomarcadores saturados obtidos do afloramento com 11 amostras, e correlacionados a fim de avaliar as variações relativas do nível do mar. Para tanto, foram realizadas análises de Carbono Orgânico Total (COT), enxofre total, pirólise Rock Eval e isótopos estáveis de carbono nas amostras de rocha. A matéria orgânica solúvel das rochas foi extraída para submetê-las a análises de cromatografia gasosa com detector de ionização em chama e com detector seletivo de massas. Os resultados indicaram a presença de matéria orgânica mista com maior conteúdo terrestre para todas as amostras da Formação Pimenteiras. Entretanto, a matéria orgânica marinha é predominante nas amostras que representam as tendências de transgressão marinha. Além disso, para os afloramentos estudados da Formação Pimenteiras foi verificada a imaturidade das amostras. Com relação ao potencial gerador de hidrocarbonetos, entre 75% e 77% das amostras apresentaram potencial para gerar gás, os percentuais restantes são os correspondentes às amostras com potencial de gerar óleo ou gás. Análises nos extratos da rocha foram realizadas para as amostras do afloramento que evidenciou diferenças notáveis no paleoambiente deposicional, associadas à relação de δ^{13} C e COT. Por conseguinte, foram caraterizadas 11 amostras de rocha através de biomarcadores saturados indicadores da matéria orgânica e do paleoambiente deposicional, com base nas razões de: terpanos tricíclicos C19/C19+C23 e C20/C21, terpanos tricíclicos/17a(H)-hopanos, hopanos/esteranos, TPP/TPP+Dia, gamacerano/C30 hopano e da distribuição de esteranos regulares, junto com a distribuição de n-alcanos e isoprenóides. Os resultados obtidos permitiram evidenciar dois grupos de amostras: o grupo 1 apresentou características de deposição em paleoambiente lacustre salobre/salgado e o grupo 2 mostrou uma significativa contribuição marinha. Esses resultados representaram um excelente exemplo das tendências transgressivas do mar ocorridas no período Devoniano na Bacia do Parnaíba. Este trabalho sugere que através dos biomarcadores saturados, é possível realizar uma reconstrução paleoambiental, indicando a curva relativa do nível do mar em um afloramento.

Palavras chave: Geoquímica do petróleo, Formação Pimenteiras, Bacia do Parnaíba, Biomarcadores saturados, Inundação marinha, Devoniano.

ABSTRACT

This project is derived from subproject 3 "Calibração de Parâmetros Ópticos e Moleculares de Maturação de Rochas Geradoras Não Convencionais", of the Project "Programa: Formação do Centro de Excelência em Geoquímica do Petróleo do Instituto de Geociências da Universidade Federal da Bahia (UFBA) – GEOQPETROL", in association with BG Brasil as a financial supporter, through the agreement BG E&P Brasil Ltda– UFBA– FAPEX. The Parnaíba Basin is located in northeastern Brazil with an area of approximately 665.888 Km². In this basin, the first commercial gas wells were discovered in 2010, making it the fifth largest producer of natural gas in Brazil to date. This work seeks to expand the geochemical knowledge for the petroleum generation from the Parnaíba Basin and thus increase its exploratory attractiveness. The aim of this study was to determine the quantity, quality and maturity of the organic matter of 27 rock samples of two outcrops from the Pimenteiras Formation (Devonian), located on the western edge of the Parnaíba Basin. Due to geochemical significance, the saturated biomarkers results were correlated in order to evaluate the relative changes in sea level of an outcrop with 11 samples. Analyses were performed to determine Total Organic Carbon, total sulfur, Rock Eval pyrolysis and stable carbon isotopes on rock samples. The soluble organic material of rock samples was extracted in order to be analyzed using the techniques of gas chromatography with flame ionization detector and a selective mass detector. The results indicated the presence of mixed organic matter, predominantly made up of terrestrial content, in all samples from the Pimenteiras Formation. However, marine organic matter is predominant in the samples where the marine transgression tendency is represented. Furthermore, studies of outcrops show that the samples were thermally immature. Relating to the hydrocarbon generation potential, between 75% and 77% of the samples had the potential to generate gas. The other percentages correspond to the samples with the potential to generate oil or gas. Analyses of rock extracts from the outcrop samples were undertaken showing remarkable differences in the paleoenvironment deposition associated with the ratio of δ^{13} C and Total Organic Carbon. The 11 rock samples were analyzed using saturated biomarkers indicators of organic matter source and depositional paleoenvironment. Relating to the ratio biomarkers $C_{19}/C_{19}+C_{23}$ and C_{20}/C_{21} tricyclic terpanes; tricyclic terpanes/17 α (H)-hopanes; hopanes/steranes; TPP's; gamacerane/C₃₀hopane and regular steranes distribution, with the n-alkanes distribution and isoprenoid. The results of the sample rocks studied allowed two groups to be identified. Group 1 showed deposition characteristics in a brackish/salt lacustrine environment. Group 2 showed a significant marine contribution. These results represent an excellent example of transgressive sea tendencies that occurred in the Devonian period in the Parnaíba Basin. This work suggests that through analyses of saturated biomarkers, it is possible to perform a paleoenvironment reconstruction, indicating the relative sea level curve on an outcrop.

Key-words: Petroleum geochemistry, Pimenteiras Formation, Parnaíba Basin, Saturated biomarkers, Marine flooding, Devonian.

LISTA DE SIGLAS

CAB: Formação Cabeças da Bacia do Parnaíba. CAPES: Comissão de Aperfeiçoamento de Pessoal do Nível Superior **COT**: Carbono orgânico total CG: Cromatografia Gasosa CG/EM: Cromatografia Gasosa acoplada a Espectrometria de Massas **COT:** Carbono Orgânico Total **EST:** esteranos FID: Detector de Ionização de Chama GAM: gamacerano HOP: hopano **IPC:** Índice Preferencial de Carbono ITM: Formação Itaim da Bacia do Parnaíba. LENEP: Laboratório de Engenharia e Exploração de Petróleo LON: Formação Longa da Bacia do Parnaíba. **m**: metros **mL**: mililitros mm: milímetros **N:** normalidade NEA: Núcleo de Estudos Ambientais da Universidade Federal da Bahia. NSO: nitrogênio, enxofre e oxigênio. PDB: padrão internacional Pee Dee Belemnite PIM: Formação Pimenteiras da Bacia do Parnaíba. POSPETRO: Pós-Graduação em Geoquímica: Petróleo e Meio ambiente **TO:** Tocantins TPP: poliprenóides tetracíclicos TR: terpanos tricíclicos UCM: mistura complexa não resolvida UFBA: Universidade Federal da Bahia USP: Universidade de São Paulo

SUMÁRIO

1	INTRODUÇÃO	12
2	OBJETIVOS	
2.1	OBJETIVO GERAL	
2.2	OBJETIVOS ESPECÍFICOS	
3	MATERIAIS E MÉTODOS	
3.1	ÁREA DE ESTUDO	21
3.2	ANÁLISES GEOQUÍMICAS	23
3.2.1	Descarbonatação	
3.2.2	Carbono Orgânico Total	24
3.2.3	Isótopos Estáveis de Carbono	
3.2.4	Enxofre Total	
3.2.5	Pirólise Rock Eval	
3.2.6	Extração Soxhlet	27
3.2.7	Remoção de enxofre	27
3.2.8	Óleo Total (whole oil)	
3.2.9	Cromatografia líquida preparativa	
3.2.10	Biomarcadores Saturados	
3.3	APRESENTAÇÃO DE TEXTOS CIENTÍFICOS	
4	POTENCIAL GERADOR DE HIDROCARBONETOS DA FORMAÇÃO	
	PIMENTEIRAS (DEVONIANO), NO ESTADO DO TOCANTINS, BACIA	DO
	PARNAÍBA, BRASIL	
	RESUMO	
	ABSTRACT	
4.1	INTRODUÇÃO	
4.2	ÁREA DE ESTUDO	
4.3	MATERIAIS E MÉTODOS	
4.4	RESULTADOS E DISCUSSÕES	
4.4.1	Análises de Carbono orgânico Total e Enxofre Total	36
4.4.2	Isótopos de Carbono	
4.4.3	Pirólise Rock Eval	
4.5	CONCLUSÕES	

5	BIOMARCADORES SATURADOS COMO INDICADORES DE INPUT		
	ORGÂNICO E DE EVENTOS DE INUNDAÇÃO EM FOLHELHOS DA		
	FORMAÇÃO PIMENTEIRAS (DEVONIANO) DA BACIA DO PARNAÍBA,		
	BRASIL 44		
RESUMO			
	ABSTRACT		
5.1	INTRODUÇÃO45		
5.1.1	Área de estudo46		
5.2	MATERIAS E MÉTODOS48		
5.3	RESULTADOS E DISCUSSÕES49		
5.3.1	Origem da matéria orgânica		
5.3.1.1	Distribuição de n-parafinas e isoprenóides regulares50		
5.3.1.2	Diagrama ternário dos esteranos C ₂₇ , C ₂₈ e C ₂₉ 54		
5.3.1.3	Distribuição de terpanos tricíclicos e tetracíclico55		
5.3.1.4	Razão Hopanos/Esteranos		
5.3.1.5	Razão TPP´s		
5.3.2	Condições do paleoambiente deposicional60		
5.3.2.1	Pristano/Fitano		
5.3.2.2	Índice homohopano $C_{35}(C_{35}HHI)$		
5.3.2.3	Razão Gamacerano/C ₃₀ Hopano 60		
5.3.3	Isótopos de Carbono61		
5.3.4	Variações relativas do nível do mar		
5.4	CONCLUSÕES		
6	CONCLUSÕES		
REFER	REFERÊNCIAS		
APÊNI	DICES		

1 INTRODUÇÃO

A Bacia do Parnaíba está situada na região Nordeste do Brasil, compreendendo uma área de aproximadamente 665.888 Km², localizada nos Estados do Piauí, Maranhão, Tocantins, Goiás, Pará, Ceará e Bahia (MILANI et al., 2007; VAZ et al., 2007), como apresentado na Figura 1.

Figura 1 - Localização da Bacia do Parnaíba

Fonte: Modificado de ANP (2015)

Esta Bacia paleozóica intracratônica, encontra-se limitada ao norte pelo Arco Ferrer-Urbano Santos; a leste pela Falha de Tauá; a sudeste, pelo Lineamento Senador Pompeu; a oeste, pelo Lineamento Tocantins-Araguaia; e, a noroeste, pelo Arco Tocantins (VAZ et al., 2007). O arcabouço estratigráfico da Bacia do Parnaíba é dividido em três sequências paleozoicas: a primeira sequência, de influência marinha, corresponde à Siluriana; a segunda sequência é a Mesodevoniana-Eocarbonífera, correspondente às formações Itaim, Pimenteira, Cabeças, Longá e Poti, e a terceira sequência é a Neocarbonífera-Eotriássica (Figura 2).

BACIA DO PARNAIBA E PETROBRAS PEKIM TENÓRIO VAZ et al. NW SE LITOESTRATIGRAFIA ESPESSURA GEOCRONOLOGIA AMBIENTE DISCORDÂNCIAS SEQUÊNCIA - 500 - 250 TECTÔNICA E MAGMATISMO MÁXIMA Ma DEPOSICIONAL Ma GRUPO FORMAÇÃO MEMBRO ÉPOCA IDADE (m) 65 -CAMPANIAN NEO SANTONIAN ESTUARINO-LAGUNAR ICEA 100 **ACE** ITAPECURU 724 ALBIANO RIFTE SUL-ATLÂNTICO CRET COR GRA ----COD ------DESERTICO/FLÜVIO DELTA/O RDA GRAJAU COL 266 APTIANO NTRUSIVAS E EXTRUSIVA SARDINHA 20 BARREMIANO SAR HAUTERIVIA VALANGIAN BERRIASIA TITHONIANO KIMMERIDGIAN OXFORDIANO CALLOVIANO BAJOCIANO AJENIANO 150 NEO C FLÚVIO-LACUSTRE PSB SINÉCLISE PASTOS BONS 77 MESO EXTRUSIVAS E INTRUSIVAS Magmatismo Penatecaua MOSQUITO 193 MOS RHAETIANO -200 NORIANO OROGENIA ALLEGHENIANA NEO CARNIANO NEOTRIÁSSICA LADINIANO SAMBAÍBA DESÉRTICO 440 SAM MESC NEOCARBONÍFER/ EOTRIÁSSICA 280 ESÉRTICO / LACUSTR MOTUCA MOT BALSAS LOPINGIANO PLAT. RASA LITORÂNEO TEMPESTADES SABKHA UADALUPIANO PEDRA DE FOGO SINÉCLISE PEF 240 ARTINSKIAN 300 LUVIAL DESÉRTICO LITORÂNEO PENNSYLVANIANO MOSCOVIAN BASHKIRIAN 340 PIAUÍ PIA OROGENIA EO-HERCINIANA DELTAS E PLAN. DE MARÉS-TEMPESTADE MESOCARBONIFERA POTI 320 POT MESODEVONIANA-EOCARBONIFERA PLATAFORMA DOM. TEMPESTADE EOCARBONIFERA CANINDÉ LONGÁ 220 SINÉCLISE PLATAFORMA DOM. MARÉS, FLÚVIO-ESTUARINO PERIGLACIAL FAMENIANO CABEÇAS NEO 350 CAB MENTEIRAS FRASNIANO PIM 320 MESO GIVETIANO ESTADE 260 ITAIM DELTA-MARÉS-TEMPESTADES ITM EMSIANO EO EODEVONIANA ROCENIA CALEDONIAN JAICÓS SILURIANA SERRA GRANDE FLUVIAL ENTRELAÇADO WENLOCK 380 JAI SINÉCLISE LIANDOVERY PLAT. RASA TIANGUÁ 200 350 -----TIA-----GLÁCIO-FLUVIAL LEQUE DELTAICO NEO - 500 FLUVIAL ALUVIAL LACUSTRE JBR JBR JAIBARAS 120 RIFTE EMBASAMENTO FAIXA DE DOBRAM TOCANTINS

Figura 2 – Carta estratigráfica da Bacia do Parnaíba

Fonte: Vaz et al. (2007)

As sequências paleozóicas da Bacia do Parnaíba situam-se no estado de estabilização da plataforma Sul-Americana, e são separadas por discordâncias relacionadas às flutuações dos elevados níveis eustáticos dos mares epicontinentais do Eopaleozóico (VAZ et al., 2007). As inundações marinhas mais extensas correspondem ao Fanerozóico da América do Sul registradas no Devoniano (SANTOS et al., 2009).

No início do Mesodevoniano (Eifeliano), na Bacia do Parnaíba ocorreu uma inundação marinha de procedência africana (Figura 3), a qual depositou os sedimentos que hoje se constituem no Grupo Canindé, denotando ambientes marinhos, transicional (deltaico e planícies de maré) e continental (fluvial), para retirar-se no começo do Carbonífero (CALVANTE, 2006).

Figura 3 – Inundações ocorridas no Mesodevoniano há 390 Ma no Brasil, mostrando a possível localização da Bacia do Parnaíba

Fonte: Modificado de Calvante (2006)

De acordo com Johnson et al. (1985), durante o Neodevoniano a variação do nível do mar (Figura 4) é caracterizada por sub-estágios de subida e descida do nível eustático ao longo da idade Givetiano (estágio If, IIa e parte de IIb), Frasniano (IIb, IIc e parte de IId) e Fameniano (IId, IIe e IIf). O máximo da inundação devoniana realizou-se no Frasniano (SANTOS, 2005). Nessa idade, foram identificados por Della Fávera (1990) folhelhos pretos, com alto teor de carbono orgânico na Formação Pimenteiras.

Figura 4 – Curva de variação do nível do mar do Neodevoniano e as unidades litoestratigráficas Longá, Cabeças, Pimenteiras e Itaim da Bacia do Parnaíba (identificando com linhas cinza pontilhada as idades de interesse neste estudo)

Fonte: Modificado de Santos (2005)

A Formação Pimenteiras está composta por camadas (10 a 30 m) de folhelhos cinzaescuros a pretos com intercalações de lâminas de arenito muito fino (DELLA FÁVERA, 1990). O topo dos ciclos é reconhecido pela presença de corpos de arenitos de 3 a 5 m de espessura e de extensão de até 100 m, com geometria de lobos ou barras, com estratificação cruzadas tipo *hummocky*, e *hardgrounds* bioturbados. Retrata uma ambiente marinho de plataforma como registro da grande transgressão com oscilações do nível do mar que ocorreram no Devoniano, sendo o máximo de mar alto representado pelas camadas de folhelho laminado (SANTOS, 2005).

Diversos autores (MILANI; ZALÁN, 1999; SANTOS et al. 2007; ARAÚJO, 2015) atribuem à Formação Pimenteiras um potencial exploratório de hidrocarbonetos do ponto de vista da rocha geradora. Porém, Milani e Zalán (1999) alertam que essa rocha fonte é imatura em relação à evolução termal. Aliás, as intrusões ígneas seriam uma fonte de calor capaz de promover a maturação para a geração de grandes quantidades de hidrocarbonetos, caracterizando um sistema petrolífero atípico.

De acordo com Rodrigues (1995), no topo de sistemas transgressivos na Bacia do Parnaíba apresentam-se folhelhos radioativos A, B e C (Figura 5). Os folhelhos radioativos A situam-se no limite Eifeliano/Givetiano (387 Ma), são cinza escuros a pretos, laminados, e estão em quase toda a Bacia no contato das formações Itaim e Pimenteiras. Esses folhelhos têm espessura máxima de 20 metros, apresentam teores de carbono orgânico (COT) variando entre 1,0 e 3,0%, matéria orgânica tipo III e são os únicos que se encontram maturos por subsidência na porção NO da bacia. Contudo, são pouco espessos para geração de volume apreciável de hidrocarbonetos (ARAÚJO, 2015). Os folhelhos radioativos B situados no Givetiano Médio (387-382 Ma) ocorrem no centro e norte da bacia. Esses folhelhos apresentam espessura máxima de 20 metros, teores de COT variam de 1,0 a 3,5%, matéria orgânica tipo II e tipo III, sendo pouco evoluída termicamente, porém com poucas possibilidades de geração de óleo ou gás (RODRIGUES, 1995).

Figura 5 – Intervalo de folhelhos radioativos da Formação Pimenteiras

Fonte: Rodrigues (1995)

Os folhelhos radioativos C foram depositados no Frasniano (382-372 Ma). Podem ser correlacionados aos folhelhos geradores das bacias do Solimões (Formação Jandiatuba) e Amazonas (Formação Barreirinhas). É o principal intervalo de folhelhos radioativos da bacia, alcançando espessuras de 40 metros (ARAÚJO, 2015). Os folhelhos radioativos C possuem COT variando entre 1,0 e 5,0%, matéria orgânica tipo II que é constituída principalmente por algas, depositada em paleoambiente anóxico e são imaturos termicamente. Cabe destacar, que os folhelhos radioativos C, têm o maior conteúdo de carbono orgânico e melhor composição da matéria orgânica, devido a sua deposição na inundação máxima do Devoniano, por conseguinte são mais profundos e distais das áreas de influxo de clásticos terrestres (RODRIGUES, 1995).

Sugerindo a possibilidade da existência do sistema petrolífero, Young (2006) analisou os corpos arenosos da Formação Pimenteiras, além de fornecer um modelo de regressão forçada para explicar o posicionamento de corpos arenosos dentro desta formação.

Souza (2007), avaliou o potencial de geração de petróleo e o estágio de evolução térmica presente em testemunhos de dois poços localizados na borda leste da Bacia do Parnaíba. Além disso, realizou o mapeamento das tendências regressivas e transgressivas

utilizando palinofácies. Trindade et al. (2015) reportaram variações do paleoambiente deposicional, através de análises de palinofácies em rochas das formações Itaim, Pimenteiras e Cabeças, localizadas no centro-norte da Bacia do Parnaíba.

Parra (2012), ao estudar a geoquímica da Formação Pimenteiras de afloramentos da borda oeste da bacia através de biomarcadores saturados, revelou que amostras de rocha apresentaram potencial de gerar hidrocarbonetos gasosos, com matéria orgânica derivada principalmente de vegetais superiores, a qual encontrava-se imatura. Adicionalmente, as amostras exibem paleoambiente deposicional salino e foi verificada a ocorrência dos eventos transgressivos do mar, através da relação inversa entre os valores de COT e da razão C30 TPP/ C27 esteranos (TPP's). Essa razão indicadora do paleoambiente deposicional, relaciona os compostos poliprenóides tetracíclicos (C30 TPP) e C27 esteranos, os quais podem ser observados por CG/EM monitorando os íons m/z 259 e 217, respectivamente.

Essas tendências de transgressão e regressão marinha, também têm sido identificadas em outras bacias paleozóicas brasileiras por autores como Rodrigues et al. (1995); Rodrigues (2001); Souza et al. 2013, entre outros. No tocante a essas bacias, a Bacia do Parnaíba é a menos estudada geoquimicamente em termos de evolução paleoambiental. Entretanto, até o momento não se tem reportado na literatura uma reconstrução paleoambiental indicando a variação relativa do nível do mar no Devoniano através de relações biomarcadores saturados.

Os biomarcadores geoquímicos são estruturas orgânicas complexas encontradas nos sedimentos, rochas e petróleo (PETERS et al., 2005), as quais proporcionam informação sobre o tipo de paleoambiente deposicional (marinho, lacustre e deltaico), as fontes biológicas da matéria orgânica, as condições oxi-redutora do paleoambiente deposicional, o grau de maturidade térmica, o nível de biodegradação, litologia da rocha e idade dos sedimentos. A variação do *input* de matéria orgânica geralmente é devida aos diferentes tipos e quantidades relativas de algas, bactérias e vegetais superiores (PETERS et al., 2005).

Na avaliação do *input* de matéria orgânica e paleoambiente deposicional nas rochas geradoras são utilizados como parâmetros geoquímicos as razões calculadas a partir das abundâncias relativas dos biomarcadores saturados, detectados nos cromatogramas de massas. No entanto, as informações separadas não são confiáveis, necessitando de um maior número de parâmetros geoquímicos possíveis para uma melhor interpretação.

Na caracterização do paleoambiente deposicional é comumente usada a razão de pristano e fitano (P/F) como indicador de sedimentação em condições anóxicas a óxicas. Esta razão com valor menor que 1 indica deposição anóxica, acompanhada pela alta quantidade de porfirina e de enxofre; enquanto uma razão P/F > 1 sugere paleoambiente deposicional sub-

óxico. Os valores da razão P/F normalmente se encontram na faixa entre 0,8 e 3,0. Por conseguinte, os valores P/F < 0,8 são característicos de paleoambientes anóxicos, comumente hipersalinos ou carbonáticos. Entretanto valores da razão P/F elevados (> 3,0), indica *input* de matéria orgânica terrestre deposição em condições sub-óxicas (PETERS et al., 2005).

O índice de C₃₅ homohopanos (C₃₅ HHI) correspondente à razão C₃₅/ \sum C₃₁-C₃₅ homohopanos (22S e 22R), é usada como indicador das condições redox em sedimentos marinhos durante a diagêneses. Elevados valores de C₃₅ HHI (> 0,1) indica condições anoxicas, comumente associadas a carbonatos marinhos ou evaporitos (PETERS et al., 2005).

O gamacerano é indicador de salinidade ou reflete eficiência na estratificação da coluna d´água. Assim, quanto mais salino o ambiente, maior é a razão Gam/H₃₀ (PETERS et al., 2005).

A distribuição dos esteranos regulares C_{27} - C_{29} 14 α (H),17 α (H), 20R é comumente utilizada na avaliação do paleoambiente deposicional (WAPLES; MACHIHARA, 1990). Huang e Meinschein (1979), indicaram que a primeira evidência da relação entre as abundâncias relativas dos esteróis regulares nos organismo vivo, estava relacionada com ambientes específicos e sugeriram plotar num diagrama ternário as distribuições relativas dos esteróis (ou esteranos) C_{27} , C_{28} e C_{29} de óleos e extratos, para distinguir o paleoambiente deposicional (Figura 6).

Figura 6 – Diagrama ternário ilustrativo, que representa os paleoambientes em função da distribuição dos esteranos regulares (C_{27} , C_{28} e C_{29})

Fonte: Modificado de Waples e Machihara, 1990

Baseado nesse diagrama a predominância dos C_{29} esteranos indicaria contribuição terrestre, enquanto a predominância dos C_{27} esteranos indicaria maior contribuição de

fitoplâncton marinho. Os C_{28} esteranos, quando em maior proporção, poderiam indicar maior contribuição de algas lacustres (PETERS et al., 2005).

A razão hopanos/esteranos reflete a proporção entre a matéria orgânica procariota (bactérias) e a eucariota (principalmente algas e plantas superiores) nas rochas geradoras (PETERS et al., 2005). Elevado valor da razão (HOP/EST >7) indica deposição de matéria orgânica terrestre e/ou microbialmente retrabalhada. Por outro lado, baixos valores da razão (HOP/EST<4) sugerem deposição de matéria orgânica marinha com maior contribuição de organismos planctônicos e/ou algas (NAZIR, 2013).

Os poliprenóides tetracíclicos (C_{30} TPP) podem ser observados por CG/EM se monitorando o íon m/z 259. A razão entre C_{30} TPP e os C_{27} diasteranos é usada para reconhecer o *input* de algas de água doce/salobra (HOLBA, 2003). Desse modo, permite uma boa diferença entre ambientes lacustres de ambientes marinhos devido a presença dos poliprenóides tetracíclicos através da razão expressada pela Equação 1.

$$\frac{TPP's}{Diaesteranos} = \frac{C_{30} TPP 18\alpha(H), (21R + 21S)}{C_{30} TPP 18\alpha(H), (21R + 21S) + \Sigma Dia27 - diaesteranos}$$
(Eq. 1)

Os resultados indicam que os valores elevados dessa razão sugerem paleoambientes deposicionais de água doce/salobra, enquanto valores baixos de concentração advertem da deposição em paleoambiente marinho (HOLBA, 2003). A razão TPP junto com outros indicadores paleoambientais como 4-metil esteranos ou a razão de hopanos/esteranos, foram usadas para diferenciar as influências marinhas e não-marinhas em óleos pré-sal e rochas geradoras da África ocidental.

Visto que: a) Bacia do Parnaíba tem poucos estudos geoquímicos em termos de evolução paleoambiental; b) na literatura não se tem reportado uma reconstrução paleoambiental com as variações do nível do mar do Devoniano através de biomarcadores; c) as mudanças do nível do mar são um fator importante na deposição preferencial de folhelhos ricos em carbono orgânico (ARTHUR; SAGEMAN, 1994; WIGNALL, 1994); esta Dissertação propõe-se a fornecer uma contribuição para o conhecimento geoquímico de folhelhos geradores da Formação Pimenteiras. Além, tem o intuito de caracterizar o *input* orgânico e o paleoambiente deposicional das rochas, visando identificar a variação relativa do nível do mar através da análise integrada de biomarcadores saturados associados com outros parâmetros geoquímicos, como carbono orgânico total e isótopos estáveis de carbono.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Caracterizar através de métodos de geoquímica a matéria orgânica presente nas amostras de folhelhos da Formação Pimenteiras, coletadas em afloramentos na borda oeste da Bacia do Parnaíba, visando à potencialidade para a geração de hidrocarbonetos, bem como avaliar os eventos de inundação marinha através de biomarcadores saturados;

2.2 OBJETIVOS ESPECÍFICOS

- determinar a quantidade, a qualidade e o estágio de evolução térmica da matéria orgânica presente nas amostras de folhelhos, através nas análises geoquímicas das rochas;
- avaliar o tipo de *input* orgânico e as condições físico-químicas do paleoambiente deposicional através de biomarcadores saturados, presentes nas amostras de rocha estudadas;
- correlacionar os dados obtidos através de biomarcadores saturados, a fim de investigar a variação relativa do nível do mar nos eventos transgressivos em função dos litótipos apropriados.

3 MATERIAIS E MÉTODOS

O trabalho de campo foi realizado no período entre os dias 14 e 16 de outubro de 2014, em parceria com pesquisadores envolvidos no Projeto GEOQPETROL, desenvolvido pelo Núcleo de Estudos Ambientais / Instituto de Geociências (IGEO) / Universidade Federal da Bahia (UFBA).

3.1 ÁREA DE ESTUDO

A área de estudo corresponde a uma faixa quase que norte-sul de afloramentos da Formação Pimenteiras (Devoniano) no centro-norte do Estado de Tocantins. Os pontos escolhidos para a coleta de rochas foram selecionados dos principais intervalos ricos em matéria orgânica referenciados em Parra (2012). O primeiro afloramento foi localizado na margem sudeste do Km 29 da rodovia TO-010, entre as cidades de Bom Jesus do Tocantins e Santa Maria do Tocantins, com coordenadas geográficas: latitude 8° 53' 20,0" e longitude 47° 57' 35,6" (Figura 7).

Fonte: Modificado de ANP (2015) e Guia geográfico (2015).

Figura 8- Posicionamento das amostras coletadas no Ponto 3 (A) localizado no Km 29 da rodovia TO-010 (Bom Jesus do Tocantins - Santa Maria do Tocantins) e Ponto 6 (B) localizado no Km 399 da rodovia BR-153 (Belém - Brasília)

Fonte: A autora (2015)

A fim de facilitar a identificação do afloramento este é registrado como ponto 3, no qual, foram coletadas 16 amostras de rocha em intervalos de cerca de 1 metro, diferenciadas numericamente de baixo para cima desde 3.1 a 3.16 como se observa na Figura 8(A).

O segundo afloramento foi localizado na margem oeste do Km 399 da rodovia BR-153 (Belém - Brasília), com coordenadas geográficas: latitude 9° 25' 22,3" e longitude 48° 34' 20,5" (Figura 7). Esse afloramento foi identificado como ponto 6, e nele foram coletadas 11 amostras de rocha a cada metro aproximadamente, distinguidas de baixo para cima através de números de 6.1 a 6.11 (Figura 8(B)).

Os afloramentos foram diferenciados por terços (Figura 8), nos quais o terço inferior corresponde à base do afloramento, onde iniciou a coleta das amostras; o terço médio composto pelas amostras coletadas entre 6 a 10 m para o afloramento ponto 3, e entre 4 m a 7 m para o ponto 6, medidos a partir da base; por ultimo, o terço superior composto pelas amostras localizadas no topo do afloramento.

Assim mesmo, foi descrita sua litologia como se observa na figura 8. Em geral o ponto 3 foi composto, por folhelhos cinza-claro a escuros, com presença de óxido de ferro e enxofre. Foram observadas camadas milimétricas de areia intercaladas com folhelho na amostra 3.10. As amostras que constituem o terço superior, do afloramento, foram verificados folhelhos cinza-escuros a pretos (Figura 8(A)). Entretanto a caracterização litológica do ponto 6 encontra-se na Figura 8(B), no qual foi constituído no terço inferior por folhelhos cinza-claro, no terço médio por folhelhos cinza-claro com intercalações cinza-escuro e no terço superior foi composto por folhelhos cinza-escuro com intercalações cinza-escuro e no terço superior foi composto por folhelhos cinza-escuro com intercalações cinza-claro. É importante destacar a presença de óxido de ferro e enxofre em todos os folhelhos do ponto 6, com maior predominância no terço superior.

O estudo detalhado dos afloramentos, a partir da coleta sequencial, permite, com base nas análises geoquímicas, a identificação sistemática da origem, paleoambiente deposicional e maturação termal da matéria orgânica nos afloramentos ricos em carbono orgânico.

3.2 ANÁLISES GEOQUÍMICAS

O procedimento analítico foi realizado a maior parte no Laboratório de Estudos de Petróleo (LEPETRO) do Núcleo de Estudos Ambientais (NEA), situado no Instituto de Geociências (IGEO) da Universidade Federal da Bahia (UFBA). Unicamente as análises de isótopos de carbono foram realizadas no Laboratório de Isótopos Estáveis do Centro de Energia Nuclear na Agricultura da Universidade de São Paulo (USP). A sequência analítica realizada para as amostras de rochas geradoras é apresentada na Figura 9.

Inicialmente as amostras de rocha foram limpas, eliminando-se as impurezas. Em seguida, com gral de ágata foram pulverizadas e peneiradas a 0,177 mm (80 mesh), finalmente acondicionadas em recipientes de vidro limpos com tampa de rosca.

Para realizar as análises geoquímicas foram seguidas duas rotas analíticas, na primeira foram realizadas análises geoquímicas na rocha como carbono orgânico total, isótopos estáveis de carbono, enxofre total, pirólise *Rock Eval*. Posteriormente, foi seguida a rota de análises geoquímicas realizadas na matéria orgânica solúvel ou extrato orgânico das amostras de rocha, como: cromatografia gasosa no óleo total (*Whole Oil*), cromatografia líquida e análise de biomarcadores na fração saturada.

3.2.1 Descarbonatação

Para as análises de carbono orgânico total e isótopos estáveis de carbono foi retirado o carbono inorgânico presente nas rochas através de um processo de descarbonatação, no qual as amostras foram pulverizadas e tratadas usando-se ácido clorídrico 6N, para remover os carbonatos, em seguida foram lavadas com água deionizada por quatro horas. Na sequência as amostras foram secas em estufa em temperatura em torno de 80° C, até peso constante.

3.2.2 Carbono Orgânico Total

No procedimento realizado, as amostras descarbonatadas foram levadas à combustão (950°C) num analisador elementar da marca LECO 628CN. Este equipamento possui um detector infravermelho, que determina a quantidade de carbono orgânico contido na amostra, em valores de % em peso.

Fonte: A autora (2015)

3.2.3 Isótopos Estáveis de Carbono

A composição isotópica em delta por mil de carbono 13 nas rochas foi analisada no espectrômetro de massas acoplado com cromatografia gasosa PDZ-Europa, modelo GLS 20-20, no Laboratório de Isótopos Estáveis do Centro de Energia Nuclear na Agricultura da Universidade de São Paulo (USP). A notação δ ("delta") é usada para expressar as razões dos isótopos ¹³C/¹²C. Os dados são apresentados com o desvio do padrão internacional PDB por mil (%₀) (Pee Dee Belemnite - carbonato padrão: Formação Pee Dee, Cretáceo Superior, Carolina do Sul). Esta notação é definida pela equação 2:

$$\delta = \left(\frac{Ra - Rp}{Rp}\right) * 10^3 \quad (Eq. 2)$$

Onde Ra e Rp referem-se à razão isotópica ${}^{13}C/{}^{12}C$ da amostra e do padrão, respectivamente.

3.2.4 Enxofre Total

Na determinação do teor de enxofre presente nas amostras de rocha pulverizadas, foram aquecidas até 350°C utilizado um analisador elementar da marca LECO 628S. Este equipamento possui um detector infravermelho, determina a quantidade de enxofre total contido na amostra, em valores % em peso.

3.2.5 Pirólise Rock Eval

A pirólise *Rock Eval* foi realizada para as amostras com o conteúdo de COT >0,80%. Entre 60-80 mg de amostra de rochas pulverizadas foram aquecidas de 300 até 600 °C a 25 °C/min em atmosfera de nitrogênio, empregando um analisador *Rock Eval* 6, o qual possui um detector infravermelho (FID). Os resultados evidenciaram os hidrocarbonetos livres contidos na rocha (S₁), o potencial gerador de hidrocarbonetos (S₂) e a temperatura máxima (Tmáx) em que ocorre o craqueamento do querogênio.

A sequência analítica seguida para a preparação das amostras e as análises geoquímicas necessárias à avaliação do *input* orgânico e das condições do paleoambiente deposicional são apresentadas na Figura 9, para a rota das análises no extrato.

3.2.6 Extração Soxhlet

As amostras de rocha pulverizada foram sometidas a extração soxhlet para separar a matéria orgânica solúvel (betume) do querogênio. Em extratores soxhlet, foi retirado o betume das amostras de rocha, com diclorometano (CH₂Cl₂) por 32 horas. Posteriormente os extratos foram concentrados em evaporador rotatório.

Este processo de extração foi realizado repetidas vezes até atingir a quantidade necessária para realizar as análises geoquímicas do betume.

3.2.7 Remoção de enxofre

Foi necessário remover o enxofre livre presente nos extratos das rochas, já que é um composto interferente para as análises cromatográficas, devido a seu caráter polar, o qual poderia facilitar sua detecção no cromatógrafo gasoso como uma sustância semi-volátil, indicando um sinal dominante no extrato. A remoção de enxofre elementar foi realizada depois de terminado o processo de extração soxhlet, utilizando os fios de cobre metálicos previamente ativados.

A ativação dos fios de cobre foi realizada colocando-os em ácido clorídrico (HCl) concentrado P.A (Merck), até que o cobre apresentasse uma aparência brilhante. Em seguida, os fios de cobre foram retirados do ácido e lavados sequencialmente, com duas porções de metanol P.A (Merck), três proporções de acetona (Quimex) e uma de diclorometano. Essa metodologia foi baseada nos estudos realizados por Sanders (1995) e Jin (2007). O enxofre foi detectado pelo escurecimento do cobre. No APÊNDICE A, podem ser encontradas as fotos dos fios durante o tratamento de ativação e depois de retirar o enxofre livre na matéria orgânica da rocha.

3.2.8 Óleo Total (*whole oil*)

Os extratos das amostras após a retirada do enxofre foram analisados usando-se um cromatógrafo gasoso (CG), marca Agilent 7890B com detector de ionização de chama (FID). Na cromatografia gasosa foi utilizada a coluna capilar de sílica fundida DB-1 (15 m x 0,25 mm x 0,25 μ m). As condições de análises: temperatura do forno de coluna foi de 40 °C, 2 minutos, 10°C/min até 330 °C por 12 minutos; Temperatura do injetor foi de 300 °C e do

detector 330 °C; Gás de arraste: Hidrogênio, 20 mL/min, fluxo constante; Concentração injetada: 0,05 mg amostra/1 µL de diclorometano; Volume de injeção: 1 µL.

As áreas dos picos resultantes foram utilizadas para a comparação quantitativa de nparafinas presentes nos extratos estudados.

3.2.9 Cromatografia líquida preparativa

Esta análise foi empregada para separar as frações de hidrocarbonetos saturados, aromáticos e compostos polares, contidos no betume.

Inicialmente foi empacotada em uma coluna de vidro, uma mistura sílica e *n*-hexano. Com auxílio de uma pipeta do tipo Pasteur, 40 mg de betume foi transferido para a parte superior da coluna. As frações de hidrocarbonetos presentes no betume foram separadas utilizando-se as soluções em sequência de: 20 mL de *n*-hexano para separação dos hidrocarbonetos saturados; 12 mL de *n*-hexano e 8 mL de tolueno para os hidrocarbonetos aromáticos; e 12 mL de *n*-hexano e 8 mL de metanol para a extração dos compostos polares. Uma vez separadas, as frações foram concentradas em evaporador rotatório.

3.2.10 Biomarcadores Saturados

As frações saturadas foram analisadas no cromatógrafo gasoso Agilent 7890B acoplado ao espectrômetro de massas (GC-EM) Agilent DSM 5977A, equipado com uma coluna capilar de sílica fundida DB-5 (60 m x 0,25 mm x 0,25 μ m). O hélio foi empregado como gás de arrastre com fluxo de 1 mL/1 μ L e pressão constante de 30 psi. A concentração da fração saturada injetada foi de 0,1 mg amostra/1 μ L de hexano, volume de injeção 1 μ L e aquecida a 60 °C até 310 °C com rampa de aquecimento de 2 °C/min. Estas análises foram realizadas com o fim de se identificar os biomarcadores e avaliar suas feições, monitorando os íons *m/z* 217 (esteranos), *m/z* 191 (triterpanos) e *m/z* 259 (poliprenoides tetracíclicos).

3.3 APRESENTAÇÃO DE TEXTOS CIENTÍFICOS

Os resultados obtidos neste trabalho são apresentados em dois (2) artigos, os quais serão submetidos em revistas científicas. O artigo 1, intitulado **"Potencial gerador de hidrocarbonetos da Formação Pimenteiras (Devoniano), no Estado de Tocantins, Bacia do Parnaíba, Brasil"**, contem os resultados das análises de Carbono Orgânico Total (COT), pirólise *Rock Eval* e isótopos estáveis de carbono. Neste artigo são estudados em detalhe os dois principais afloramentos ricos em matéria orgânica, através dos parâmetros da caraterização geoquímica, com o fim de se avaliar as áreas, nas quais é apresentado o maior potencial gerador de hidrocarbonetos.

O artigo 2, intitulado "Biomarcadores saturados como indicadores de *input* orgânico e de eventos de inundação em folhelhos da Formação Pimenteiras (Devoniano) da Bacia do Parnaíba, Brasil". Esse artigo é composto pelos resultados das análises de cromatografia em óleo total e biomarcadores saturados presentes nos extratos dos folhelhos do ponto 6. Com o intuito de caracterizar a composição da matéria orgânica e o paleoambiente deposicional nas rochas geradoras. Além disso, identificar as variações relativas do nível do mar no afloramento estudado. Cabe ressaltar que o afloramento "ponto 6" foi escolhido para o segundo artigo, devido à evidente diferença de paleoambiente deposicional indicado pelos parâmetros geoquímicos avaliados nas rochas. Caracterizando o fenômeno em inundações marinhas no Devoniano da Bacia do Parnaíba.

4 POTENCIAL GERADOR DE HIDROCARBONETOS DA FORMAÇÃO PIMENTEIRAS (DEVONIANO), NO ESTADO DO TOCANTINS, BACIA DO PARNAÍBA, BRASIL

RESUMO

A Bacia do Parnaíba está situada na região nordeste ocidental brasileira com uma área de cerca de 665.888 Km². Esta Bacia atualmente possui quatro campos de gás, tornando-se a quinta maior produtora de gás natural do Brasil. Este trabalho busca ampliar o conhecimento geoquímico para geração de hidrocarbonetos da Bacia do Parnaíba e, portanto sua atratividade exploratória. O objetivo do presente trabalho foi caracterizar geoquimicamente os folhelhos Devonianos coletados em afloramentos da Formação Pimenteiras na borda oeste da referida bacia, quanto à quantidade, qualidade e maturação termal da matéria orgânica, através das análises de Carbono Orgânico Total, enxofre total, pirólise *Rock Eval* e isótopos estáveis de carbono. Os resultados obtidos das análises nas 27 amostras de rocha geradora coletadas indicaram que 67% das amostras possuem o teor de carbono orgânico total mínimo requerido para gerar hidrocarbonetos. Entre 75% e 77% das amostras apresentaram potencial para gerar gás. Os percentuais restantes são os correspondentes às amostras com potencial de gerar óleo ou gás. Contudo, a maioria das amostras evidenciou imaturidade termal.

Palavras-Chave: geoquímica do petróleo, Bacia Parnaíba, Formação Pimenteiras, Devoniano, rochas geradoras.

ABSTRACT

The Parnaíba Basin is located in northeastern Brazil with an area of approximately 665.888 Km². Currently, this basin has three gas fields, making it the fifth largest producer of natural gas in Brazil. This work seeks to expand the geochemical knowledge of the area to generate hydrocarbons and enhance the exploratory attractiveness of the Parnaíba Basin. The aim of this work is to characterize, geochemically, the Devonian shales collected in outcrops of the Pimenteiras Formation on the western edge of the Parnaíba Basin. It will evaluate the quantity, quality and thermal maturity of organic matter through the total organic carbon, total sulfur, Rock Eval pyrolysis and stable carbon isotopes analyses. Analysis results of 27 source rock samples indicated that 67% of the samples have the minimum content of total organic carbon required to produce hydrocarbons. Between 75% and 77% of the samples had the potential to generate gas. The remainder corresponds to samples with the potential to generate oil or gas generates. However, the samples demonstrated thermal immaturity.

Key-words: Petroleum geochemistry, Parnaíba Basin, Pimenteiras Formation, Devonian, source rocks.

4.1 INTRODUÇÃO

A Bacia do Parnaíba está situada na região nordeste ocidental brasileira, com uma área de cerca de 665.888 Km², abrangendo a quase totalidade dos Estados do Maranhão e Piauí e pequenas faixas do Pará, Ceará, Tocantins, Goiás e Bahia (MILANI et al., 2007; VAZ et al., 2007). A atividade exploratória da bacia voltada para a pesquisa de hidrocarbonetos data dos anos 1950. Como resultado dessas atividades, quatro campos de gás natural foram descobertos em 2010, 2011 e 2012 com reservas de gás. Atualmente, a Bacia do Parnaíba é a quinta maior produtora de gás natural do Brasil e encontra-se em um estágio exploratório com expectativas de ocorrência de petróleo (ARAÚJO, 2015).

Estudos anteriores identificaram três intervalos potencialmente geradores dentro da Formação Pimenteiras, denominados de folhelhos radioativos A, B e C (RODRIGUES, 1995). Os folhelhos radioativos A, reportados com índices de carbono orgânico total (COT) variando de 1,0% a 3,0%, matéria orgânica do tipo III, são os únicos que se encontram maturos por subsidência na porção NO da bacia. Os folhelhos radioativos B, possuem COT variando de 1,0 a 3,5% e matéria orgânica dos tipos II e III. Enquanto os folhelhos radiativos C possuem COT variando entre 1,0 e 5,0% e matéria orgânica do tipo II, sendo o principal intervalo de folhelhos radioativos.

Buscando contribuir com o conhecimento geoquímico da Bacia do Parnaíba com vistas à ampliação de sua atratividade exploratória, o presente trabalho está focado na caracterização do potencial de rochas geradoras, quanto à quantidade, qualidade e maturação da matéria orgânica, das amostras de rochas coletadas em afloramentos da Formação Pimenteiras (Devoniano), na borda oeste da Bacia do Parnaíba, Estado do Tocantins. Essa caracterização foi realizada através das análises geoquímicas de carbono orgânico total, enxofre total, pirólise *Rock Eval* e isótopos estáveis de carbono.

4.2 ÁREA DE ESTUDO

A área de estudo corresponde a uma faixa quase que norte-sul de afloramentos da Formação Pimenteiras (Devoniano) no centro-norte do Estado de Tocantins. Os pontos escolhidos para a coleta de rochas foram selecionados dos principais intervalos ricos em matéria orgânica referenciados em Parra (2012). Um total de 27 amostras de folhelhos foram coletadas sequencialmente a cada metro de altura, dentro de dois afloramentos da formação Pimenteiras, na borda oeste na Bacia do Parnaíba, Estado de Tocantins, Brasil (Quadro 1 e Figura 10).

Quadro 1 - Localização geográfica dos afloramentos, nos quais foi realizada a coleta das amostras de rochas

Afloramento Ponto 3	Afloramento Ponto 6
Localização: margem sudeste do km 29 da rodovia TO-010 (Bom Jesus do Tocantins - Santa Maria do Tocantins)	Localização: margem oeste do km 399 da rodovia BR-153 (Belém - Brasília)
Coordenadas geográficas*: 8° 53' 20,0"	Coordenadas geográficas*: 9° 25' 22,3"
47° 57' 35,6"	48° 34' 20,5"
Coleta: 16 amostras de folhelho	Coleta: 11 amostras de folhelho

*Coordenadas medidas com GPS

Figura 10 - Localização geográfica dos afloramentos do ponto 3 localizado no Km 29 da rodovia TO-010, entre as cidades de Bom Jesus do Tocantins e Santa Maria do Tocantins, e ponto 6 localizado no Km 399 da rodovia BR-153 (Belém - Brasília)

Fonte: Modificado de ANP (2015) e Guia geográfico (2015)

No primeiro afloramento foram coletadas 16 amostras de rocha e no segundo 11 amostras. Esses afloramentos foram identificados como ponto 3 e ponto 6, respectivamente. A fim de facilitar a identificação, os afloramentos foram diferenciados por terços: o terço inferior correspondente à base do afloramento, onde iniciou a coleta das amostras; o terço médio composto pelas amostras coletadas entre 6 m a 10 m para o afloramento ponto 3, e entre 4 m a 7 m para o ponto 6, medidos a partir da base; o terço superior composto pelas amostras localizadas no topo do afloramento (Figura 11).

Figura 11- Posicionamento das amostras coletadas no Ponto 3 (A) localizado no Km 29 da rodovia TO-010 (Bom Jesus do Tocantins - Santa Maria do Tocantins) e Ponto 6 (B) localizado no Km 399 da rodovia BR-153 (Belém - Brasília)

Fonte: A autora (2015)

No geral o ponto 3 foi composto, por folhelhos cinza-claro a escuros, com presença de óxido de ferro e enxofre. Destacando-se camadas milimétricas de areia intercaladas com folhelho na amostra 3.10, além da presença de folhelhos cinza-escuros a pretos no terço superior (Figura 11(A)). A caracterização litológica do ponto 6 encontra-se na Figura 11(B), o qual foi constituído no terço inferior por folhelhos cinza-claro, no terço médio por folhelhos cinza-claro com intercalações cinza-escuro e no terço superior foi composto por folhelhos cinza-escuro com intercalações cinza-claro. É importante destacar a presença de óxido de ferro e enxofre em todos os folhelhos do ponto 6, com maior predominância no terço superior.

4.3 MATERIAIS E MÉTODOS

Inicialmente as amostras de rocha foram maceradas até serem reduzidas ao tamanho de 80 mesh (0,177 mm). Na análise elementar de carbono orgânico total e composição isotópica, as amostras pulverizadas foram tratadas usando-se ácido clorídrico 6N para remover os carbonatos e, após esse procedimento, as amostras foram lavadas com água deionizada por quatro horas. Os resíduos insolúveis foram levados à combustão (950°C) num analisador elementar da marca LECO 628CN do Laboratório de Estudos do Petróleo (LEPETRO) da Universidade Federal da Bahia (UFBA). Este equipamento possui um detector infravermelho, que determina a quantidade de carbono orgânico contido na amostra, em valores % em peso. Para avaliar a quantidade de enxofre total foi usado o LECO 628S, com detector FID.

A pirólise *Rock Eval* foi realizada para as amostras com o conteúdo de COT >0,80%. Entre 60-80 mg de amostra de rochas pulverizadas foram aquecidas de 300 até 600°C a 25 °C/min em atmosfera de nitrogênio, empregando-se um analisador Rock Eval 6 do Laboratório de Estudos do Petróleo (LEPETRO) da Universidade Federal da Bahia (UFBA). Os resultados evidenciaram os hidrocarbonetos livres contidos na rocha (S₁), o potencial gerador de hidrocarbonetos (S₂) e a temperatura máxima (Tmáx), em que ocorre o craqueamento do querogênio (TISSOT e WELTE, 1984).

A composição isotópica em delta por mil de carbono 13 nas rochas foi analisada no espectrômetro de massas acoplado com cromatografia gasosa PDZ-Europa, modelo GLS 20-20, no Laboratório de Isótopos Estáveis do Centro de Energia Nuclear na Agricultura da Universidade de São Paulo (USP). A notação δ ("delta") é usada para expressar as razões dos isótopos ¹³C/¹²C. Os dados são apresentados com o desvio do padrão internacional PDB por
mil (%₀) (Pee Dee Belemnite - carbonato padrão: Formação Pee Dee, Cretáceo Superior, Carolina do Sul). Esta notação é definida pela equação 3:

$$\delta = \left(\frac{Ra - Rp}{Rp}\right) * 10^3 \quad (Eq. 3)$$

Onde Ra e Rp referem-se à razão isotópica ${}^{13}C/{}^{12}C$ da amostra e do padrão, respectivamente.

4.4 RESULTADOS E DISCUSSÕES

Os resultados das análises elementares de carbono orgânico total, enxofre total, análises de isótopos de carbono e pirólise *Rock Eval* são apresentados na Tabela 1.

Tabela 1 – Resultados de COT, enxofre total, Isótopos de carbono e pirólise *Rock Eval* nas amostras dos afloramentos dos pontos 3 e 6

Local.		Amostras	COT (%)	S	δ ¹³ C (‰)	Rock Eval					
				(%)		S1	S2	S3	Tmax (°C)	IH	IO
Ponto 3	Superior	3.16	2,35	1,46	-26,27	0,06	3,73	0,69	426	159	28
		3.15	3,00	0,54	-26,11	0,10	5,53	1,52	425	184	51
		3.14	3,72	2,94	-26,48	0,09	5,31	0,85	422	143	23
		3.13	3,16	0,93	-26,58	0,08	6,23	1,18	427	197	37
		3.12	0,78	0,83	-27,13	0,01	0,78	0,22	426	100	28
		3.11	1,20	1,73	-27,12	0,02	1,41	0,60	428	117	50
	<u>.</u>	3.10	3,35	1,04	-25,54	0,09	6,86	1,60	427	205	48
	Médi	3.9	2,28	0,78	-26,34	0,05	2,53	1,82	425	111	80
		3.8	2,48	0,78	-26,61	0,06	3,14	1,88	424	127	76
		3.7	3,04	2,20	-26,49	0,06	6,48	0,69	428	213	23
		3.6	1,64	0,51	-26,40	0,04	2,92	0,86	429	179	53
	Inferior	3.5	2,92	0,33	-25,99	0,07	7,28	1,30	432	249	45
		3.4	1,79	1,60	-27,86	0,02	2,90	0,35	430	162	20
		3.3	0,36	0,14	-26,71	-	-	-	-	-	-
		3.2	0,12	1,00	-26,96	-	-	-	-	-	-
		3.1	1,11	0,70	-27,49	0,03	1,11	0,37	424	100	33
	r	6.11	2,67	0,48	-25,84	0,06	6,75	1,91	430	252	71
	Superio	6.10	3,12	0,39	-25,68	0,09	8,34	1,90	430	267	61
		6.9	2,93	1,40	-25,88	0,07	5,34	1,16	429	187	40
		6.8	3,08	1,01	-26,23	0,08	5,46	1,79	426	177	58
9	Médio	6.7	0,77	0,18	-26,64	0,01	0,95	0,41	434	124	53
Ponto		6.6	0,85	0,06	-26,77	0,01	0,93	0,68	434	110	80
		6.5	0,66	0,05	-26,48	-	-	-	-	-	-
	Inferior	6.4	0,60	0,07	-26,66	-	-	-	-	-	-
		6.3	0,32	0,06	-26,21	-	-	-	-	-	-
		6.2	1,07	0,06	-26,89	0,01	1,68	0,50	438	157	47
		6.1	0,98	0,09	-26,82	0,01	1,08	0,68	436	110	69

- : não foi realizada a análises nessa amostra; S₁=mg HC/g rocha; S₂=mg HC/g rocha; S₃=mg CO₂/g rocha; IH= mg HC/g COT; IO= mg CO₂/g COT.

4.4.1 Análises de Carbono orgânico Total e Enxofre Total

Os valores de COT nas amostras do ponto 3 variaram entre 0,12% e 3,72%, com valores mais elevados de 1,79% até 3,72% nos intervalos desde a metade do terço inferior abarcando o terço médio (amostras de 3.4 a 3.10) e as amostras de 3.13 a 3.16 do terço superior. Uma percentagem de 81% das amostras do ponto 3 evidenciaram a quantidade mínima (>1% em peso) de COT aceita para que uma rocha sedimentar siliciclásticas possa ser considerada como possível rocha geradora de hidrocarbonetos.

Entretanto, as amostras do ponto 6 apresentaram valores de COT entre 0,32% e 3,12% em peso (Tabela 1). Foi possível observar valores de COT mais elevados entre 2,67% e 3,08%, para as amostras coletadas no terço superior do ponto 6 (amostras 6.8, 6.9, 6.10 e 6.11). Cerca de 46% das amostras (6.2, 6.8, 6.9, 6.10 e 6.11) atingiram valores maiores que 1%, permitindo classificá-las como possíveis rochas geradoras.

Com relação aos teores de enxofre, apresentados na Tabela 1, foi possível observar que os valores oscilaram de 0,14% a 2,94% para as amostras do ponto 3. Os máximos conteúdos de enxofre foram apresentados nas amostras 3.7 e 3.14 com valores de 2,20% e 2,94%, respectivamente. Para o ponto 6, os valores de enxofre oscilaram entre 0,05% a 1,40%. Pode ser observado para as amostras coletadas no terço superior do afloramento (6.8, 6.9, 6.10 e 6.11) um aumento no conteúdo de enxofre, com valores oscilando de 0,39% até 1,40%. No mesmo terço, foi verificado um elevado teor de carbono orgânico total, com valores entre 2,67% a 3,08%.

De uma maneira geral foi observado que nas amostras com valores maiores de %S, também apresentam valores elevados de COT para os afloramentos estudados. Esta relação não é estrita, como observou-se nas amostras 3.2 e 3.11, as quais apresentaram maior porcentagem de enxofre e COT diminuído. De acordo com Berner (1984), o enxofre incorporado nos sedimentos é devido à ação de bactérias redutoras de sulfato presentes na coluna de água livre de oxigênio sobre a matéria orgânica. Consequentemente, os valores elevados de enxofre são indicativos de deposição em ambientes anóxicos (BERNER, 1984). Sabendo que, a preservação da matéria orgânica é maior nos ambientes anóxicos do que nos óxicos, devido à redução da degradação de organismos aeróbicos. Por tanto, altos valores de enxofre poderiam sugerir maior preservação da matéria orgânica para gerar hidrocarbonetos.

Alternativamente, o enxofre incorporado na matéria orgânica também pode ser derivado de enxofre elementar e de polissulfetos (WERNE et al., 2003). Cabe ainda salientar que uma porcentagem do enxofre no querogênio é derivada diretamente da biomassa da qual se formou, proveniente de moléculas como aminoácidos e proteínas de algas e bactérias (WERNE et al., 2003).

Em geral, os teores de enxofre para as rochas estudadas no presente trabalho são baixos, quando comparado com querogênios Tipo IIS, com valores entre 8% e 14% (razão atômica S/C \geq 0,04) encontrados na Formação Monterey, California (BASKIN e PETERS, 1992). O mesmo se verificou em relação aos querogênios classificados por Hunt et al. (2013), desde o Tipo II-A com 11% S_{org} (mesmo tipo IIS) observados na Formação Monterey até o Tipo II-D (5% S_{org}), correspondentes aos folhelhos Devonianos de Oklahoma.

4.4.2 Isótopos de Carbono

A razão isotópica de carbono (δ^{13} C) do extrato das rochas junto com outros parâmetros geoquímicos pode fornecer informação sobre a origem da matéria orgânica e paleoambiente deposional (OLIVEIRA et al., 2006; FREIRE et al., 2013). Conforme pode ser observado na Tabela 1 para o ponto 3, as composições isotópicas de carbono variaram entre -25,54%_o e -27,86%_o, enquanto as amostras do ponto 6 exibiram valores de -25,68%_o a -26,89%_o. Na Figura 12 apresenta-se a variação de δ^{13} C (%_o) com relação ao COT para os afloramentos ponto 3 e ponto 6.

Figura 12 - Composição isotópica vs os teores de carbono orgânico para os pontos 3 e 6

Na Figura 12(A) foi observado para os intervalos de amostra de 3.5 a 3.10 e de 3.13 a 3.16, elevados valores de COT associados a valores mais positivos de δ^{13} C, sugerindo condições de deposição marinha relacionadas às inundações. Entretanto, no terço inferior (de

3.1 a 3.4) e as amostras 3.11 e 3.12, com valores $\leq 1,5\%$ de carbono orgânico total apresentaram valores mais negativos de δ^{13} C, indicando possivelmente condições deposicionais mais continentais. De acordo com Freire (2013), a matéria orgânica originada em ambiente marinho ou salino pode apresentar valores de δ^{13} C menos negativos do que a proveniente de ambientes continentais da mesma idade.

Um comportamento interessante pode ser observado para o ponto 6 (Figura 12(B)), no qual foi possível distinguir claramente dois grupos de amostras. Um grupo está composto pelas amostras do terço inferior e médio no afloramento (amostras do intervalo 6.1-6.7), com valores de COT <1,5%, dentro do qual foram observados valores de δ^{13} C menos negativos (enriquecidas em ¹²C) para as amostras com baixos teores de carbono orgânico. Entretanto, o segundo grupo compreendido pelas amostras do terço superior (amostras 6.8 – 6.11), rico em matéria orgânica (alto COT), apresentou valores de δ^{13} C mais positivos quando comparado com o primeiro grupo. Por conseguinte, o paleoambiente deposicional seria possivelmente marinho. Variações mais positivas de δ^{13} C em ambientes marinhos têm sido correlacionadas a ciclos transgressivos ou eventos anóxicos, enquanto que variações negativas indicariam ciclos regressivos (LAMB et al., 2006; PEDRO, 2007; FREIRE, 2013).

4.4.3 Pirólise Rock Eval

Com base nos intervalos propostos por Peters e Cassa (1994), ilustrados por diferentes cores na Figura 13, foi possível observar as variações dos parâmetros geoquímicos do COT, potencial gerador (S_2), índice de hidrogênio (IH) e temperatura máxima (Tmáx) para as amostras dos pontos 3 e 6.

Cerca de 56% das amostras do ponto 3 (amostra 3.5 e os intervalos 3.7-10 e 3.13-3.16) apresentaram teores de carbono orgânico muito bom para a geração de hidrocarbonetos. Entretanto, as amostras 3.1, 3.4, 3.6 e 3.11, representando um percentual de 25%, mostraram potencial bom. As amostras 3.2, 3.3 e 3.12, oscilaram entre potencial regular a pobre. Na avaliação do potencial para as amostras do ponto 6 através do gráfico de COT da Figura 13, observou-se que aquelas localizadas no terço superior do afloramento, representando 36% dos totais, possuem um potencial muito bom para gerar hidrocarbonetos. Enquanto, 64% das amostras do afloramento, localizadas no terço basal a médio apresentaram potencial entre regular e pobre.

Figura 13 - Perfil dos parâmetros geoquímicos obtidos neste trabalho para os afloramentos do ponto 3 e 6 na Formação Pimenteiras da Bacia de Parnaíba, destacando-se com cores os intervalos de classificação definidos por Peters e Cassa (1994)

Fonte: A autora (2015)

A partir do segundo gráfico são apresentados os resultados obtidos pela pirólise *Rock Eval*, os quais são comumente usados para indicar a qualidade da rocha geradora. Assim, o parâmetro S_2 representa o potencial gerador de hidrocarbonetos, o qual para ponto 3 oscilou desde 0,78 mg/g de rocha para a amostra 3.12 até 7,28 mg/g de rocha na amostra 3.5. Já para as amostras do ponto 6, os valores estão no intervalo de 0,93 mg/g de rocha para amostra 6.6 até 8,34 mg/g de rocha para 6.10 (Tabela 1).

As amostras de rochas do ponto 3 que apresentaram bom potencial, ou seja, valores ≥ 5 mg HC/g de rocha foram: 3.5, 3.7, 3.10, 3.13, 3.14 e 3.15, com valores de S₂ entre 5,31 a 7,28 mg HC/g de rocha. Ao passo que no ponto 6 as amostras localizadas no terço superior (amostras 6.8, 6.9, 6.10, 6.11), apresentaram altos valores de S₂ entre 5,46 a 8,34 mg HC/g de rocha (PETERS; CASSA, 1994).

O tipo de matéria orgânica foi avaliado pelo índice de hidrogênio (PETERS; CASSA, 1994), conforme é mostrado no terceiro diagrama da Figura 13. Observou-se para ambos os afloramentos que as amostras apresentaram abundância do querogênio tipo III, em termos percentuais de querogênio, sendo de 77% para as amostras do ponto 3 e 75% do ponto 6 e menores percentuais de querogênio tipo II/III, correspondentes ao potencial gerador de gás e mistura de óleo-gás, respectivamente (PARRA, 2012). Por outro lado, nenhuma das amostras estudadas apresentou querogênio tipo I ou IV.

Através do diagrama de S_2 *versus* COT (Figura 14) é possível avaliar o tipo de querogênio e o potencial de geração de hidrocarbonetos, segundo o reportado nos trabalhos de Dahl et al. (2004), Oliveira et al. (2006), Duarte (2013), Fakhri (2013). De acordo com o representado no mesmo diagrama, para os ponto 3 e 6, as amostras foram localizadas predominantemente na área do querogênio tipo III. No entanto, as amostras 3.5, 3.7, 3.10, e o 6.10 e 6.11, que apresentaram elevados teores de COT, se mostraram muito próximas à linha do limite de IH=200, o que pode ser um indicativo de serem do querogênio do tipo II/III (ERIK et al., 2006).

Figura 14 - Diagrama de COT versus S2 para as amostras de rocha dos pontos 3 e 6 da Formação Pimenteiras

Fonte: A autora (2015)

Cabe destacar que o querogênio tipo II/III descreve uma composição de transição entre os tipos II e III, que comumente representa uma mistura de matéria orgânica marinha e terrestre. O querogênio tipo III é derivado de matéria orgânica de origem terrestre ou lagos, sendo frequentemente encontrado em rochas depositadas em ambiente marinho deltaico e fácies marinhas óxicas (PETERS et al., 2005).

Por outro lado, autores como Routh et al. (1999), utilizaram diagrama IH *versus* COT para deduzir as quantidade de matéria orgânica terrestre e as condições de oxigênio embaixo da água para diferentes paleoambientes deposicionais. No presente estudo, a relação entre o índice de hidrogênio (IH) e COT, pode ser verificada na Figura 15 para os pontos 3 e 6, com o intuito de mostrar as condições de sedimentação.

Figura 15 - Diagrama de teor do IH versus COT para as amostras de rocha dos pontos 3 e 6 da Formação Pimenteiras

Fonte: A autora (2015)

Observou-se uma correlação positiva entre IH e COT para todas as amostras analisadas por pirólise *Rock Eval*, lembrando-se que essas amostras apresentaram COT >0,8%. Esta correlação entre IH e carbono orgânico total indica que o aumento do COT está relacionado com uma riqueza em lipídeos, o que pode indicar uma fonte marinha (ROUTH et al., 1999). Por conseguinte as oscilações dos conteúdos de hidrogênio, oxigênio e de COT para os dois afloramentos, representam diferenças nas condições paleoambientais devidas às variações relativas do nível do mar ao longo da deposição da formação. Vários autores reportaram uma tendência similar no gráfico IH *versus* COT para sedimentos transgressivos e regressivos, como na Bacia San Juan, New Mexico (PASLEY et al., 1991); na Formação

Kazhdomi da Bacia de Zagros, Iran (FAKHRI et al. (2013); e na Bacia Maamba Coalfield, Zambia (ROBISON; ENGEL, 1993).

A temperatura máxima (Tmáx) na qual ocorre o craqueamento do querogênio na pirólise, analisada em função da localização das amostras pode ser observada na Figura 13. O gráfico de Tmáx para o ponto 3 mostra um comportamento uniforme na faixa imatura (Tmáx $< 435 \ ^{\circ}$ C) em todas as amostras com valores entre 422 $^{\circ}$ C e 432 $^{\circ}$ C (Tabela 1). Para o ponto 6, as duas primeiras amostras no terço inferior, evidenciaram temperaturas na fase inicial de maturação (Tmáx = 435- 470 $^{\circ}$ C), possivelmente por efeito do soterramento ou proximidade de intrusões ígneas. As amostras restantes do terço médio a superior apresentaram valores de 426 $^{\circ}$ C a 430 $^{\circ}$ C, indicando imaturidade termal. É possível observar na Figura 16 que as amostras 6.1 e 6.2 estão localizadas depois da linha de 435 $^{\circ}$ C, a qual indica o inicio da maturação. Entretanto, a maior parte das amostras apresentaram temperaturas menores que 435 $^{\circ}$ C, sugerindo imaturidade termal para a geração de hidrocarbonetos, sem efeitos térmicos importantes como resultado do soterramento ou da presença de rochas intrusivas de diabásio próxima à geradora como foi proposto por Rodrigues (1995).

Figura 16 - Diagrama de IH versus Tmáx para as amostras de rocha dos pontos 3 e 6 da Formação Pimenteiras

Fonte: A autora (2015)

4.5 CONCLUSÕES

Os principais parâmetros geoquímicos foram avaliados nas amostras de rocha em dois afloramentos da Formação Pimenteiras, na Bacia do Parnaíba. Para o afloramento localizado no Km 29 TO-010 (ponto 3) no Estado do Tocantins, estimou-se que 81% das amostras evidenciam a quantidade mínima requerida para gerar hidrocarbonetos. O potencial gerador,

avaliado pelo parâmetro S_2 , indicou um bom potencial gerador para amostras localizadas a 5, 7, 10, 13, 14, 15 metros de altura medidos a partir da base no afloramento. Com base nos valores IH da matéria orgânica, 77% das amostras analisadas indicaram predominância do querogênio tipo III e 23% foram do tipo II/III indicando mistura entre matéria orgânica terrestre e marinha. No afloramento localizado no Km 399 da rodovia BR-153 (Belém-Brasília), no Estado do Tocantins, correspondente ao ponto de coleta 6, foi evidenciado que 46% das amostras atingiram a quantidade mínima requerida para gerar hidrocarbonetos. O parâmetro S_2 permitiu identificar nas amostras coletadas no terço superior um potencial bom para a geração de hidrocarbonetos. O 75% das amostras analisadas indicou querogênio tipo III, enquanto 25% restante evidenciou querogênio tipo II/II, correspondente às duas últimas amostras no topo do afloramento.

De uma maneira geral, foi possível verificar para o afloramento localizado no Km 29 TO-010, que as amostras coletadas a 5, 7 e 10 m a partir da base do afloramento, exibiram bom potencial para gerar óleo ou gás e as coletadas entre 13 e 15 m medidos desde a base, foram associados ao potencial gerador de gás. Para o afloramento localizado Km 399 BR-153 (Belém- Brasília), as amostras do terço superior apresentaram as melhores características de gerar hidrocarbonetos, no qual as duas primeiras amostras revelaram potencial gerador de gás e as duas últimas para gerar óleo ou gás.

Os resultados dos parâmetros geoquímicos indicam imaturidade na maioria das amostras, exceto nas coletadas entre 1 e 2 metros de altura no ponto 6, as quais encontram-se na fase inicial de maturação.

Cabe ressaltar que esses afloramentos ricos em matéria orgânica apresentaram variações claras no paleoambiente deposicional, devido às subidas relativas do nível do mar na Formação Pimenteiras.

5 BIOMARCADORES SATURADOS COMO INDICADORES DE INPUT ORGÂNICO E DE EVENTOS DE INUNDAÇÃO EM FOLHELHOS DA FORMAÇÃO PIMENTEIRAS (DEVONIANO) DA BACIA DO PARNAÍBA, BRASIL

RESUMO

O *input* de matéria orgânica e o paleoambiente deposicional foram caracterizados em 11 amostras de rochas geradoras, da Formação Pimenteiras na borda oeste da Bacia do Parnaíba, usando técnicas analíticas de cromatografia gasosa com detector de ionização em chama e com detector seletivo de massas, análises de COT e isótopos estáveis de carbono. O uso de biomarcadores saturados permitiu evidenciar as diferenças em folhelhos coletados sequencialmente a cada metro dentro de um afloramento. A partir das razões dos biomarcadores saturados foram identificados dois grupos de rochas geradoras. O grupo 1 composto pelas amostras coletadas desde o terço inferior a médio no afloramento apresentou matéria orgânica mista, predominantemente terrestre com aportes de organismo de água doce/salobra, depositados sob condições sub-óxica. O grupo 2 constituído pelas amostras coletadas no terço superior (topo) do afloramento, foram compostas por matéria orgânica mista com aporte terrestre e contribuição marinha. Os folhelhos do grupo 2, ricos em matéria orgânica representaram a inundação marinha máxima no afloramento. Este trabalho sugere que a avaliação geoquímica através de biomarcadores saturados junto com análises cromatográficas no extrato total, carbono orgânico total e isótopos estáveis de carbono, permitem distinguir as variações relativas do nível do mar em sequências com eventos transgressivos.

Palavras-Chave: Biomarcadores saturados, geoquímica do petróleo, inundação marinha, Bacia do Parnaíba, Formação Pimenteiras, Devoniano.

ABSTRACT

The input of organic matter and the depositional paleoenvironment were characterized in 11 samples of source rocks, from the Pimenteiras Formation, located on the western edge of the Parnaíba Basin. The geochemical characterization of biomarkers in the saturated fraction of soluble organic matter from source rock samples was performed using analytical techniques of gas chromatography with flame ionization detector, and a mass selective detector, TOC analysis and stable carbon isotope. The use of saturated biomarkers has highlighted the differences in shales collected sequentially to each meter within an outcrop. Coming out of the ratios of saturated biomarkers, two groups of source rocks were identified. The first group is formed by the samples from the bottom third of the outcrop, which had mixed organic matter; predominantly terrestrial with fresh / brackish water organism contributions, deposited under sub-oxic to oxic paleoenvironment conditions. Group 2 consists of the samples collected in the upper third (top) of the outcrop, made up of organic matter, represent

the maximum marine flooding in the outcrop. This work suggests that the geochemical evaluation by means of saturated biomarkers, with chromatographic analyses of the entire extract, including the total organic carbon, and stable carbon, allows us to distinguish the relative variations in sea level in sequences with transgressive events.

Key-words: Satured biomarkers, petroleum geochemical, marine flooding, Parnaíba Basin, Pimenteiras Formation, Devonian.

5.1 INTRODUÇÃO

A caracterização de rochas geradoras de hidrocarbonetos desempenha um papel importante na avaliação das bacias sedimentares com respeito à exploração de óleo e gás. Contribuições de técnicas analíticas como o uso de compostos biomarcadores a partir da cromatografia gasosa acoplada à espectrometria de massas permitem obter informações sobre o tipo de querogênio, maturação termal e o tipo e as condições físico-químicas do paleoambiente deposicional. Além disso, os biomarcadores são ferramentas essenciais na avaliação das variações regionais em fácies orgânicas.

A Bacia do Parnaíba está situada na região nordeste ocidental brasileira com uma área de cerca de 665.888 Km², abrangendo quase a totalidade dos Estados do Maranhão e Piauí e pequenas faixas do Pará, Ceará, Tocantins, Goiás e Bahia (MILANI, et al., 2007; VAZ, et al., 2007). Como resultado das atividades de exploração, quatro campos de gás natural foram descobertos em 2010, 2011 e 2012 com reservas comprovadas de gás. Atualmente, a Bacia do Parnaíba é a quinta maior produtora de gás natural do Brasil e encontra-se em um estágio exploratório com expectativas de ocorrência de petróleo (ARAÚJO, 2015).

A Formação Pimenteiras do período Devoniano (Givetiano-Frasniano), contém folhelhos radioativos, os quais são consideradas principais rochas geradoras, são ricos em matéria orgânica e representam a transgressão marinha mais importante da Bacia (VAZ et al., 2007).

As variações do nível do mar são um fator importante no enriquecimento de carbono orgânico nos mares marginais e epicontinentais (PASLEY et al., 1991). Fácies ricas em matéria orgânica são acumuladas preferentemente no decorrer de eventos transgressivos (ARTHUR, 2005). O aumento do nível do mar favorece a retenção de nutrientes, portanto maior produção orgânica e condições eutróficas, e ainda, promove a contribuição de material terrestre criando intervalos caracterizados pelo enriquecimento de carbono orgânico (ARTHUR, 2005). Outros autores têm identificado tendências transgressivas e regressivas do

mar na Formação Pimenteiras da Bacia do Parnaíba. Souza (2007) mapeou as tendências regressivas e transgressivas em amostras da Formação Pimenteira, coletadas em dois poços da borda leste da Bacia do Parnaíba utilizando palinofácies e fácies orgânica. Ainda assim, Trindade et al. (2015) reportaram variações do paleoambiente deposicional através de análises de palinofácies em rochas das formações Itaim, Pimenteiras e Cabeças localizadas no centronorte da Bacia do Parnaíba.

Buscando contribuir com o conhecimento geoquímico da Bacia do Parnaíba com vistas à ampliação de sua atratividade exploratória, foi realizado este estudo usando técnicas cromatográficas, análises de COT e isótopos de carbono. Empregando-se ainda as razões de biomarcadores, *fingerprint*, valores de COT e δ^{13} C, para determinar as variações na origem da matéria orgânica e condições do paleoambiente deposicional da matéria orgânica devida a inundações marinhas na Bacia. Esses dados foram utilizados para construir curvas qualitativas das variações relativas do nível do mar no afloramento estudado.

5.1.1 Área de estudo

O afloramento estudado está localizado no Km 399 da rodovia BR-153 (Belém-Brasília), no Estado de Tocantins, com as seguintes coordenadas geográficas: latitude 9° 25' 22,3" e longitude 48° 34' 20,5" (Figura 17).

Figura 17 - Localização geográfica dos afloramentos do ponto 6 localizado no Km 399 da rodovia BR-153 (Belém - Brasília)

Fonte: Modificado de ANP (2015) e Guia geográfico (2015)

Figura 18 - Posicionamento das amostras coletadas no Ponto 6 localizado no Km 399 da rodovia BR-153 (Belém - Brasília)

Fonte: A autora (2015)

Nesse local, foram coletadas 11 amostras de folhelhos sequencialmente a cada metro de altura dentro do afloramento. A fim de facilitar a identificação, o afloramento foi registrado como ponto 6 e as amostras de rocha coletadas foram distinguidas por números de 6.1 a 6.11. Além disso, o afloramento foi diferenciado por terços: o terço inferior correspondente à base do afloramento, onde se iniciou a coleta das amostras; o terço médio composto pelas amostras coletadas entre 4 m a 7 m medidos a partir da base; e o terço superior composto pelas amostras localizadas no topo do afloramento (Figura 18).

É possível observar na Figura 18 a descrição litológica das amostras coletadas no afloramento estudado, o qual foi constituído no terço inferior por folhelhos cinza-claro, no terço médio por folhelhos cinza-claro com intercalações cinza-escuro e no terço superior por folhelhos cinza-escuro com intercalações cinza-claro. É importante destacar a presença de óxido de ferro e enxofre em todas as amostras de folhelhos do ponto 6, com maior predominância no terço superior.

5.2 MATERIAS E MÉTODOS

No Laboratório de Estudos do Petróleo (LEPETRO) da Universidade Federal da Bahia (UFBA), as amostras de rocha pulverizada foram sometidas a extração soxhlet para separar a matéria orgânica solúvel (betume) do querogênio. Em extratores soxhlet foi retirado o betume de todas as amostras, com diclorometano, por 32 horas. Após a extração da matéria orgânica solúvel foi realizada a remoção de enxofre elementar utilizando-se fios de cobre metálicos ativados. Os extratos das amostras foram estudados usando cromatografia gasosa (CG), com o equipamento marca Agilent 7890B com detector de ionização de chama (FID). Na CG foi utilizada a coluna capilar de sílica fundida DB-1 (15 m x 0,25 mm x 0,25 µm). As condições de análises foram: a temperatura do forno de coluna foi de 40 °C, 2 minutos, 10°C/min até 330 °C por 12 minutos; Temperatura do injetor foi de 300 °C e do detector 330 °C; Gás de arraste: Hidrogênio, 20 mL/min, fluxo constante; Concentração injetada: 0,05 mg amostra/1 µL de diclorometano. As áreas dos picos foram utilizadas para a comparação quantitativa de nparafinas presentes nos extratos estudados. Por outro lado, para separar as frações, o betume extraído foi transferido para o topo de uma coluna de vidro preenchida 12 cm com uma mistura de n-hexano e sílica gel ativado (550°C por 4 horas). Em seguida, foram utilizadas as seguintes soluções em sequência: 20 mL de n-hexano para separação dos hidrocarbonetos saturados; 12 mL de *n*-hexano e 8 mL de tolueno para os hidrocarbonetos aromáticos; e 12 mL de *n*-hexano e 8 mL de metanol para a extração dos compostos polares. Uma vez separadas, as frações foram concentradas em evaporador rotatório.

As frações saturadas foram analisadas no cromatógrafo gasoso Agilent 7890B acoplado ao espectrômetro de massas (GC-EM) Agilent DSM 5977A, equipado com uma coluna capilar de sílica fundida DB-5 (60 m x 0,25 mm x 0,25 μ m). O hélio foi empregado como gás de arrastre com fluxo de 1 mL/1 μ L e pressão constante de 30 psi. A concentração da fração saturada injetada foi de 0,1 mg amostra/1 μ L de hexano, volume de injeção 1 μ L e aquecida a 60 °C até 310 °C com rampa de aquecimento de 2 °C/min. Estas análises foram realizadas com o fim de se identificar os biomarcadores e avaliar suas feições, monitorando os íons *m*/*z* 217 (esteranos), *m*/*z* 191 (triterpanos) e *m*/*z* 259 (poliprenoides tetracíclicos).

Na análise elementar de carbono orgânico total, as amostras pulverizadas a 80 mesh foram tratadas usando ácido clorídrico 6N para remover os carbonatos, em seguida foram lavadas com água deionizada por quatro horas. Na sequencia, foram levadas à combustão (950°C) num analisador elementar da marca LECO 628CN. Este equipamento possui um detector infravermelho, que determina a quantidade de carbono orgânico contido na amostra, em valores % em peso.

A composição isotópica em delta por mil de carbono 13 nas rochas foi analisada no espectrômetro de massas acoplado com cromatografia gasosa PDZ-Europa, modelo SLG 20-20, no Laboratório de Isótopos Estáveis do Centro de Energia Nuclear na Agricultura da Universidade de São Paulo (USP). A notação δ ("delta") é usada para expressar as razões dos isótopos ¹³C/¹²C. Os dados são apresentados com o desvio do padrão internacional PDB por mil (%₀) (Pee Dee Belemnite- carbonato padrão: Formação Pee Dee, Cretáceo Superior, Carolina do Sul). Esta notação é definida pela equação 4:

$$\delta = \left(\frac{Ra - Rp}{Rp}\right) * 10^3 \quad (Eq. 4)$$

Onde Ra e Rp referem-se à razão isotópica ${}^{13}C/{}^{12}C$ da amostra e do padrão, respectivamente.

5.3 RESULTADOS E DISCUSSÕES

Os resultados das análises de Carbono orgânico total (COT), isótopos estáveis de carbono (δ^{13} C) e razões de biomarcadores para a avaliação do *input* orgânico e paleoambiente deposicional são apresentados na Tabela 2.

 Tabela 2 - Resultados de COT, razões de biomarcadores de n-alcanos, isoprenóides, esteranos, terpanos

Amostras	6.1	6.2	6.3	6.4	6.5	6.6	6.7	6.8	6.9	6.10	6.11
% COT	0,98	1,07	0,32	0,60	0,66	0,85	0,77	3,08	2,93	3,12	2,67
$\delta^{13}C$	-26,82	-26,89	-26,21	-26,66	-26,48	-26,77	-26,64	-26,23	-25,88	-25,68	-25,84
P/F	1,65	1,72	0,98	1,17	1,33	1,51	1,48	1,26	1,70	1,55	1,48
P/n-C17	0,38	0,37	0,54	0,54	0,44	0,39	0,37	1,02	1,01	0,96	1,04
F/n-C18	0,30	0,27	0,50	0,47	0,34	0,30	0,30	0,90	0,85	0,88	0,88
CPI	1,67	1,58	1,52	1,36	1,38	1,36	1,19	1,11	1,01	1,19	1,14
TAR	0,98	1,27	2,43	1,11	1,61	1,58	1,20	1,22	0,59	0,82	0,74
%C27	34	34	38	38	37	36	33	45	43	45	44
%C28	15	18	16	16	16	16	17	13	15	13	14
%C29	51	48	46	46	47	49	50	41	42	42	42
TR19/(TR19+TR23)	0,44	0,34	0,26	0,23	0,31	0,33	0,39	0,26	0,28	0,31	0,22
TR20/TR21	0,98	0,91	0,81	0,88	0,98	0,99	0,89	1,23	1,78	1,68	2,01
HOP/EST	4,62	4,47	5,87	5,98	5,33	5,81	6,00	1,54	1,42	1,55	1,71
TPP/TPP+DIA	0,57	0,55	0,49	0,57	0,67	0,59	0,59	0,23	0,24	0,19	0,22
С35ННІ	0,008	0,01	0,003	0,001	0,016	0,013	0,012	0,016	0,019	0,015	0,013
GAM/H30	0,12	0,11	0,07	0,08	0,09	0,10	0,08	0,14	0,17	0,14	0,13

%COT: carbono orgânico total; δ 13C: razão isotópica de C; P/F:pristano/fitano; P/n-C17: pristano/n-C17; F/n-C18: fitano/n-C18; CPI: 2*(n-C23 + n-C25 + n-C27 + n-C29)/ n-C22+2*(n-C24+ n-C26 + n-C28) + n-C30; TAR: (nC27 + nC29 + nC31)/ (nC15 + nC17 + nC19); %C27: C27/(C27-C29) $\alpha\alpha\alpha$ -20R esteranos* 100%; %C28: C28/(C27-C29) $\alpha\alpha\alpha$ -20R esteranos* 100%; %C29: C29/(C27-C29) $\alpha\alpha\alpha$ -20R esteranos* 100%; TR19/(TR19 + TR23): C19 terpanos tricíclico/(C19 terpanos tricíclico + C23 Terpanos tricíclico); TR20/TR21: C20 terpanos tricíclicos /C21 terpanos tricíclicos; HOP/EST: \sum C27-C35 (incluso 22S + 22R) hopanos (sem moretanos, DH30, NOR30H, gam)/ \sum C27-C29 esteranos (incluso 20S + 20R);.TPP/TPP+DIA: (C30 TPP 18 α (H), 21R+ C30 TPP 18 α (H), 21S)/(C27 diacolestano R e S); C35HHI: C35/ \sum C31- C35 homohopanos (22S + 22R); GAM/H30: gamacerano/C30 hopano.

5.3.1 Origem da matéria orgânica

As fontes da matéria orgânica foram estudadas através da distribuição de n-alcanos, isoprenóides, diagrama ternário de esteranos e as razões de biomarcadores mais importantes em amostras de folhelho para o afloramento ponto 6 na Formação Pimenteiras.

5.3.1.1 Distribuição de n-parafinas e isoprenóides regulares

Os gráficos resultantes das análises de cromatografia gasosa ou *fingerprint* realizadas no betume foram usados para elucidar as possíveis fontes da matéria orgânica (Figura 19).

Figura 19 - Cromatogramas da matéria orgânica solúvel das amostras do ponto 6, destacando a posição do pristano (P) e o fitano (F)

Fonte: A autora (2015)

Na Figura 19 foi observada a presença de alcanos normais no intervalo de $n-C_{12}$ até $n-C_{37}$, advertindo a ausência de n-parafinas de baixo peso molecular (< $n-C_{11}$) para todas as

amostras. Os cromatogramas apresentaram ainda elevações na linha base (*hump*), as quais representam uma mistura complexa de compostos naftênicos e aromáticos não resolvidos (UCM) pela coluna cromatográfica, devido à imaturidade termal ou possível biodegradação. Desse modo, as amostras que mostraram maiores elevações na linha base, são aquelas localizadas no terço superior do afloramento (intervalo de amostra 6.8 a 6.11 na Figura 19). Na Figura 20 são apresentadas as concentrações de n-parafinas das amostras estudadas.

Figura 20 – Distribuição da concentração de n-parafinas para as amostras de rocha: (A) do terço inferior ao médio e (B) do terço superior para o afloramento ponto 6.

Fonte: A autora (2015)

Por um lado, foi identificada uma distribuição unimodal nas amostras do terço inferior a médio (6.1 a 6.7), as quais apresentaram elevadas abundâncias relativas de n-parafinas de alto peso molecular no intervalo n-C₂₁ a n-C₂₉ (Figura 20 (A)). A predominância nos picos em n-C₂₃, n-C₂₅ e n-C₂₇, indicou matéria orgânica de origem terrestre (PETERS et al., 2005). Por outro lado, foi observado na Figura 20 (B) que as amostras no intervalo de 6.8 a 6.11 (topo do afloramento) mostraram uma distribuição bimodal com maior abundância relativa nas nparafinas de alto peso molecular no intervalo de n-C₂₂ a n-C₂₉, com picos máximos em n-C₂₅, n-C₂₇, n-C₂₈. Além disso, as n-parafinas de baixo peso molecular exibiram abundância média entre n-C₁₄ a n-C₂₀, com picos altos em n-C₁₅, n-C₁₇, n-C₁₉, indicando contribuição de algas. Routh et al., (1999) reportaram uma distribuição bimodal similar para sedimentos da Formação Yegua, Brazos County, Texas (Estados Unidos), referenciando a matéria orgânica com origem terrestre. Consequentemente as amostras no terço superior do afloramento, sugerem predominância de matéria orgânica terrestre com contribuições marinhas. Routh et al. (1999) reportou uma tendência semelhante em sedimentos transgressivos, indicando que a presença de grandes quantidades de matéria orgânica terrestre é devida possivelmente ao transporte de fragmentos de plantas e lenhos pela ação das ondas ao largo da plataforma continental.

Com o fim de se determinar a predominância de n-parafinas pares ou impares foi calculado o índice preferencial de carbono (CPI) mostrado na Tabela 2. Foram observados em todas as amostras valores maiores que 1, por conseguinte predominaram as n-parafinas impares, o qual sugere contribuição terrestre. Cabe ressaltar que as amostras do intervalo de 6.7 a 6.11 apresentaram os menores valores entre 1,01 e 1,19, indicando diminuição no conteúdo de matéria terrestre quando comparadas com as amostras 6.1-6.6 (Tabela 2).

A razão entre a matéria orgânica terrestre e a proveniente de algas (TAR), foi proposta por BOURBONNIERE e MEYER (1996), para identificar a fonte da matéria orgânica. Foi possível verificar na Tabela 2 valores entre 1 e 2,43 para as amostras da base ao terço médio, sugerindo maior contribuição terrestre (PETERS et al., 2005). Entretanto, nas amostras do topo no afloramento apresentaram valores de 0,59 a 0,74, indicando maior *input* de algas (Tabela 2).

O tipo de matéria orgânica e a condição redox na deposição paleoambiental foram identificados pelas razões P/n-C17 e F/n-C18. Na Figura 21 foi possível observar que as amostras estudadas estão localizadas na zona da matéria orgânica mista (tipo II/III). No entanto, as amostras 6.1, 6.2 e 6.6 indicaram maior maturação; enquanto que as amostras 6.7, 6.8, 6.9, 6.10 e 6.11 sugerem imaturidade termal ou possível biodegradação.

Figura 21 - Gráfico das razões de n-parafinas Pristano/n-C17 e Fitano/n-C18, nos extratos das amostras de rocha do ponto 6.

Fonte: Modificado de Shanmugam (1985)

5.3.1.2 Diagrama ternário dos esteranos C₂₇, C₂₈ e C₂₉

Os esteranos regulares C_{27} - C_{29} provenientes dos eucariotas, fornecem informações do paleoambiente deposicional da matéria orgânica (WAPLES et al., 1990). Portanto, as distribuições dos esteranos C_{27} , C_{28} e C_{29} plotadas num diagrama ternário são frequentemente usadas para distinguir a origem da matéria orgânica (HUANG e MEINSCHEIN, 1979). Os valores de porcentagem normalizados dos esteranos C_{27} - C_{29} foram apresentados na Tabela 2. Nas amostras estudadas foram observados, valores de C_{28} baixos (13-18%), quando comparados com C_{27} (33-45%) e C_{29} (41-51%).

As abundâncias dos esteranos C_{27} - C_{29} $\alpha\alpha\alpha$ -20R para as rochas estudadas são apresentadas na Figura 22. No diagrama ternário as amostras estão localizadas na área de mistura entre matéria orgânica terrestre e marinha (Figura 22 (A)).

Na Figura 22(B) é apresentado o gráfico dos esteranos %C₂₉ versus %C₂₇, ressaltando dois grupos de amostras localizadas na área do ambiente transicional. O grupo 1 corresponde às amostras do terço inferior e médio, enquanto o grupo 2 está integrado pelas amostras do terço superior e disposto perto da faixa marinha. Além disso, na Figura 22(C) encontra-se a composição em porcentagem dos esteranos C₂₇ e C₂₉ para as amostras coletadas, na qual foi observado que inicialmente nas amostras que compõem o grupo 1 (6.1-6.7) predomina a composição de C₂₉ com valores de 46-51% quando comparada com C₂₇ (33-38%) (Tabela 2). Enquanto que nas amostras 6.8-6.11 do grupo 2, os valores das composições dos esteranos C₂₇ aumentaram até serem levemente mais elevados (43-45%) do que os esteranos C₂₉ (4142%), indicando contribuição marinha devido a um evento de subida relativa do nível do mar (inundação marinha na Figura 22(C)).

Figura 22 – (A) Diagrama Ternário; (B) gráfico de %C29 esterano vs %C27 esterano; (C) Gráfico da variação de %C27 esterano e %C29 esterano no afloramento, mostrando a inundação marinha

Fonte: A autora (2015)

5.3.1.3 Distribuição de terpanos tricíclicos e tetracíclico

Os cromatogramas de massas da relação m/z 191, característico dos hidrocarbonetos da família dos terpanos, são mostrados na Figura 23. Observou-se nas amostras 6.4 e 6.11 (Figuras 23(A) e 23(F)) representativas do grupo 1 e 2, a presença dos terpanos tricíclicos de C₁₉ até C₃₀, sugerindo uma influência marinha (PETERS, 2000; MAGNIER et al., 2004). No entanto, o pico TET24 mostra-se com baixa abundância co-eluindo com o TR 26A e elevando sua abundância. Em geral, a distribuição dos hopanos foi maior do que os terpanos tricíclicos

e foi encontrada no intervalo desde C_{28} até C_{35} , com a presença do gamacerano, Ts, Tm, H_{30} , entre outros.

Figura 23 - Cromatogramas de massas representativos do grupo 1 (amostra 6.4) para os íons: (A) m/z 191; (B) m/z 217 e (C) m/z 259. O grupo 2 (amostra 6.11) para os íons: (D) m/z 191; (E) m/z 217 e (F) m/z 259. As nomeações dos picos são mostradas na Tabela 3.

Fonte: A autora (2015)

Tabela 3 - Nomeação dos picos dos cromatogramas de massa para m/z 191, m/z 217 e m/z 259

		3 1	0	1		
Pico	Código	Identificação <i>m</i> /z 191	Código	Identificação <i>m/z</i> 217	Código	Identificação m/z 259
1	TR19	C19 terpano tricíclico	S21	C21 5α(H)14β(H)17β(H)-esterano	DIA27S	C27 20S-13β(H)17α(H)- diasterano
2	TR20	C20 terpano tricíclico	S22	C22 5α(H)14β(H)17β(H)-esterano	DIA27R	C27 20R -13β(H)17α(H)- diasterano
3	TR21	C21 terpano tricíclico	DIA27S	C27 20S-13β(H)17α(H)-diasterano	TPP21R	C30 21R-18a(H)-TPP
4	TR23	C23 terpano tricíclico	DIA27R	C27 20R -13β(H)17α(H)-diasterano	TPP21S	C30 21S-18a(H)-TPP
5	TET24	C24 terpano tetracíclico	DIA27SS	C27 20S-13α(H)17β(H)-diasterano		
6	Ts	18α(H)21β(H)-22,29,30-trisnorhopano	DIA27RR	C27 20R-13α(H)17β(H)-diasterano		
7	Tm	17α(H)21β(H)-22,29,30-trisnorhopano	C27S	C27 20S-5a(H)14a(H)17a(H)-colestano		
8	TR30A	C30 terpano tricíclico	C27BBR	C27 20R-5α(H)14β(H)17β(H)-colestano		
9	H28	17α(H)18α(H)21β(H)-28,30-bisnorhopano	C27BBS	C27 20S-5α(H)14β(H)17β(H)-colestano		
*		28, 30-bisnorhopano				
10	H29	17α(H)21 β(H)-30-norhopano	C27R	C27 20R-5α(H)14α(H)17α(H)-colestano		
11	M29	17α(H)21β(H-30-norhopano (moretano)	C28S	C28 20S-5a(H)14a(H)17a(H)-ergostano		
12	H30	17α(H)21β(H)-hopano	C28BBR	C28 20R-5α(H)14β(H)17β(H)-ergostano		
13	M30	17 β(H)21α(H)-hopano (moretano)	C28BBS	C28 20S-5a(H)14B(H)17B(H)-ergostano		
14	H31	(22S e 22R)-17α(H)21 β(H)-30- homohopano	C28R	C28 20R-5a(H)14a(H)17a(H)-ergostano		
15	GAM	Gamacerano	C29S	C29 20S-5a(H)14a(H)17a(H)-estigmastano		
16	H32	(22S e 22R)-17α(H)21 β(H)-30,31- bishomohopano	C29BBR	C29 20R-5α(H)14β(H)17β(H)-estigmastano		
17	H33	(22S e 22R)-17α(H)21 β(H)-30,31 ,32- trishomohopano	C29BBS	C29 20S-5α(H)14β(H)17β(H)-estigmastano		
18	H34	(22S e 22R)-17 α(H)21β(H)-30,31 ,32,33- tetrakishomohopano	C29R	C2920R-5a(H)14a(H)17a(H)-estigmastano		
19	H35	(22S c 22R)-17α(H)21β(H)- 30 31 32 33 34- pentakishomohopano				

Segundo Volk et al. (2005) a razão TR19/(TR19+TR23) é um indicador da origem da matéria orgânica. Entretanto, os terpanos tricíclicos C_{19} (pico TR19) são originados principalmente por plantas vasculares (NAZIR, 2013). Neste trabalho os valores da razão TR19/(TR19+TR23) oscilam de 0,23 a 0,44 para o grupo 1 (amostras 6.1-6.7), sugerindo maior contribuição terrestre da matéria orgânica quando comparados com o grupo 2 (amostras 6.8-6.11), com valores de 0,22 a 0,31 (Tabela 2).

Na avaliação dos biomarcadores tricíclicos realizada foi identificada a predominância dos tricíclicos C_{20} e C_{21} em relação aos C_{23} para as amostras do grupo 2. Outros autores como Requejo et al. (1994) e Aquino Neto et al., (1992) reportaram que esta característica é encontrada em amostras marinhas ricas em *Tasmanites* (algas verdes, eucariotas, primitivas), e também tem sido observadas em amostras lacustre (KUO, 1994; HOLBA et al., 2000). Foi possível observar um comportamento interessante da razão TR20/TR21 no terço superior do afloramento para o qual foi sugerido anteriormente ocorrência de inundação marinha. Quando comparada com os valores da razão TR20/TR21 para amostras que formam os terços inferior a médio, verificou-se um aumento nos valores que indicam a presença de algas relacionadas com subidas relativas do nível do mar (Figura 24). Assim, pôde-se constatar valores TR20/TR21 ≤1 para o grupo 1 e TR20/TR21 >1 no grupo 2 (Tabela 2). Esses resultados concordam com o estudo de palinofácies na Formação Pimenteiras realizado por Trindade et al. (2015), no qual reportaram uma tendência crescente de microplâncton para o Givetiano e um aumento abrupto de palinomorfos marinhos no Frasniano. Além disso, confirmam a presença de algas como *Tasmanites* e *Cymatiosphaera*.

Figura 24 - Diagrama da razão terpano tricíclico C20/ terpano tricíclico C21 (TR20/TR21) dos extratos de amostras de rocha estudadas da Formação Pimenteiras

5.3.1.4 Razão Hopanos/Esteranos

A razão reflete a quantidade de matéria orgânica procariota (bactérias) *versus* eucariota (principalmente algas e plantas superiores) nas rochas geradoras (PETERS et al., 2005). Os cromatogramas de massas representativos dos esteranos e hopanos (m/z: 217 e 191) são mostrados na Figura 23, enquanto que os valores da razão hopanos e esteranos, encontram-se na Tabela 2. Foi observado que os valores da razão oscilam entre 4,47 a 6 para as amostras do grupo 1 e de 1,42 a 1,71 do grupo 2 (amostras 6.1-6.7). Utilizando-se a correlação entre a razão P/F e HOP/EST (Figura 25), foi possível identificar para o grupo 2 (amostras do terço superior) valores de HOP/EST <4, indicando paleoambiente marinho com contribuição de plâncton e/ou algas (REGATO, 2008). Por outro lado, quando os valores HOP/EST >7, indicam matéria orgânica terrestre e/ou microbialmente retrabalhada (PEDRO, 2007). Portanto para o grupo 1 com valores de HOP/EST entre 4 e 7, indicam deposição paleoambiental terrestre transicional

Figura 25 - Correlação dos parâmetros hopanos/esteranos (HOP/EST) e pristano/fitano (P/F) dos extratos de amostras de rocha estudadas da Formação Pimenteiras

Fonte: A autora (2015)

5.3.1.5 Razão TPP

Esta razão é usada para reconhecer o *input* de algas de água doce/salobra em rochas lacustres, deltáicas, fácies de rochas transicionais marinhas/não-marinhas, incluso em rochas geradoras marinhas transicionais (HOLBA, 2003). Além disso, podendo informar a ocorrência de transgressões marinhas através da relação inversa do COT e da razão TPP.

Nas Figuras 23(C) e 23(F) são mostrados os cromatogramas de massas representativos das amostras 6.4 e 6.11. Na Tabela 2 foram verificados valores mais elevados de TPP no

intervalo de 0,49 a 0,67 para o grupo 1 (amostras 6.1-6.7), quando comparados com os valores entre 0,19 a 0,24 do grupo 2 (amostras 6.8-6.11). Desse modo, para o grupo 1 as amostras com TPP >0,4 indicaram *input* de algas de água doce/salobra, enquanto o grupo 2 com TPP <0,4 indicaram paleoambiente salino.

Foi verificada uma inundação marinha através da relação inversa de COT e TPP (Figura 26), a qual ocorre no intervalo de amostras desde 6.8 a 6.11 (grupo 2), com valores altos de COT entre 2,67 a 3,12 e valores baixos da razão TPP desde 0,19 a 0,24.

Figura 26 - Diagrama da variação dos TPP's e %COT, mostrando uma inundação marinha na Formação Pimenteiras

Fonte: A autora (2015)

A Figura 27 apresenta a razão TR20/TR21 e TPP/TPP+DIA, com o intuito de avaliar a deposição em paleoambientes de água doce/salobra e salina. Foi possível observar que, as amostras do grupo 1 apresentaram valores da razão TPP >0,4 e de TR20/TR21 <1, indicando paleoambiente deposicional de água salgada/salobra. O grupo 2 mostrou valores da razão TPP <0,4 e de TR20/TR21 >1, sugerindo paleoambiente deposicional salino marinho, para o qual foi sugerido anteriormente à presença de algas *Tasmanites*. Essas mesmas algas foram verificadas por Trindade et al. (2015), através do estudo de palinofácies realizado na formação Pimenteiras.

Figura 27 - Diagrama da razão terpano tricíclico C20/ C21 e TPP/TPP+DIA dos extratos de amostras de rocha estudadas da Formação Pimenteiras

Fonte: A autora (2015)

5.3.2 Condições do paleoambiente deposicional

5.3.2.1 Pristano/Fitano

As amostras apresentaram valores da razão P/F de 0,98 a 1,72 (Tabela 2). Para a amostra 6.3 o fitano é maior em comparação ao pristano (P/F <1), devido provavelmente às condições redutoras no momento da deposição das rochas. Por outro lado, à maioria das amostras apresentou uma relação pristano/fitano maior que 1 (P/F >1), sugerindo paleoambiente deposicional sub-óxico a óxico.

5.3.2.2 Índice homohopano $C_{35}(C_{35}HHI)$

A razão $C_{35}/\sum C_{31}$ - C_{35} homohopanos (22s e 22R) chamada de índice de homohopanos, é usada como indicadora das condições redox em sedimentos marinhos (PETERS E MOLDOWAN, 1991). O C_{35} HHI mostrou valores baixos, entre 0,001 a 0,019 (Tabela 2), predominando os picos C_{31} e C_{32} , sugerindo paloambiente deposicional sub-óxico a óxico (NAZIR, 2013).

5.3.2.3 Razão Gamacerano/C₃₀ Hopano

O gamacerano é indicador de salinidade, ou reflete a eficiência na estratificação da coluna d'água. Assim, quanto mais salino o ambiente, maior é a razão gamacerano/ C_{30} hopano. Na

figura 28 são comparados os valores da razão Pristano/Fitano (P/F) e gamacerano/ C₃₀ hopano (GAM/H30).

Figura 28 - Variações do Pristano/Fitano (redox) e o índice de Gamacerano (salinidade) dos extratos de amostras de rocha estudadas da Formação Pimenteiras

Fonte: A autora (2015)

Foi observado na Figura 28 que o grupo 2 tem maior salinidade devido a inundação marinha. Além disso, nos dois grupos quando aumenta-se a salinidade, a razão P/F apresentou altos valores, indicando paleoambiente entre sub-óxico e óxico. Não obstante, se esperaria que o grupo 2 mostrasse menor razão P/F devido a inundação marinha. Pasley et al. (1991) reportou que folhelhos transgressivos ricos em COT, apresentam matéria orgânica terrestre altamente degradada. Esses autores sugerem que a matéria orgânica terrestre depositada durante a transgressão é retrabalhada, ou demora mais tempo na interface sedimento-água exposta a maior biodegração durante o transporte.

5.3.3 Isótopos de Carbono

A fim de se ter uma visão mais completa sobre o paleoambiente deposicional do ponto 6, foram avaliados os parâmetros de biomarcadores correlacionados com a composição de isótopos de carbono da matéria orgânica (Figura 29). A razão isotópica de carbono (δ^{13} C) do extrato de rochas da mesma idade pode fornecer informação sobre a origem da matéria orgânica e paleoambiente deposicional (OLIVEIRA et al., 2006; FREIRE et al., 2013).

Figura 29 - Variação de δ^{13} C (% o PDB) associadas às razões de biomarcadores: (A) TR20/TR21; (B) Hopanos/esteranos; (C) Gamacerano/H30 e (D) TPP/TPP+DIA

Fonte: A autora (2015)

Em geral, na figura 29 observa-se nos gráficos apresentados, que os valores de δ^{13} C mais negativos correspondem ao grupo 1, sugerindo características de paleoambientes transicionais para as amostras que compõem esse grupo. Enquanto que os valores δ^{13} C menos negativos foram detectados para as amostras do grupo 2, indicando origem marinha. Segundo Freire (2013), a matéria orgânica originada em ambiente marinho ou salino pode apresentar valores de δ^{13} C menos negativos do que a proveniente de ambientes continentais da mesma idade. Além disso, as algas marinhas ou ambientes salinos podem utilizar o bicarbonato (HCO₃⁻) como fonte de carbono para a fotossíntese, que é mais enriquecido em ¹³C que o dióxido de carbono da atmosfera ou dissolvido em água. Portanto sedimentos marinhos apresentariam valores mais positivos (LAMB, 2006).

5.3.4 Variações relativas do nível do mar

Com o intuito de identificar as variações relativas do nível do mar, os gráficos dos parâmetros de biomarcadores saturados e COT foram integrados na Figura 30.

Figura 30 - Perfil do COT e os parâmetros de biomarcadores, mostrando as variações relativas do nível do mar para o afloramento Ponto 6 da Formação Pimenteiras

Fonte: A autora (2015)

Observa-se que no último gráfico que para as amostras coletadas no terço inferior a médio, a subida relativa do nível do mar vai aumentando suavemente, indicada pelos valores de %C27, TR20/TR21, 1/(TPP/(TPP+Dia), e pela diminuição de TR19/(TR19+TR23), indicador de *input* de plantas vasculares. Logo, as amostras do terço superior evidenciaram uma inundação máxima do mar, sugerida pelo elevado COT, maior *input* marinho refletido no aumento dos valores de %C27 esterano, TR20/TR21, 1/(HOP/EST), GAM/H30, TPP/ (TPP+DIA), e uma diminuição do *input* terrestre, indicado pela diminuição dos valores de %C29 esterano e TR19/(TR19+TR23).

Foi verificada a correlação das variações relativas do nível do mar com a descrição litológica realizada para amostras coletadas. Na Figura 30 observa-se que as amostras constituintes do terço inferior do afloramento são folhelhos cinza-claro, nos quais o nível do mar está iniciando a subida. Entretanto, o terço médio foi composto por folhelhos cinza-claro com intercalações cinza-escuro, o que revela um aumento do nível do mar relacionado à deposição de folhelhos mais escuros, portanto com maior conteúdo orgânico. Finalmente, o terço superior constituído por folhelhos cinza-escuro com intercalações cinza-claro, indicou uma subida máxima do nível do mar através da deposição de maior quantidade de folhelhos escuros que revelam elevado conteúdo de matéria orgânica. Devido às características apresentadas por essas amostras, poderiam ser correlacionados aos "folhelhos radiativos C", reportados por Rodrigues (1995). Esses folhelhos representam depósitos relacionados à superfície marinha de inundação máxima.

Entretanto, a curva de variação do nível do mar proposta nesta dissertação, coincide com estudos geológicos do nível eustático durante o Neodevoniano realizado por Johnson et al. (1985).

5.4 CONCLUSÕES

Amostras de folhelhos do Devoniano coletados em um afloramento na borda oeste da Formação Pimenteiras da Bacia do Paranaíba, apresentaram um excelente exemplo de transgressão marinha. Fundamentados em resultados de *fingerprint* e de biomarcadores saturados foram evidenciadas diferenças significativas da matéria orgânica em dois grupos de amostras. O grupo1 constituído pelas amostras coletadas desde a base até 7 metros de altura no afloramento, que contém matéria orgânica mista, predominantemente terrestre com aportes de organismo de água doce/salobra, depositadas sob as condições sub-óxica a óxicas. Quanto que o grupo 2, constituído pelas amostras coletadas a partir de 8 até 11 metros de altura no topo do afloramento, essas representaram a transgressão marinha. Os folhelhos foram derivados de matéria orgânica mista com aporte terrestre e contribuição marinha (algas). Esses folhelhos ricos em matéria orgânica estão imaturos, o qual foi indicado pelas razões moderadamente altas de P/n-C17 e F/n-C18 e pela elevação da linha base nos cromatogramas para as amostras do intervalo de 6.7 a 6.11. Assim, os folhelhos depositados em sequências transgressivas apresentaram melhores características da matéria orgânica para gerar óleo, devido ao aumento na taxa de deposição da matéria orgânica, refletida no conteúdo de carbono orgânico total e ao aporte de organismos marinhos.

É importante que seja destacado que os resultados deste trabalho demostraram a utilidade das análises cromatográficas através dos parâmetros geoquímicos de distribuição de n-alcanos, isoprenóides e as melhores razões biomarcadores saturados como terpanos tricíclicos C20/C21, 1/(hopanos/esteranos), gamacerano/ hopano C30 e 1/(TPP/TPP+DIA), na avaliação das variações relativas do nível do mar. Além disso, os estudos realizados contribuem para melhor compreensão dos paleoambientes de deposição de rochas geradoras e beneficiar a predição de intervalos ótimos para a geração de hidrocarbonetos.

6 CONCLUSÕES

As análises geoquímicas realizadas nas rochas para os dois afloramentos da Formação Pimenteiras determinaram que, a maioria das amostras são imaturas, exceto para as coletadas na base do ponto 6, as quais encontram-se na fase inicial de maturação. Com relação à quantidade e qualidade da matéria orgânica, as amostras 3.5, 3.7, 3.10 do ponto 3 apresentam bom potencial para gerar óleo ou gás e as coletadas no intervalo de 3.13 a 3.15 poderiam produzir gás. Além disso, as amostras indicaram matéria orgânica predominantemente do tipo III e do tipo II/III para as amostras 3.5, 3.7 e 3.10. Enquanto que no ponto 6 as amostras que tem melhores características de gerar hidrocarbonetos são as duas primeiras do terço superior (6.8 e 6.9) apresentando potencial para gerar gás, e as últimas amostras do topo (6.10 e 6.11) para gerar óleo ou gás. Também predominou o querogênio tipo III, com indícios de mistura entre matéria orgânica terrestre e marinha (tipo II/III), nessas amostras.

As análises realizadas nos extratos de rocha para o ponto 6 indicaram que esse afloramento é um excelente exemplo da inundação marinha na Bacia do Parnaíba ocorrida no período Devoniano. Assim, foram evidenciadas diferenças significativas da matéria orgânica em dois grupos de amostras. O grupo1 composto pelas amostras do terço inferior a médio no afloramento, contém matéria orgânica mista, predominantemente terrestre, com aportes de organismo de água doce/salobra, depositados sob condições sub-óxica a óxicas. Enquanto que o grupo 2 constituído pelas amostras do terço superior do afloramento, representaram a subida marinha máxima. Os folhelhos foram derivados de matéria orgânica mista com aporte terrestre e contribuição marinha (algas). Consequentemente, os folhelhos depositados em sequências com inundação marinha apresentam melhores características orgânicas para gerar óleo ou gás, sendo corroborado pelas análises realizadas na rocha e pelo aporte de organismos marinhos.

É importante ressaltar que os resultados de biomarcadores foram conjugados com a descrição litológica realizada para o afloramento ponto 6, realizados em estudos anteriores geoquímicos e de palinofácies, na Formação Pimenteiras da Bacia do Parnaíba. Mesmo assim, a curva de variação do nível do mar proposta nesta dissertação, coincide com estudos geológicos realizados do nível eustático durante o Neodevoniano.

Deve ser destacado que os resultados deste trabalho demostraram a utilidade das razões biomarcadores saturados como terpanos tricíclicos C20/C21, 1/(hopanos/esteranos), gamacerano/hopano C30 e 1/(TPP/TPP+DIA), junto com valores de Carbono orgânico total e

isótopos estáveis de carbono, na reconstrução do paleoambiente deposicional em períodos com ciclos de variações relativas do nível do mar. Este estudo auxilia na compreensão de deposição de rochas geradoras e contribui para a predição de intervalos ótimos para a geração de hidrocarbonetos.

REFERÊNCIAS

ANP - AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. Décima terceira rodada de licitações. [S. I], 2015. Disponível em: http://www.brasil-rounds.gov.br. Acesso em: 15 jul. 2015.

ALMEIDA F. F. M.; CARNEIRO C. D. R. Inundações marinhas fanerozóicas no Brasil e recursos minerais associados. In: MANTESSO NETO, V.; BARTORELLI, A.; CARNEIRO, C. D. R. BRITO-NEVES B.B.de (orgs.). Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Ed. Beca, 2004. cap. 3, p. 43-60.

AQUINO NETO, F. R.; TRIGÜIS, J.; AZEVEDO, D. A., RODRIQUES, R.; SIMONEIT, B. R. T. Organic geochemistry of geographically unrelated Tasmanites. **Organic geochemistry**, v. 18, n. 6, p. 791-803, 1992.

ARAÚJO D. B. D. **Bacia do Parnaíba**: sumário geológico e setores em oferta da décima terceira rodada de licitações. Agência nacional do petróleo, gás natural e biocombustíveis (ANP). Disponível em: < http://www.brasil-rounds.gov.br/round_13/portugues_R13/setores. asp >. Acesso em: 15 jul. 2015.

ARTHUR, M. A.; SAGEMAN, B. B. Sea-level control on source-rock development: perspectives from the Holocene black sea, the mid-Cretaceous Western interior Basin of North America, and the late Devonian Appalachian Basin. **SEPM Special Publication**, n. 82, p. 35–59, 2005.

BASKIN, D. K.; PETERS, K. E. Early generation characteristics of a sulfur-rich Monterey kerogen. **AAPG Bulletin**, v. 76, n. 1, p. 1-13, 1992.

BERNER, R. A. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, v. 48, p. 602-615, 1984.

BOURBONNIERE, R. A.; MEYERS, P. A. Sedimentary geolipid records of historical changes in the watersheds and productivities of lakes Ontario and Erie. Limnology and Oceanography, v. 41, n. 2, p. 352-359, 1996.

CALVANTE, R. **Técnicas de Aquisição de Dados Geológicos com a Tecnologia Lidar.** 2006. 100 f. Dissertação (Mestrado em Ciências) - Pós-Graduação em Geodinâmica e Geofísica. Centro de Ciências Exatas da Terra, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, 2006.

DAHL, B.; BOJESEN-KOEFOED, J.; HOLM, A.; JUSTWAN, H.; RASMUSSEN, E.; THOMSEN, E. A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment. **Organic Geochemistry**, v. 35, n. 11, p. 1461-1477, 2004.

DAMSTÉ, J. S. S.; DE LAS HERAS, F. X. C.; VAN BERGEN, P. F.; DE LEEUW, J. W. Characterization of tertiary catalan lacustrine oil shales: discovery of extremely organic sulphur-rich type I kerogens. **Geochimica et Cosmochimica Acta**, v. 57, n. 2, p. 389-415, 1993.

DELLA FÁVERA J. C. **Tempestitos da Bacia do Parnaíba:** um ensaio holístico.1990. 243 p. Tese (Doutorado em Ciências) - Pós-Graduação em Geologia. Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 1990.

DUARTE, L. V.; SILVA, R. L.; MENDONÇA FILHO, J. G. Variação do COT e pirólise Rock-Eval do Jurássico inferior da região de S. Pedro de Moel (Portugal). Potencial de geração de hidrocarbonetos. **Comunicações Geológicas**, 100, Especial I, p. 107-111, 2013.

ERIK, N. Y.; ÖZÇELIK, O.; ALTUNSOY, M. Interpreting Rock–Eval pyrolysis data using graphs of S2 vs. TOC: Middle Triassic–Lower Jurassic units, eastern part of SE Turkey. **Journal of Petroleum Science and Engineering**, v. 53, n. 1, p. 34-46, 2006.

GUIA GEOGRÁFICO: mapas do Brasil. **Mapa rodoviário do Tocantins**. Disponível em: < http://www.brasil-turismo.com/tocantins/mapa-rodoviario.htm >. Acesso em: 24 nov. 2015.

FAKHRI, M.; TABATABEI, H.; AMIRI, A. Comparing the potential of hydrocarbon generation of Kazhdomi and Pabdeh formations in Bangestan anticline (Zagros Basin) according to Rock-Eval pyrolysis Data. Journal of Earth Science & Climatic Change, v. 4, n. 5, p. 2-7, 2013.

FREIRE, A. F. M.; MONTEIRO, M. C. A Novel approach for inferring the proportion of terrestrial organic matter input to marine sediments on the basis of TOC: TN and δ 13 C org signatures. **Scientific Research**, v. 3, n. 2, p. 19, 2013.

HOLBA, A. G.; DZOU, L. I.; WOOD, G. D.; ELLIS, L.; ADAM, P.; SCHAEFFER, P.; HUGHES, W. B. Application of tetracyclic polyprenoids as indicators of input from freshbrackish water environments. **Organic Geochemistry**, v. 34, n. 3, p. 441-469, 2003.

HOLBA, A. G.; TEGELAAR, E., ELLIS, L.; SINGLETARY, M. S.; ALBRECHT, P. Tetracyclic polyprenoids: indicators of freshwater (lacustrine) algal input. **Geology**, v. 28, n. 3, p. 251-254, 2000.

HUANG, W. Y.; MEINSCHEIN, W. G. Sterols as ecological indicators. **Geochimica et Cosmochimica Acta**, v. 43, n. 5, p. 739-745, 1979.

HUNT, J. M.; HENNET, R. J. C. Modeling petroleum generation in sedimentary basins. In: WHELAN, J. K.; FARRINGTON, J. W. **Organic matter:** productivity, accumulation and preservation in recent and ancient sediments. 1 ed. New York: Columbia University Press, 2013. cap 3, p. 20-52.

JIN, M.; XIA, Y.; LEI, T.; MA, S.; QIU, J.; ZHANG, R. Note on sulfur removal with metallic copper. **Geochemistry International**, v. 45, n. 6, p. 620-623, 2007. JOHNSON, J. G.; KLAPPER, G.; SANDBERG, C. A. Devonian eustatic fluctuations in Euramerica. **Geological Society of America Bulletin**, v. 96, n. 5, p. 567-587, 1985.

KUO, L. C. Lower Cretaceous lacustrine source rocks in northern Gabon: effect of organic facies and thermal maturity on crude oil quality. **Organic geochemistry**, v. 22, n. 2, p. 257-273, 1994.

LAMB, A. L.; WILSON, G. P.; LENG, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ 13 C and C/N ratios in organic material. **Earth-Science Reviews**, v. 75, n. 1, p. 29-57, 2006.

MAGNIER, C.; MORETTI, I.; LOPEZ, J. O.; GAUMET, F.; LOPEZ, J. G.; LETOUZEY, J. Geochemical characterization of source rocks, crude oils and gases of Northwest Cuba. **Marine and Petroleum Geology**, v. 21, n. 2, p. 195-214, 2004.

MEYERS, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. **Chemical Geology**, v. 114, n. 3, p. 289-302, 1994.

MILANI, E. J.; RANGEL, H.D.; BUENO, G.V.; STICA, J.M.; WINTER, W.R.; CAIXETA, J.M.; NETO PESSOA, O.C. Cartas Estratigráficas. **Boletim Geológico de Geociências**, Rio de Janeiro, v. 15, n. 2: p. 183-205, 2007.

MILANI, E. J.; ZALAN P. V. An outline of the geology and petroleum systems of the Paleozoic interior basins of South America. **Episodes**, v. 22. p. 199-205, 1999.

NAZIR, A. Biomarkers and Pyrolysis Parameters to Investigate Hydrocarbon Generating Potential of Cretaceous Sequences. 2013. 256 p. Tese (Doutorado em Ciências)
Pós-Graduação em Química. University of Engineering and Technology, Lahore, Pakistan, 2013.

OLIVEIRA, L.; C. RODRIGUES, R.; DUARTE, L. V.; LEMOS, V. B. Avaliação do potencial gerador de petróleo e interpretação paleoambiental com base em biomarcadores e isótopos estáveis do carbono da seção Pliensbaquiano-Toarciano inferior (Jurássico inferior) da região de Peniche (Bacia Lusitânica, Portugal). **Boletim de Geociências da Petrobras**, Rio de Janeiro, v. 14, n. 2, p. 207-234, 2006.

PARRA, C. J. O. **Caracterização geoquímica através de biomarcadores de amostras de afloramentos da Formação Pimenteiras (Devoniano) da borda oeste da Bacia do Parnaíba**. 2012. 178 p. Dissertação (Mestrado em Ciências) - Pós-Graduação em Engenharia de Reservatório e de Exploração. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, 2012.

PASLEY, M. A.; GREGORY, W. A.; HART, G. F. Organic matter variations in transgressive and regressive shales. **Organic geochemistry**, v. 17, n. 4, p. 483-509, 1991.
PEDRO, Heloisa Helena Bringuenti. **Avaliação Geoquímica Correlacionada aos Eventos Anóxicos da Formação Tetuan da Bacia do Vale Superior de Magdalena, Colômbia**. 2007. 111p. Dissertação (Mestrado em Ciências) - Pós-Graduação em Engenharia Civil. Instituto Alberto Luiz Coimbra (COPPE), Universidade Federal do Rio de Janeiro. 2007.

PETERS, K. E., CASSA, M. R. Applied source rock geochemistry. Memoirs-American Association of Petroleum Geologists, p. 93, 1994.

PETERS, K. E.; MOLDOWAN, J. M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. **Organic geochemistry**, v. 17, n. 1, p. 47-61, 1991.

PETERS, K. E.; WALTERS, C. C.; MOLDOWAN, J. M. The biomarker guide, biomarkers and isotopes in petroleum exploration and earth history. 2 ed. v. 2. Cambridge University Press, 2005.

PETERS, K. E. Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations. **Organic Geochemistry**, v. 31, n. 6, p. 497-507, 2000.

PLINT, A. G.; NUMMEDAL, D. The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. In: HUNT, D.; GAWTHORPE, R. L. (ed.) Sedimentary responses to forced regression. **Geological Society**, Londres, v. 172, n. 1, p. 1-17, 2000. Edição especial.

REGATO, S. B. **Caracterização Geoquímica de Óleos Selecionados da Bacia Sergipe-Alagoas.** 2008. 116 p. Dissertação (Mestrado em Ciências) - Pós-Graduação em Engenharia Civil. Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008.

REQUEJO, A. G.; WIELCHOWSKY, C. C.; KLOSTERMAN, M. J.; SASSEN, R. Geochemical characterization of lithofacies and organic facies in Cretaceous organic-rich rocks from Trinidad, East Venezuela basin. **Organic geochemistry**, v. 22, n. 3, p. 441-459, 1994.

ROBISON, V. D.; ENGEL, M. H. Characterization of the source horizons within the late Cretaceous transgressive sequence of Egypt. Source Rocks in a Sequence Stratigraphic Framework. **AAPG Studies in Geology**, v. 37, n. 1, p. 101-117, 1993.

RODRIGUES, R. A geoquímica orgânica da Bacia do Parnaíba. 1995. 226 p. Tese (Doutorado em Ciências) - Pós-Graduação em Geologia. Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, 1995.

RODRIGUES, R. Caracterização geoquímica do evento anóxico/disóxico do Frasniano nas Bacias do Amazonas e Parnaíba. **Ciência-Técnica- Petróleo**, n.20, p. 109-116, 2001. ROUTH, J.; MCDONALD, T. J.; GROSSMAN, E. L. Sedimentary organic matter sources and depositional environment in the Yegua formation (Brazos County, Texas). **Organic Geochemistry**, v. 30, n. 11, p. 1437-1453, 1999. SANDERS, G.; JONES, K. C.; HAMILTON, J. T.; DORR, H. PCB and PAH fluxes to a dated UK peat core. **Environmental Pollution**, v. 89, n. 1, p. 17-25, 1995.

SANTOS, M. E. C. M.; DE CARVALHO, M. S. S. **Paleontologia das Bacias do Parnaíba**, **Grajaú e São Luís**.1 ed. Rio de Janeiro: CPRM Serviço Geológico do Brasil, 2009. 226 p.

SANTOS, V. H. Sequências Siluro-Devoniana e Eocarbonifera da Bacia do Parnaíba, Brasil, como análogos para a explotação de hidrocarbonetos. 2005. 209 p. Dissertação (Mestrado em Ciências) - Pós-Graduação em Engenharia Civil. Centro de Tecnologia e Geociências, Universidade Federal da Pernambuco, Pernambuco, 2005.

SHANMUGAM, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. **AAPG Bulletin**, v. 69, n. 8, p. 1241-1254, 1985.

SILVA, C. G. A. D. **Caracterização geoquímica orgânica das rochas geradoras de petróleo das formações Irati e Ponta Grossa da Bacia do Paraná**. 2007. 212 p. Dissertação (Mestrado em Ciências) - Pós-Graduação em Engenharia Química. Instituto de Química, Universidade Federal do Rio Grande do Sul, 2007.

SOUZA, I.V.A.F. Faciologia orgânica de seções devonianas da Bacia do Parnaíba (Formação Pimenteira): implicações para geração de petróleo. 2007. 160 p. Tese (Doutorado em Ciências) - Pós-Graduação em Geociências, Universidade Federal do Rio de Janeiro, 2007.

SOUZA, M.S.P.; MAULLER, P.M.; CARDOSO, T.R.; RODRIGUES, R.; PEREIRA, E. 2013. Caracterização geoquímica e bioestratigráfica das superfícies de inundação marinha da seção Meso-Neodevoniana, na região de Dom Aquino (MT), Noroeste da Bacia do Paraná, Brasil. **Anuário do Instituto Geociências –UFRJ**, v. 36, n. 1, p. 15-25, 2013.

TISSOT B.; WELTE, D. H. **Petroleum formation and occurrence:** a new approach to oil and gas exploration. 2 ed. New York: Heidelberg: Springer Verlang, 1984. p. 699.

TRINDADE, V. S. F.; DE ARAUJO CARVALHO, M.; BORGHI, L. Palynofacies patterns of the Devonian of the Parnaíba Basin, Brazil: Paleoenvironmental implications. Journal of South American Earth Sciences, v. 62, p. 164-175, 2015.

VAZ, P. T.; REZENDE, N. G. A. M.; WANDERLEY FILHO, J. R.; TRAVASSOS, W. A. S. Bacia do Parnaíba. **Boletim de Geociências da PETROBRAS**, v. 15, n. 2, p. 253-263, 2007.

VOLK, H.; GEORGE, S. C.; MIDDLETON, H.; SCHOFIELD, S. Geochemical comparison of fluid inclusion and present-day oil accumulations in the Papuan Foreland–evidence for previously unrecognised petroleum source rocks. **Organic Geochemistry**, v. 36, n. 1, p. 29-51, 2005.

WAPLES, D.; W. MACHIHARA, T. Application of sterane and triterpane biomarkers in petroleum exploration. **Bulletin of Canadian Petroleum Geology**, v. 38, n. 3, p. 357-380, 1990.

WERNE, J. P.; LYONS, T. W.; HOLLANDER, D. J.; FORMOLO, M. J.; DAMSTÉ, J. S. S. Reduced sulfur in euxinic sediments of the Cariaco Basin: sulfur isotope constraints on organic sulfur formation. **Chemical Geology**, v. 195, n. 1, p. 159–179, 2003.

WIGNALL, P. B. Black shales. Ed. 1.Oxford: Clarendon Press., Junho 1994. p. 127 (v. 30).

YOUNG, C. G. K. Estratigrafia de alta-resolução na formação Pimenteira (Devoniano, Bacia do Parnaíba). **Anuário do Instituto de Geociências**, v. 29, n. 2, p. 269-269, 2006.

APÊNDICES

APÊNDICE A - Aspecto dos fios de cobre durante o processo de retirada do enxofre

Na parte superior, se observa na primeira imagem os fios de cobre (sem tratamento) depois de retirado o plástico que os cobre. Em seguida, na segunda imagem são apresentados os fios depois da ativação, os quais apresentam um aspecto brilhante. Logo em seguida são mostrados os fios de cobre (com enxofre), depois de remover o enxofre nos extratos das rochas geradoras.

Na parte inferior é apresentada a imagem de uma amostra com alto conteúdo de enxofre, mostrando um exemplo da aparência de um extrato sem retirar o enxofre através do tratamento com os fios de cobre ativados. Destaca-se a precipitação do enxofre elementar tanto no balão como no vial. Na ultima imagem se expõe a mesma amostra tratada com os fios de cobre ativos, e nessa imagem é caracterizada a ausência dos grãos de enxofre mostrados na imagem anterior.

	ça0 I I	mente	nas																	
Amostra	n-C15	n-C16	n-C17	n-C18	n-C19	n-C20	n-C ₂₁	n-C ₂₂	n-C ₂₃	n-C ₂₄	n-C ₂₅	n-C26	n-C ₂₇	n-C28	n-C29	n-C30	n-C31	n-C32	n-C33	n-C34
3.1	0,53	0,29	0,36	0,38	0,40	0,36	0,35	0,36	0,33	0,28	0,42	0,29	0,58	0,47	0,29	0,16	0,20	0,10	0,15	0,06
3.2	0,04	0,06	0,08	0,08	0,12	0,10	0,14	0,19	0,25	0,25	0,39	0,33	0,34	0,32	0,28	0,20	0,15	0,15	0,19	0,07
3.3	0,10	0,08	0,09	0,09	0,11	0,09	0,10	0,11	0,14	0,15	0,17	0,26	0,30	0,28	0,22	0,19	0,15	0,14	0,23	0,06
3.4	0,86	0,79	0,84	0,76	1,06	0,83	0,86	0,80	0,92	0,73	1,15	0,71	1,05	1,14	0,75	0,35	0,39	0,26	0,25	0,12
3.5	0,72	0,61	0,96	0,97	1,08	0,72	0,70	0,77	0,78	0,86	1,54	1,21	1,47	1,53	0,90	0,67	0,59	0,29	0,35	0,14
3.6	0,17	0,19	0,32	0,38	0,38	0,29	0,57	0,51	0,35	0,37	0,40	0,38	0,55	0,50	0,32	0,18	0,16	0,12	0,20	0,06
3.7	2,53	2,23	2,31	1,73	2,36	1,74	1,78	1,83	1,89	1,35	2,26	1,25	2,09	2,91	1,91	0,71	0,93	0,48	0,77	0,38
3.8	1,15	0,90	1,38	1,21	1,32	0,91	1,00	0,92	1,04	0,73	1,06	0,72	1,18	0,91	0,85	0,35	0,40	0,21	0,43	0,10
3.9	0,95	0,75	1,01	0,98	1,14	0,75	0,78	0,74	0,83	0,55	0,85	0,51	0,85	0,83	0,65	0,28	0,33	0,17	0,41	0,07
3.10	0,42	0,40	0,64	0,69	0,80	0,68	0,74	0,84	0,80	0,56	1,00	0,46	0,56	1,02	0,51	0,23	0,32	0,19	0,59	0,20
3.11	0,42	0,40	0,48	0,37	0,49	0,37	0,40	0,38	0,39	0,32	0,37	0,30	0,48	0,49	0,31	0,14	0,22	0,12	0,21	0,09
3.12	0,44	0,44	0,47	0,39	0,57	0,46	0,40	0,40	0,40	0,33	0,35	0,31	0,36	0,56	0,39	0,16	0,29	0,13	0,17	0,09
3.13	2,88	2,38	2,97	2,26	2,72	2,15	2,12	2,12	2,01	1,54	2,47	1,32	2,39	2,65	2,03	0,75	1,02	0,54	0,93	0,43
3.14	2,11	2,06	2,46	1,85	2,69	1,91	1,91	1,80	1,67	1,46	1,90	1,16	1,74	1,93	1,58	0,59	0,80	0,49	0,82	0,40
3.15	1,74	1,52	2,10	1,44	2,12	1,68	1,53	1,82	1,52	1,23	1,92	1,13	1,49	1,37	1,20	0,51	0,73	0,51	0,86	0,49
3.16	1,23	1,13	1,49	1,16	1,42	1,04	1,37	1,09	1,18	0,78	1,06	0,70	1,16	1,34	1,00	0,35	0,54	0,27	0,53	0,25
6.1	0,58	0,47	0,62	0,48	0,58	0,46	0,58	0,44	0,61	0,49	1,09	0,54	0,97	0,57	0,53	0,21	0,24	0,12	0,19	0,07
6.2	0,21	0,18	0,28	0,22	0,29	0,24	0,38	0,30	0,45	0,32	0,67	0,35	0,52	0,34	0,31	0,16	0,15	0,09	0,12	0,05
6.3	0,07	0,08	0,11	0,13	0,19	0,21	0,37	0,42	0,56	0,45	1,04	0,43	0,45	0,36	0,30	0,19	0,15	0,10	0,14	0,05
6.4	0,12	0,11	0,15	0,15	0,29	0,22	0,36	0,33	0,44	0,34	0,57	0,28	0,33	0,28	0,20	0,12	0,10	0,08	0,12	0,04
6.5	0,26	0,24	0,29	0,28	0,40	0,34	0,58	0,52	0,73	0,66	1,40	0,73	0,79	0,64	0,48	0,34	0,26	0,19	0,25	0,11
6.6	0,70	0,61	0,71	0,61	0,85	0,78	1,18	1,21	1,96	1,66	2,81	1,63	1,85	1,39	1,12	0,76	0,59	0,41	0,46	0,19
6.7	0,30	0,29	0,35	0,28	0,41	0,35	0,66	0,49	0,59	0,56	0,86	0,60	0,66	0,56	0,39	0,26	0,22	0,18	0,19	0,08
6.8	0,37	0,31	0,60	0,54	0,66	0,55	0,66	0,91	0,84	0,83	1,03	0,77	1,01	0,92	0,61	0,39	0,36	0,30	0,09	0,09
6.9	1,27	1,04	1,42	0,99	1,34	1,13	0,98	1,28	1,12	1,15	1,43	0,91	1,15	1,52	0,76	0,38	0,48	0,43	0,50	0,19
6.10	1,34	1,07	1,50	1,05	1,68	1,25	1,39	1,70	1,90	1,50	1,95	1,43	2,03	1,75	1,10	0,66	0,55	0,32	0,54	0,17
6.11	1.05	1.08	1.35	1.07	1.46	1.11	1.23	1.25	1.39	0.99	1.22	1.05	1.53	1.46	0.84	0.46	0.48	0.27	0.49	0.15

 Tabela B 1 - Concentração (ppm) das n-parafinas identificadas na análise por cromatografia gasosa com detector de ionização em chama dos extratos das amostras dos afloramento ponto 3 e 6 da Formação Pimenteiras

APÊNDICE B - Resultados das análises por cromatografia em fase gasosa com detector de ionização de chama

Figura B1 - Cromatogramas das amostras A- Amostra 3.1. B- Amostra 3.2. C- Amostra 3.3. D- Amostra 3.4

Figura B 2- Cromatogramas das amostras A- Amostra 3.5. B- Amostra 3.6. C- Amostra 3.7. D- Amostra 3.8

Figura B 3 - Cromatogramas das amostras A- Amostra 3.9. B- Amostra 3.10. C- Amostra 3.11. D- Amostra 3.12

Figura B 4-Cromatogramas das amostras A- Amostra 3.13. B- Amostra 3.14. C- Amostra 3.15. D- Amostra 3.16

Figura B 5 - Cromatogramas das amostras A- Amostra 6.1. B- Amostra 6.2. C- Amostra 6.3. D- Amostra 6.4.

Figura B 6 - Cromatogramas das amostras A- Amostra 6.5. B- Amostra 6.6. C- Amostra 6.7. D- Amostra 6.8.

Figura B7 - Cromatogramas das amostras A- Amostra 6.9. B- Amostra 6.10. C- Amostra 6.11.

APÊNDICE C - Resultados das análises por cromatografia em fase gasosa com espectrômetro de massas

Tabela C 1 - Áreas cromatográficas dos compostos biomarcadores identificados na análise de CG/EM de extratos das amostras dos Pontos 3 e 6 para o íon m/z 191

Amostra	TR19	TR20	TR21	TR22	TR23	TR24	TR25A	TR25B	TET24	TR26A	TR26B	TR28A	TR28B	TR29A	TR29B	Ts	Tm	TR30A	TR30B
3.1	296645	1636372	847585	195307	1261622	406884	82594	166451	262520	81807	186675	973951	48295	665750	1229257	702775	2257616	306348	2204507
3.2	47942	2538713	2998263	95065	4557526	400850	301137	466502	964336	518817	241321	255213	1332663	126823	280780	725576	4001584	3888963	4189383
3.3	403947	806022	741156	163433	919825	152454	96279	32490	319500	114664	43463	740191	96827	67539	553749	320323	2755914	2760164	3165367
3.4	423667	1153460	226761	39715	2594881	554452	477335	477335	356477	75842	337222	493643	1928277	38836	3149539	1000068	4944852	632137	3439935
3.5	290884	1393117	2684464	43019	2874469	470920	288854	409308	383412	133859	259010	98532	1296211	492627	1162243	321880	601696	3522765	4429634
3.6	114095	333344	297784	78177	436311	127518	44199	87178	136945	51724	61344	60676	382994	198250	341202	223347	1018489	28831	1299483
3.7	238439	1882067	665859	36268	726380	248493	169735	95135	211045	471750	379134	68061	2095041	201130	1441864	594081	2516001	177517	3214818
3.8	249032	1204344	662790	18423	798473	267050	52983	91232	386931	106675	121771	150294	1450316	495188	985378	349186	3237578	207576	4839798
3.9	400089	1949353	1139175	205428	1240983	390088	99480	237424	504259	173858	154390	150911	1845729	762323	1164695	1021597	4923078	276583	7017795
3.10	287012	1183629	867224	192515	1252212	401827	122623	274585	446611	75978	168197	162020	1453658	517801	1035387	544997	2718030	4346250	1795176
3.11	267779	1358037	1017528	213392	1260377	465614	112388	232403	404240	92857	190787	992250	961067	529914	1215197	635795	2714462	3341422	297391
3.12	216920	2199531	859180	169700	1064538	414512	351488	152705	294109	66866	289435	1683493	1608652	2888111	1970142	1253338	2929726	3232178	583389
3.13	202596	1223228	694767	147134	849587	284728	70487	115952	401986	99468	242924	72864	1373231	332162	1320539	664011	2864401	3891015	387535
3.14	249805	1242966	769017	165090	878747	323937	187715	108888	180819	716207	257110	138359	2954087	8261583	1743050	746800	3461584	2729854	708025
3.15	346569	2531288	1012455	162612	1252484	466677	97950	211609	484280	122709	188653	157209	1892113	598054	1352042	891797	3851630	5202113	287544
3.16	323645	1668297	842446	136733	940288	325905	166327	127166	424984	91235	233162	1480771	1476562	438490	1646488	853982	3537139	4099219	593434
6.1	426419	952851	967391	104426	535854	246166	101101	24272	369002	18384	117927	256792	2253446	225825	3028548	496045	5595110	6048699	721187
6.2	506427	975367	1072965	167926	981149	449788	243116	116149	332322	634554	220791	110155	1958313	137536	2467791	1861487	5517824	5990959	520959
6.3	376105	691873	857295	139764	1075599	491877	129257	206839	350787	95800	92315	959830	50629	278579	677029	314867	2668787	3098000	453591
6.4	550846	1279506	1446429	215233	1881889	882116	197697	336076	212065	582602	263505	139363	1833771	280272	1779997	812960	6130777	7371951	104929
6.5	460764	837894	851457	117527	1023809	405768	80574	155947	338825	94613	105955	215871	293296	456327	1144615	515808	4034535	74012	4711569
6.6	458039	772641	779272	105011	917388	359626	88266	137510	155722	281867	71586	85423	1222632	1256586	1502290	346015	4175926	70159	4759289
6.7	418589	643138	718633	84400	641610	338515	254649	188477	303490	468202	117886	175046	1565408	311477	2474699	474601	3743417	85427	4381396
6.8	331809	1033051	838755	190495	924167	446344	82871	185504	86608	342872	113015	144160	1428669	385522	986759	667668	3461606	4925661	258852
6.9	272372	1195466	670193	180459	694032	270908	195489	118069	141035	385427	90004	83819	1465267	257539	1655952	682763	3180775	4554396	660686
6.10	440329	1740821	1035066	158757	987160	485322	127345	231681	390701	78074	170349	273927	1441039	383547	1228655	625120	3467613	5471297	745115
6.11	468954	2757055	1374127	216943	1677509	748284	162173	379886	131908	424409	134454	348771	1997734	459355	1706464	958209	4851834	154155	7488741

Amostra	H28	H29	C29Ts	DH30	M29	H30	NOR30H	M30	H31S	H31R	GAM	H32S	H32R	H338	H33R	H34S	H34R	H35S	H35R
3.1	3469339	3247273	472947	138588	1623906	3394953	1388563	3121650	395077	2422469	508935	510809	211034	1107894	132606	245769	78405	79262	49859
3.2	136951	4057546	566970	113217	483981	3469988	123898	1905843	908788	2232553	243380	195670	459336	163730	129757	35301	42982	11088	15914
3.3	319255	3332501	51145	151074	523014	3918362	455515	3404825	747141	3213011	256050	159970	916256	167924	61616	51469	72332	16628	31185
3.4	192443	4491436	453796	187571	3387408	7570264	3373012	6322518	1041827	6437336	1097656	259077	1274137	354176	413797	204318	15065	8063	87004
3.5	170872	4366363	55748	313617	3060503	6675319	1813634	5439061	1136366	5130195	574473	255150	1200974	346496	351804	469367	69324	178107	73137
3.6	56416	1436058	49727	4876	1067697	2095383	462879	1706678	369158	1468456	258807	337981	83949	574736	100501	19381	51757	58616	28689
3.7	141825	3796955	313889	168843	2015460	4420278	2175310	4437126	528204	3495767	750862	621366	283045	1468384	171707	226394	61420	9086	37151
3.8	197297	4791407	193458	301912	1157558	6474713	1524769	6348494	875658	4985112	498803	223919	1029979	1818204	242623	436781	69428	112365	88157
3.9	2805773	6308178	545906	414870	1487998	9263418	2103663	8869099	1190370	7017250	618700	1422183	482183	2808044	404426	54297	117236	164650	55454
3.10	861182	4366337	365358	263580	1244328	5512227	1454574	5421921	863518	4545384	777766	957438	163714	1977689	27635	439618	79923	147747	68923
3.11	295413	4008070	544589	229902	1198466	4973259	1853421	4463121	583361	3504255	805584	787682	289191	1731645	163730	400024	61500	156218	55042
3.12	339084	4432253	550795	235838	1189941	4967266	2682567	4767662	566982	3452760	871158	743888	125032	1719113	238738	389605	43456	106015	25701
3.13	392890	5569948	919034	247921	1354414	5742608	2080700	6084281	723359	4847316	935266	583473	106046	2176064	17028	464543	33611	132563	29647
3.14	1037089	4066692	531786	499240	900618	4536459	2668498	4977344	652103	3366383	507394	696231	97108	1929476	156087	34174	64901	113951	23427
3.15	940665	5022172	343121	298404	1504078	6315200	2164696	6648702	764702	5133658	919265	901802	151422	2241130	238842	468148	41676	165205	25479
3.16	583912	6004095	877652	181312	1309531	6043027	3026830	6395005	879035	4749135	933956	920945	168509	2443546	1500697	489721	32837	141913	25153
6.1	764657	6175848	522069	78402	822648	7496266	3439216	7820935	1017379	7076386	874149	1235863	305062	1680862	352970	303436	33189	76893	16583
6.2	195557	6340522	484548	81694	909662	7592707	3159691	7734518	1040614	7349661	838700	1254127	238226	1803113	20309	40420	86267	91720	29446
6.3	319731	3126998	128722	87754	577834	3594442	4944	3555555	618418	3126030	247187	566978	267960	873888	158918	23645	31914	9531	8292
6.4	797843	7426606	396167	112631	1231040	8749423	2146271	8612779	1554960	8153867	678965	1491098	250667	2179054	382173	53138	114037	8858	10486
6.5	280905	4800735	229339	86438	774949	5276493	99249	5737621	772109	4738005	465380	936719	408579	1638283	214706	305207	73881	61136	85652
6.6	420896	4409299	193196	31851	806120	5580222	94068	6079224	801649	5550602	539579	964197	77137	1727945	231681	230263	67074	76087	54086
6.7	523424	4123952	375036	26209	719130	4989598	2523576	5766374	853638	4720942	408442	855347	175563	1684357	249536	34742	60496	83572	19438
6.8	346437	4096459	244290	184409	1351154	5536906	1408964	5969250	660947	4792084	767266	827910	394875	2426679	24143	33487	79919	124888	29142
6.9	439379	3517349	422529	112607	927810	4842845	2917035	6116682	628017	4547895	832531	887035	446047	2464610	69185	31911	84283	145334	29173
6.10	487326	4142183	178387	181914	990332	5641447	2014051	6072272	601920	4358251	803290	775020	354083	2176789	20480	428877	69161	104908	26285
6.11	475464	5422295	395975	174840	1217701	7682343	2923366	8442700	821923	6494318	1030754	1115001	601637	3076656	2050905	36531	97702	160900	24106

Figura C 4 - Cromatogramas de massas do íon 191. A- Amostra 3.13. B- Amostra 3.14. C- Amostra 3.15. D- Amostra 3.16.

Figura C 7- Cromatogramas de massas do íon 191. A- Amostra 6.9. B- Amostra 6.10. C- Amostra 6.11

Amostra	S21	S22	DIA27S	DIA27R	DIA27SS	DIA27RR	C27S	C27BBR	C27BBS	C27R	C28S	C28BBR	C28BBS	C28R	C29S	C29BBR	C29BBS	C29R
3.1	1677741	522062	94384	31895	196462	121817	577562	1071061	1022222	4474056	806688	239666	716612	2197418	715767	1599472	522211	6065524
3.2	275519	645494	174134	156826	48219	41446	31647	498474	252919	1119549	56168	22410	55234	267616	153992	209647	81678	632195
3.3	833591	276697	57042	24689	40388	49414	52378	381140	174013	1262402	81067	55505	226271	374425	226455	367499	96362	1136877
3.4	883039	1638632	787287	1125936	401036	381010	218981	1080609	120273	10279038	797439	573093	336523	3993771	1504459	2840652	798962	10475638
3.5	942873	2144816	1473232	1423763	594237	417482	213511	3051672	242147	11574852	988026	774841	1768386	5045991	1653666	4113507	1176619	12872526
3.6	900562	25024	69971	288311	172381	103404	189597	545105	601979	2382147	233093	200953	271023	1085658	358510	833894	304264	2693139
3.7	1901144	171537	537760	685126	257671	179583	606919	1189663	1057111	4534467	581338	194271	532675	2065233	1032133	1477248	649648	5120718
3.8	1526986	473900	176821	482240	201160	123764	391553	957274	958321	4227114	451124	732659	697438	1926845	723749	1309483	549238	4405201
3.9	2544079	805566	507384	675740	250740	150094	461987	1233502	1204819	5262589	534868	367360	139382	2515707	944980	1642490	643607	5639267
3.10	3027202	1117745	923023	933398	349147	188166	476101	1619526	1791290	6708575	702790	598729	1102498	3188497	1155631	2317371	932294	7355166
3.11	2077150	854092	157171	758370	265419	228145	602491	1731371	1542662	5980799	805887	318809	855961	3460275	1144703	2336604	837937	8224977
3.12	2187313	880818	727250	737304	202895	149732	797689	1327872	1183011	5540399	633093	234149	910052	2800596	928771	2051960	623649	7076536
3.13	1712650	495324	204422	69093	250729	215924	750519	1170126	1434411	4832508	720612	640145	810782	2397333	1017773	1751504	806320	6675901
3.14	1719795	807552	223417	631948	263225	236458	736250	973577	1050516	4489568	653106	180684	268964	2336154	991350	1502352	1171249	5788598
3.15	2131382	641711	332400	879026	306872	206504	651626	1401963	1361890	5618766	120383	321642	958556	2753304	1085189	1796143	1407379	6754951
3.16	1596520	671867	140734	721790	349435	161371	816408	1376417	1344016	5909884	619871	1376249	921741	2876055	1097103	1705692	758839	7407992
6.1	900906	347495	46230	229426	84285	30245	525982	199508	426792	1493256	127376	172050	24640	681291	629422	545823	146406	2221312
6.2	1012015	226075	156341	210375	72525	90607	528907	222663	233467	1469428	31849	876261	72794	766970	582297	586351	201939	2045588
6.3	754502	225736	60929	37304	35666	20925	95205	96154	96355	657546	17863	307463	19129	279773	241841	86553	19261	794056
6.4	871988	50850	176952	117101	88412	45195	684325	186031	244363	1439851	50157	281972	49312	598138	494435	508568	167196	1750921
6.5	453179	48804	83369	64357	60611	43467	337482	156354	99670	865925	35176	436396	373039	375800	369347	319295	119562	1100674
6.6	432580	59844	91114	51293	61632	70940	351141	107347	117215	793726	28344	541016	82862	351209	400719	310344	127190	1082339
6.7	533375	104387	89915	65704	59014	5341	73251	88750	154885	679479	53817	544154	29180	363108	457340	220566	127528	1043316
6.8	1082148	110544	111731	544639	177107	164515	1193229	971658	371323	4699229	101908	1002455	103578	1362811	731801	577252	109222	4278334
6.9	973281	154592	123698	458984	187843	140307	818557	815044	424656	4512317	121591	864396	121266	1603524	867980	1191182	129440	4417285
6.10	1764239	157020	98967	491684	164938	123911	1115472	954610	640458	4249971	207902	396370	217043	1260327	735569	1090082	450342	3969311
6.11	2803220	218398	517448	546614	225749	235401	780673	844990	863479	5804995	132110	1233841	161833	1831554	757815	1587941	596856	5602660

Tabela C 2 - Áreas cromatográficas dos compostos biomarcadores identificados na análise de CG/EM de extratos das amostras dos Pontos 3 e 6 para o íon m/z 217

Amostra	DIA27S	DIA27R	TPP21R	TPP21S		
3.1	217503	347988	42908	32421		
3.2	119522	78540	8251	41352		
3.3	47214	61737	34934	53820		
3.4	532868	656749	19398	120628		
3.5	756159	1017332	69241	82273		
3.6	149526	206408	21877	27206		
3.7	284925	468147	55030	70607		
3.8	226085	324886	40070	123720		
3.9	326870	404040	121701	133284		
3.10	519298	624997	107320	82332		
3.11	353704	532966	80730	58350		
3.12	332320	552858	113153	74117		
3.13	290354	479705	70997	63671		
3.14	290903	479696	87112	63885		
3.15	327725	512341	95796	77606		
3.16	280066	478440	94466	93138		
6.1	57039	99309	102110	103169		
6.2	61776	99370	80410	112894		
6.3	44467	41582	30137	53848		
6.4	72739	71210	91241	103062		
6.5	26619	35868	51687	74986		
6.6	43192	48620	43435	86865		
6.7	39441	44022	51331	69356		
6.8	198021	244749	59625	73085		
6.9	163864	222320	46498	76074		
6.10	207581	310552	56757	66709		
6.11	264430	413302	63745	132199		

Tabela C 3 - Áreas cromatográficas dos compostos biomarcadores identificados na análise de CG/EM de extratos das amostras dos Pontos 3 e 6 para o íon m/z 259

Figura C 17 - Cromatogramas de massas do íon 259. A- Amostra 3.9. B- Amostra 3.10. C- Amostra 3.11. D- Amostra 3.12

Figura C 18 - Cromatogramas de massas do íon 259. A- Amostra 3.13. B- Amostra 3.14. C- Amostra 3.15. D- Amostra 3.16

Figura C 20 - Cromatogramas de massas do íon 259. A- Amostra 6.5. B- Amostra 6.6. C- Amostra 6.7. D- Amostra 6.8

