
UNIVERSIDADE FEDERAL DA BAHIA

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA

DISSERTAÇÃO DE MESTRADO

An Assessment On Variability Implementation Techniques In

Software Product Lines: A Replicated Case Study

LORENO FREITAS MATOS ALVIM

Programa Multi-Institucional de Pós-Graduação em Ciência da

Computação

Salvador

Agosto/2016

LORENO FREITAS MATOS ALVIM

AN ASSESSMENT ON VARIABILITY IMPLEMENTATION

TECHNIQUES IN SOFTWARE PRODUCT LINES: A REPLICATED

CASE STUDY

M.Sc. Dissertation presented to

the Multi-institutional Master Pro-

gramme in Computer Science at Fed-

eral University of Bahia and Feira de

Santana State University in partial

fulfillment of the requirements for the

degree of Master of Science in Com-

puter Science.

Advisor: EDUARDO SANTANA DE ALMEIDA

Salvador

Agosto/2016

I dedicate this dissertation to my parents, fiancée, friends

and professors who gave me the necessary support to get

here.

RESUMO

Computação Orientada a Serviços (COS) e Linhas de Produtos de Software (LPS) são

abordagens destinadas ao desenvolvimento de sistemas de software que permitem às

organizações reutilizarem, de forma sistemática, artefatos de software existentes ao invés

de repetidamente desenvolvê-los a cada novo sistema implementado. Devido a essa

caracteŕıstica, ambas as abordagens tem recebido uma crescente atenção de pesquisadores,

principalmente, a sua combinação conhecida como Linha de Produtos Orientada a Serviços

(LPOS). Isto pode ser justificada porque LPOS tem como objetivo alcançar os mesmos

benef́ıcios de ambas as abordagens e também resolver os problemas enfrentados por cada

uma.

No entanto, mesmo com toda esta campanha, muitos desafios precisam ser superados,

em particular, a falta de avaliações que considerem as diferentes técnicas de implementação

de variabilidade. Este trabalho investiga este problema através de dois diferentes estudos

de caso. Assim, buscou-se identificar qual técnica de implementação de variabilidade

obteve melhores resultados com relação a complexidade, estabilidade e modularidade de

software. Baseados nos resultados, um modelo de decisão inicial foi desenvolvido para

auxiliar engenheiros de software a escolherem a mais adequada técnica de implementação

de variabilidade com base nesses critérios observados.

Palavras-chave: Engenharia de Software, Linhas de Produtos de Software, Computação

Orientada a Serviços, Linhas de Produto Orientada a Serviços, Estudo de Caso.

v

ABSTRACT

Service-Oriented Computing (SOC) and Software Product Lines (SPL) are approaches

for developing software systems which enable organizations to reuse, in a systematic way,

existing software assets rather than repeatedly developing them for new implemented

systems. Due this characteristic, both approaches have received growing attention from

researches, mainly, their combination known as Service-Oriented Product Lines (SOPL).

It can be justified because SOPL has as objective achieving the same benefits from both

approaches and also solving the problems facing by each one.

Nevertheless, ever with this hype, many challenges need to be overcome, in particular,

the lack of assessments considering different variability implementation techniques. This

work investigates this problem through two different case studies. Thus, we aim to identify

which variability mechanism achieved better results with respect to complexity, stability

and modularity of software. Based on the results, an initial decision model was developed

to aid software engineers choose the most suitable variability implementation technique

based on a set of parameters.

Keywords: Software Engineering, Software Product Lines, Service-Oriented Computing,

Service-Oriented Product Lines, Case Study.

vii

CONTENTS

List of Figures xiii

List of Tables xv

List of Acronyms xvii

Chapter 1—Introduction 1

1.1 Motivation . 1

1.2 Goal of this Dissertation . 2

1.3 Related Work . 2

1.4 Out Of Scope . 4

1.5 Statement of the Contributions . 4

1.6 Research Design . 5

1.7 Dissertation Structure . 5

Chapter 2—An Overview on Software Product Lines and Service-Oriented Com-

puting 7

2.1 Software Product Lines (SPL) . 7

2.1.1 Advantages . 8

2.1.2 The SPL Development Process 8

2.1.3 Variability Management . 12

2.1.4 Product Derivation . 13

2.2 Service-Oriented Computing (SOC) . 18

2.2.1 Goals and Benefits of Service-Oriented Computing 19

2.2.2 The Principles . 20

2.2.3 Service-Oriented Product Lines (SOPL) 22

2.2.3.1 Applying SPLE for Development of SOPL 25

ix

x CONTENTS

2.3 Chapter Summary . 28

Chapter 3—An Overview on Techniques to Implement Variabilities 29

3.1 Techniques for Implementing Variabilities 29

3.1.1 Conditional Compilation (CC2) 29

3.1.2 Aspect-oriented Programming (AOP) 30

3.1.3 Parameterization . 31

3.1.4 Delegation . 32

3.1.5 Inheritance . 33

3.1.6 Libraries . 34

3.1.7 Open Services Gateway Initiative (OSGi) 34

3.2 The Measurement Framework . 36

3.3 Metrics For Code Quality Evaluation . 37

3.4 Chapter Summary . 41

Chapter 4—The Case Study 43

4.1 Case Study Protocol . 43

4.1.1 Objective . 43

4.1.2 The Case . 45

4.1.3 Units of Analysis . 50

4.1.4 Case Study Research Questions 50

4.1.5 Data Collection . 51

4.1.6 Data Analysis . 51

4.2 Results and Findings . 52

4.2.1 Complexity Analysis . 52

4.2.2 Stability Analysis . 53

4.2.3 Modularity Analysis . 54

4.2.4 Descriptive and Exploratory Analysis 55

4.2.5 Results Summary . 58

4.3 Threats to Validity . 58

4.4 Chapter Summary . 59

Chapter 5—The Replicated Case Study 61

5.1 Case Study Protocol . 61

5.1.1 Objective . 62

CONTENTS xi

5.1.2 The Case . 63

5.1.3 Units of Analysis . 68

5.1.4 Case Study Research Questions 68

5.1.5 Data Collection . 68

5.1.6 Data Analysis . 68

5.2 Results and Findings . 69

5.2.1 Complexity Analysis . 69

5.2.2 Stability Analysis . 71

5.2.3 Modularity Analysis . 71

5.2.4 Descriptive and Exploratory Analysis 72

5.2.5 Results Summary . 75

5.3 Comparative Analysis . 75

5.3.1 Decision Model . 78

5.4 Threats to Validity . 81

5.5 Chapter Summary . 81

Chapter 6—Conclusions 83

6.1 Main Contributions . 84

6.2 Concluding Remarks . 84

6.3 Future Work . 85

LIST OF FIGURES

1.1 Research Design. 5

2.1 Comparative among the accumulated cost to develop n kinds of systems as

single system and SPL (Pohl et al., 2005). 9

2.2 Time to market with and without product line engineering (Pohl et al., 2005). 9

2.3 The tow-life-cycle model of software product line engineering (Linden et al.,

2007). 10

2.4 Essential product line activities (Clements and Northrop, 2001). 11

2.5 Hierarchy in product families (Sinnema et al., 2006). 12

2.6 Example of feature model. 14

2.7 Product derivation process in SPL (Rabiser et al., 2011). 15

2.8 Key activities for product derivation (Rabiser et al., 2010). 15

2.9 Goals and benefits of service-oriented computing categorized in two groups:

strategic goals and resulting benefits (Erl, 2007). 20

2.10 Services within a Product Line (Ribeiro, 2010). 24

2.11 Service-Domain Engineering of an SOPL (Mohabbati et al., 2014). 25

2.12 Service-Application Engineering of a SOPL (Mohabbati et al., 2014). . . 26

3.1 Example of the conditional compilation implementation technique. 30

3.2 Example of AOP implementation technique. 31

3.3 Example of the parameterization implementation technique. 32

3.4 File config.properties. 32

3.5 Variability by delegation technique. 33

3.6 Variability by Inheritance technique. 34

3.7 Service ativator. 35

3.8 Example of the OSGi implementation technique. 35

3.9 The Measurement Framework. 36

4.1 Screenshot a Warehouse SPL product implemented with conditional com-

pilation. 46

xiii

xiv LIST OF FIGURES

4.2 Warehoure feature model. 48

4.3 Warehouse SPL implementation (Components). 49

4.4 Warehouse SPL implementation (Methods) 49

4.5 Warehouse Cyclomatic Complexity. 52

4.6 Warehouse Lines of Code. 53

4.7 Warehouse Weighted Operations. 54

4.8 Warehouse Instability. 54

4.9 Concerns Diffusion over Components for Warehouse 55

4.10 Concerns Diffusion over Operations for Warehouse 56

4.11 Boxplot comparing the variability mechanisms according to aspects com-

plexity, stability and modularity. 57

5.1 Screenshot of RiSEEvent SPL product implemented with conditional com-

pilation. 63

5.2 RiSEEvents feature model. 66

5.3 RiSEEvent SPL implementation (Components). 67

5.4 RiSEEvent SPL implementation (Methods). 67

5.5 RiSEEvent Cyclomatic Complexity. 69

5.6 RiSEEvent Lines of Code. 70

5.7 RiSEEvent Weighted Operations. 70

5.8 RiSEEvent Instability. 71

5.9 Concerns Diffusion over Components for RiSEEvent. 72

5.10 Concerns Diffusion over Operations for RiSEEvent 72

5.11 Boxplot comparing the variability mechanisms according to aspects com-

plexity, stability and modularity. 74

5.12 Boxplot for the variables by program. 78

5.13 Decision model process. 79

5.14 Warehouse Decision model. 80

5.15 RiSEEvent Decision model. 80

LIST OF TABLES

4.1 Warehoure features for releases. 47

4.2 Results of the quantitative analyses for Warehoure. 56

4.3 Results for the quantitative analysis for Warehoure. 58

5.1 RiSEEvent features for releases. 64

5.2 Results for the quantitative analysis for RiSEEvent. 73

5.3 Results of the quantitative analysis for RiSEEvent. 75

5.4 Comparative table with the Warehouse and RiSEEvent SPLs. 76

5.5 Descriptive Statistics by Program. 77

xv

LIST OF ACRONYMS

SOC Service-Oriented Computing

SPL Software Product Lines

SOPLE Service-Oriented Product Line Engineering

AFM Aspectual Feature Modules

SOA Service-Oriented Architecture

SOPL Service-Oriented Product Lines

CC1 Cyclomatic Complexity

LOC Lines of Code

WOCS Weighted Operations per Component or Service

IMSC Instability Metric for Service or Component

CDC Concerns Diffusion over Components

CDO Concerns Diffusion over Operations

CC2 Conditional Compilation

AOP Aspect-oriented Programming

OSGi Open Services Gateway Initiative

GQM Goal-Question-Metric

xvii

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

Software Product Lines (SPL) is a reuse-oriented approach that involves creating a set of

related software systems from a reusable collection of software artifacts. Organizations

are adopting this approach because it promises improvements in quality and productivity

in software development. In this context, individual products are built through selection

and customization of shared software artifacts developed during domain engineering. This

process is named product derivation (Sinnema et al., 2006), and occurs in the application

engineering phase.

On the other hand, Service-Oriented Computing (SOC) is an emerging paradigm

of software engineering. It allows decomposing software into services, providing a well-

defined functionality and hiding systems implementation (Apel et al., 2008). Services are

autonomous, platform-independent computational units that can be described, published,

discovered, and dynamically composed and assembled (Mohabbati et al., 2014). Thus,

programmers have conditions to integrate distributed services, even if they are written in

different programming languages (Apel et al., 2008). It makes SOC an alternative to solve

integration and interoperability problems, and increase business flexibility. However, this

paradigm alone does not offer strategies for high customization and systematic planned

reuse (Medeiros et al., 2010).

In order to achieve the benefits highlighted by these two approaches, the combination

of SPL and SOC has received considerable attention of researchers in the last years. This

interest is justified because they can address issues of each other. Regarding SPL, SOC

can achieve dynamic reconfiguration, and for SOC, SPL can cover an approach to manage

variations among multiple service-oriented systems. This combination of SPL and SOC is

called Service-Oriented Product Line (SOPL) (Vale et al., 2012).

Thus, this work investigates the combination of SPL and SOC with emphasis on

variability implementation, more specifically, the choice of a specific variability mechanism

(Conditional Compilation, Aspect-oriented Programming, or Open Services Gateway

Initiative) according to aspects such as complexity, modularity or stability.

1

2 INTRODUCTION

For this purpose, we implemented two SPLs and generated three releases for each SPL.

Moreover, we developed two SOPL from these SPLs with features resolved by services.

Finally, we defined a decision model that indicates the variability technique which produces

the best components or services according to aspects observed. As in Sant’anna et al.

(2003), for this work component is an abstraction that represents classes and aspects, and

operations represent methods and advices.

1.2 GOAL OF THIS DISSERTATION

The goal of this dissertation can be stated as follows:

This work investigates the problem of variability implementation in software assets of

software product lines and service-oriented product lines. Furthermore, a measurement

framework and a decision model are presented in order to analyze implementations of

SPLs, and to indicate the most suitable variability technique based on software quality.

1.3 RELATED WORK

Software variability management is a key activity to have success in the domain of software

product lines. Gacek and Anastasopoules (2001) addressed issues of handling variability

at the code level. They identified in the literature thirteen mechanisms for implementing

variability (alone or combined with other) in product lines at the code level (e.g., aspect-

oriented programming, conditional compilation, delegation, parameterization, and so on).

Furthermore, they proposed a framework for evaluating the implementation approaches

regarding their use in a product line context. Our approach is similar, however, it also

focuses on implementation mechanisms targeted to the SOPL.

Chang and Kim (2007) performed a technical comparison among variability on conven-

tional applications and the variability on SOC. Based on the results, they identified four

types of variability, which may occur on services. The main contribution was to build a

framework that aids both in service modeling variability as well as designing of adaptable

services, for each type of variability identified. Unlike our work, Chang and Kim (2007)

did not quantitative analyses for identify what types of variability is most efficient for a

particular metric.

Smith and Lewis (2009) defined an approach that uses Service-Oriented Architecture

(SOA) and services as core assets in a software product line. This approach claims that

before implementation the mapping of SOA concepts must be performed in the context of

1.3 RELATED WORK 3

SPL and defined an initial set of variation mechanisms to handle with variabilities issues.

Ribeiro et al. (2011) proposed an approach for implementing core assets in service-oriented

product lines providing guidelines and steps that enable the implementation in the SOPL

context (components, services providers and consumers). Both studies contributed with

our dissertation to indicate how features could be resolved by services. Moreover, Ribeiro

et al. (2011) provided inputs for the development of our measurement framework that

aims to collect data to evaluate the different implementations.

Apel et al. (2008) developed a feature-based approach, where a scenario that integrates

the notions of services and feature-based product lines was created. This scenario provided

conditions to discuss five benefits identified by the approach: improvements in modularity,

variability, uniformity, specifiability, and typeability. This work provided for us the idea

of one of the scenarios for implementing the SPL (the Warehouse). However, the focus of

this approach was assess some variability techniques in the context of SPL and SOPL.

Zhang et al. (2016) characterized and compared seven variabilities mechanisms ac-

cording with their techniques, binding time, granularity, and further aspects. Moreover,

through the pratical usage they presented that benefits and challenges are determined by

variability mechanisms characteristics. Although some techniques being the same of our

study, the kind of comparison was different.

Matos Jr. (2008) compared some techniques used by the software industry that

enable variability. Moreover, he classified these mechanisms according to their structure

and location in the source code, and presented variability implementation patterns

using different techniques in order to deal with each kind of variation. At the end, he

analyzed the impact resulting from each pattern using qualitative and quantitative metrics.

Ferreira et al. (2014) through a quantitative and qualitative analysis identified how feature

modularity and change propagation behave in the context of two evolving SPLs. In

order to collect the quantitative data, they developed each SPL using three different

variability mechanisms. Moreover, the compositional mechanism available in Feature-

oriented Programming (FOP) was evaluated by using other two variability techniques as

baseline (conditional compilation and design patterns). Gaia et al. (2014) expanded this

work and investigated whether the simultaneous use of aspects and features through the

Aspectual Feature Modules approach (AFM) facilitates the evolution of SPLs. All these

works compare some variability techniques through quantitative and qualitative analysis,

however, neither of them in the context of SOPL.

Carvalho et al. (2016) performed an exploratory study to analyzing solutions used

in dynamic variability implementation. This evaluation was performed with respect to

4 INTRODUCTION

size, cohesion, coupling, and instability of the source code with the aid of a measurement

framework. Although similar, our work focuses in context of SPL and SOPL and this

work in dynamic software product lines context.

1.4 OUT OF SCOPE

Some SPL and SOC topics were not investigated in this work such as:

• Other activities in SPL and a service-oriented product lines process. This

work focuses on variability implementation at the code level which enables the

development of different products by means of the product derivation process. Other

activities such as design, evolution and testing were not covered in this dissertation.

• Quality Attributes. Performance, availability, security, among others quality

attributes were not considered in this work. It is an extensive area out of the scope

of this dissertation.

• Combination of Technologies. The combination of services with variability

techniques at SPL can provide good results for software development. However,

because of the scope of this study, possible combination were not considered.

1.5 STATEMENT OF THE CONTRIBUTIONS

The main research contribution of this dissertation are the case studies presented. Through

them were performed the assessment of variability techniques with the aid of framework

developed which provide support for the development of decision model. These and other

contributions can be highlighted as follows:

• An overview of techniques used for handling product lines variability at the code

level.

• An assessment for comparing techniques used to implement components and services

regarding complexity, stability, and modularity in the context of service-oriented

product lines.

• An case study performed according with guidelines proposed by Runeson et al. (2012),

which was applied the measurement framework on the first SPL (Warehouse).

• A replicated case study in another domain (RiSEEvent SPL) which allowed to

compare the results and infer indicators about the evaluation performed.

1.6 RESEARCH DESIGN 5

• The definition of an initial decision model which provides guidelines for software

engineers during the choice of techniques that support variability implementation at

the code level.

1.6 RESEARCH DESIGN

Figure 1.1 shows the research design approach defined for this work which is composed

of five key activities: literature review, measurement framework, SPLs development,

techniques evaluation, and decision model construction.

The first activity involved a brief literature review where we identified proposals for

implementing variability in SPL, and how to apply services to develop SOPL. Furthermore,

previous work that provided guidelines, and metrics for evaluation of the techniques were

also investigated.

Based on the results from the literature, we developed a framework (second activity)

to evaluate the techniques used in the implementation of SPLs and SOPL, which were

implemented during the third step of this work.

In order to apply the framework and evaluate the techniques, we conducted two

exploratory case studies (fourth step): the first one was applied to an warehouse domain,

and the second one focused on a SPL responsible for managing academic events.

Finally, we developed an initial decision model that indicates the most suitable

variability technique for a given context. The tasks performed in the second and third

steps have high relevance for this model, once they impact directly in its quality.

Figure 1.1: Research Design.

1.7 DISSERTATION STRUCTURE

The remainder of this dissertation is organized as follows:

• Chapter 2 discusses essential aspects related to this work: Software Product Lines

and Service-Oriented Computing.

• Chapter 3 presents a brief assessment which evaluates techniques used to implement

assets in SPL or SOPL.

6 INTRODUCTION

• Chapter 4 describes the case study which evaluates the different variability tech-

niques. The case study protocol, research questions, data collection, data analysis,

and outcomes are described in details.

• Chapter 5 presents a replicated case study using another SPL, as well as a com-

parative analysis. Moreover, it presents the decision model constructed based on

results from two case studies.

• Chapter 6 provides the concluding remarks and directions for future work.

CHAPTER 2

AN OVERVIEW ON SOFTWARE PRODUCT LINES

AND SERVICE-ORIENTED COMPUTING

This chapter presents some background information about Software Product Lines (SPL)

and Service-Oriented Computing (SOC), which are the main topics of this work. This

Chapter is organized as follows: in Section 2.1, we contextualize and introduce concepts

related to Software Product Lines development processes (Clements and Northrop, 2001)

(Pohl et al., 2005), motivations and benefits for applying this approach. Section 2.2

explains the SOC aspects and the principles that guide the development process. Finally,

we introduce the approach resultant of the combination between SPL and SOC.

2.1 SOFTWARE PRODUCT LINES (SPL)

Nowadays, reusing artifacts is a common practice in the software engineering field. This

activity comprises sharing from pieces of code and service libraries to software components

and frameworks. One of the systematic approaches for software reuse is the development

of Software Product Lines (SPL) (Clements and Northrop, 2001).

The idea of SPL was proposed by Parnas (1976). He defines product family as a

collection of solutions with high level of similarities. For him, this characteristic justifies

studying first the common properties and subsequently the particularities of each software.

According to Clements and Northrop (2001), SPL can be defined as a set of related

software-intensive systems sharing a collection of features to satisfy specific needs of

customers or an particular market segment. The particular market segment refers to the

domain and the business strategies of organization that can be changed to satisfy the

stakeholders requirements (Mohabbati et al., 2014). Software-intensive systems involve a

set of core assets such as reusable software components, architecture, domain models and

specifications.

Pohl et al. (2005) claim that software product lines is a paradigm to develop software

using platforms and mass customization. According to them, developing applications

based on platforms means building reusable code parts, which will be reused in several

systems. On the other hand, mass customization implies employing the concept of

7

8 AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

managed variability, i.e., commonalities and variabilities among applications in a software

product line (in terms of requirements, architecture, components, and test artifacts).

According to Klewerton and AssunÃ§Ã£o (2015), the most suitable SPL development

strategy for organizations that have many products in their catalog is the extractive

approach. The process of this strategy is based on a existent system as the starting

point. Collecting relevant information such as traceability links among features is the first

step. It is followed by identification of the similarities and variabilities among products,

and finalized with the construction of corresponding artifacts for common and variable

parts of an SPL. At the end this process, the main artifact created is the Product-Line

Architecture. It provides a common design to all products of the SPL, in other words,

through this artifact, software engineers can identify the mandatory and optional features

from the considered domain.

2.1.1 Advantages

An extensive change in engineering practices is usually not initiated without an economic

justification. Thus, one of the first reasons to adopt product line engineering is the cost

reduction achieved with the change in the development process. Figure 2.1 shows the

accumulated costs needed to develop n different systems (Pohl et al., 2005).

The cost reduction is obtained by reuse of artifacts in several different kinds of systems,

which implies in lower expenses for each system. However, before reusing artifacts,

investments are required to plan and develop them. Therefore, only from the third system,

the development costs in software product line engineering become smaller than those

of individual systems. The artifacts in the platform are reviewed and tested in many

products. These extensive tests imply in higher chance of detection and correction of

faults, besides increasing the quality of all products (Pohl et al., 2005).

Reduction of time to market is another advantage obtained with reuse. In opposite of

single-product development, whose time can be roughly assumed as constant, product line

engineering tends to present higher time-to-market. However, after having the resulting

artifacts, this hurdle is considerably shortened to each new product. Figure 2.2 shows this

scenery (Pohl et al., 2005).

2.1.2 The SPL Development Process

The main difference between single system development and SPL engineering is the focus.

Single system development aims at creating a unique system at a time, and product line

2.1 SOFTWARE PRODUCT LINES (SPL) 9

Figure 2.1: Comparative among the accumulated cost to develop n kinds of systems as
single system and SPL (Pohl et al., 2005).

Figure 2.2: Time to market with and without product line engineering (Pohl et al., 2005).

10AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

engineering can generate a set of systems. The change of focus is essentially of the business

strategy. In other words, traditional development is driven by customer needs defined in

a contract, in turn, SPL development is geared towards a niche market (Linden et al.,

2007).

Figure 2.3 shows the domain engineering and the application engineering processes,

with a fundamental distinction of development for reuse and development with reuse

respectively, in order to compose software product lines (Linden et al., 2007).

Figure 2.3: The tow-life-cycle model of software product line engineering (Linden et al.,
2007).

In domain engineering, a basis is provided for the development of specific products. As

opposed to many traditional reuse approaches, not only code assets are encompassed in

the infrastructure, but also all other software artifacts (Linden et al., 2007). In summary,

domain engineering is the process of defining the commonality, variability, the scope of

the SPL, and the development of reusable artifacts to accomplish the defined variabilities.

Due to this, it is also known as Core asset Development (Pohl et al., 2005).

2.1 SOFTWARE PRODUCT LINES (SPL) 11

Application engineering is considered Product Development because it is responsible

for building the final products on top of the product line infrastructure established in

domain engineering. This usually contains most of the functionality required for a new

product (Linden et al., 2007). The key goals of application engineering are: to achieve a

comprehensive reuse of domain assets; to exploit the commonality and variability of the

SPL; to document the application artifacts (i.e. application requirements, architecture,

components and tests); and to estimate the impacts of the differences between application

and domain requirements on architecture, components and tests (Pohl et al., 2005).

Linden et al. (2007) also present several principles considered fundamental to success of

software product line engineering. According to them, they can be described as variability

management (made explicitly and must be systematically managed), business-centric

(product line infrastructure is in the long term an adequate instrument to field new

products onto the market), architecture-centric (the technical side must allow taking

advantage of similarities among systems), and low-life-cycle approach (distinction of

domain and application engineering is a key characteristic of SPL).

Clements and Northrop (2001) summarize all activities for SPL development in three

essentials ones (core asset developing, product development, and management). Figure

2.4 shows the three essential activities. They consider this representation in the highest

level of generality to combine technology and business practices.

Figure 2.4: Essential product line activities (Clements and Northrop, 2001).

The rotating arrows indicate that companies review the existing core assets and new

core assets can evolve during product development. There is also a strong feedback loop

12AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

between the core assets and the products. Core assets are updated as organizations

develop new products. Next, they track asset use, and the results are sent to the asset

development activity (Clements and Northrop, 2001).

2.1.3 Variability Management

Variability management is a key factor to differentiate conventional software engineering

and SPL engineering. Differences that appear such as an evolution of programs over the

time are known as variabilities in time. On the other hand, there are also variabilities

in space. These occur when differences among software releases happen in a fixed point

in time. Unlike traditional software development, SPL engineering deals with variability

in both time and space, but for this study, variabilities in space are the main focus for

allowing developers to deal with decisions of design, known as variation points (Matos Jr.,

2008).

Variation points are places in a design or implementation used to identify where

the variations occur. They are identified as central elements in the variability process

because facilitates the systematic documentation, traceability, development, assessment

and evolution of variability (Sinnema et al., 2006).

Figure 2.5 shows that hierarchically product lines can be divided into three abstraction

levels: features compose the layer with higher level of abstraction, the architecture makes

the intermediate layer, and component implementations integrate the lowest level. Thus,

as variation occurs in the entire development process, it is possible to identify variation

points in all layers (Sinnema et al., 2006).

Figure 2.5: Hierarchy in product families (Sinnema et al., 2006).

Some researchers consider as feature both variabilities and commonalities, which

2.1 SOFTWARE PRODUCT LINES (SPL) 13

commonly represents reusable requirements (Ribeiro, 2010). Kang et al. (1990) define a

feature as ”a prominent or distinctive user-visible aspect, quality, or characteristic of a

software system or systems”.

Many approaches have a shared goal to model commonalities and variabilities in the

SPL context, such as Clements and Northrop (2001), Gomaa (2004) and Pohl et al. (2005).

Among these approaches, feature modeling, proposed by Kang et al. (1990), is the most

used technique.

Basically, a feature model is a hierarchically arranged set of features that provides

a graphical representation of variability relations, constraints and dependencies among

features. It provides a good means of communication for the requirements analyst obtain

knowledge about the SPL domain, helping him to deal with the user’s problems (Kang

et al., 1990). Because of this, feature model has been widely used by researches and

developers of SPL to specify what features are common or variable in the SPL (Gamez

et al., 2015). In this sense, Kang et al. (1990) classified features as:

Mandatory features: all features of this kind must be present in every product of

the SPL. They represent the commonality of the product line.

Optional features: opposite of mandatory features, this kind of feature is a variability

and can be present or not in products of the SPL.

Alternative features (Xor-features): only one feature of this group must be

selected during the configuration of a specific product.

Or-features: one or more features can be selected to create a valid configuration of

feature model.

Abstract Features: are used only for organizing the structure of a feature model.

In other words, they do not have any impact at implementation.

Concrete Features: in turn it is responsible by providing the functionality to systems.

Figure 2.6 is an example of a feature model that represents a family of cars. The first

feature of diagram (ABS) is a mandatory feature identified by a black circle. The optional

feature is represented by the feature airbag.

In this example, every car must be painted by one color (Xor-feature) identified by a

empty arc above the set of features red, black and silver. Moreover, the black arc indicates

that the cars must support one or more kind of fuel (Or-feature).

2.1.4 Product Derivation

Product derivation is a process of selecting and customizing shared assets during application

engineering. In this activity, customers, domain experts, business professionals and

14AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

Figure 2.6: Example of feature model.

other stakeholders take knowledge about the variability provided by SPL. Based on this

information and customers requirements, the derivation team selects a particular product

and adapts it for a particular purpose. In practice, product derivation rarely is a sequential

process and many interactions are necessary for bringing out customers requirements and

solving variability (Rabiser et al., 2011).

The aim of product derivation is to generate products to customers, and bring return

on initial investment necessary to operate an SPL economically (Rabiser et al., 2010).

The costs for building up an SPL should be outweighed by the benefits of rapid derivation

of customized products during application engineering. This is achieved by exploiting the

commonality and variabilities established in domain engineering (Rabiser et al., 2011).

Figure 2.7 shows a high-level view of application engineering. In this figure, the upper

white vertical arrows depict the derivation process of selecting and customizing reusable

assets. On the other hand, the deployment activities to release the product are denoted

by lower white arrows.

In order to identify the key activities for product derivation, O’Leary et al. (2009)

compared two approaches with particular goals, developed in different and independent

projects: Process framework for Production Derivation (Pro-PD) and Decision-Oriented

Product Line Engineering for effective Reuse: User-centered User (DOPLER). Pro-PD

aims at defining a general process framework for product derivation. The DOPLER, in

turn, aims at establishing a user-centered tool-supported for product derivation, with the

goal of attending needs from industry.

Figure 2.8 shows the results of a mapping conducted in the chosen approaches Pro-PD

and DOPLER. The key activities have been divided in three groups: (i) preparing for

derivation, (ii) product derivation / configuration, and (iii) additional development /

2.1 SOFTWARE PRODUCT LINES (SPL) 15

Figure 2.7: Product derivation process in SPL (Rabiser et al., 2011).

testing.

Figure 2.8: Key activities for product derivation (Rabiser et al., 2010).

Preparing for derivation gathers the preparatory activities necessary for achieving

derivation. No derivation (from the investigated approaches) starts from scratch, just

16AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

selecting features or making decisions, for example, as defined in the variability model

(Rabiser et al., 2010). Preparatory activities are listed as following:

• Specify and translate customer requirements - The start point of products derivation

is a clear specification of customer demands. If needed, they should be translated to

the language used in the organization. The purpose with these actions is to avoid a

terminology confused and assets described in customer-specific language.

• Define base configuration - The set of existing platform configurations provides the

options of choosing a base configuration. Experiences acquired in past projects are

of great importance, because customers could have similar requirements providing

a possibility of reuse. However, if no configuration is appropriate, other base

configuration should be created.

• Map customer requirements - Base configuration is used to map the customers’

needs. When some need cannot be satisfied with the assets by reuse or adaptation

should be started a negotiation process with the customer. Questions as profitability

of the platform assets for the whole product line must be taken into consideration.

• Define role and task structures - The goal is to define who is responsible for what of

the remaining tasks in the derivation process. This is important because reduces the

complexity of large decisions to achieve different views. Furthermore, it is important

to know who made what and when.

• Create derivation guidance - Create ways to facilitate the decision making by domain

experts is essential, since remaining variability must be explained. Moreover, while

sales people need to understand variability from a high level, engineers need to know

the details.

Product derivation / configuration starts with a selection and customizing of

assets from platform, identifying if new developments are necessary. It should be an

iterative process to ensure that all customer requirements have been fulfilled (O’Leary

et al., 2009):

• Select assets - Given the role and task structures defined previously, assets are

selected from the product line. Tool support must be used for evaluating the

dependencies and constraints between the assets.

2.1 SOFTWARE PRODUCT LINES (SPL) 17

• Create partial product configuration - Step-by-step and in an iterative way, a partial

configuration that does not solve fully variability is created. In an ideal case, this

first product would be enough for satisfying all customer requirements. However, in

many cases, is necessary some additional development, that should have its activities

defined and prioritized based on customer requirements. A good alternative for

supporting the negotiations with customers is the use of simulations based on partial

configuration.

Additional development / testing is the last set of activities performed during

the derivation process. These tasks are responsibility of the product development team

and have as goal to implement the required changes at the product level (Rabiser et al.,

2010):

• Component development - New source code is developed to implement new function-

ality or to adapt an existent at platform. It is important to take in consideration

that new components must be developed with the possibility that they can later be

updated to a platform asset.

• Component testing - After the process of building or adaptation, new parts of

components should be tested rigorously, for example, by unit testing.

• Component integration with partial product configuration - The newly developed

and adapted assets must be integrated with the partial product configuration. In

order to do this, it will be necessary code to linking the product interfaces with

them or even implementing architectural changes to facilitate integration.

• Integration testing - To verify whether the newly developed or adapted assets interact

correctly with the existent architecture, it is essential the achievement of integration

testing. During testing will be checked the consistency and correctness of the

product.

• System testing - After all activities, the product suffers a check to confirm that it is

in accordance with all product-specific requirements. If the product is not approved,

new iterations will be required.

Product derivation faces many difficulties, and these challenges exist given the inherent

size and complexity of the SPL. Moreover, communicating the variability for different

stakeholders is not an easy activity, because people are not always available (Rabiser

et al., 2010).

18AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

Deelstra et al. (2004) say that derivation of individual products, from software assets

shared in SPL, is an activity that demands a considerable time and effort. They performed

a case study in two large and mature industrial organizations where identified a group

of product derivation problems such as: (i) false positive to check the compatibility

during component selection, (ii) large amount of human errors, (iii) consequences imposed

by variant selection unclear, (iv) repetition of development caused for not finding the

component between thousands in repository, and (v) differences among provided and

required interfaces. According to them, these problems are created by lack of a methodology

that supports to application engineering, apart from the underlying causes of complexity

and implicit properties.

In addition, some tools were developed to support the SPL process. Lisboa et al.

(2011) performed a systematic study and presented a list of tools that offer support to

domain analysis phase, with available executable, and documentation describing their

functionalities. Among the nineteen tools identified thirteen provide support for product

derivation, such as: Gears (Krueger, 2007), Pure::variants (Schulze et al., 2013), and

FeatureIDE (Thüm et al., 2014). Schmid and de Almeida (2013) also looked at technology

for modeling and managing variation and thus facilitate product lines engineering. They

presented others tools such as EASy-Producer (El-Sharkawy et al., 2011) and (Dhungana

et al., 2013).

de Souza et al. (2015) performed a multiple-case study in two different software

companies with aim to investigate how product derivation is performed in practice.

They compared the case studies to find similarities and differences in order to identify

patterns into concepts explored in the literature, such as, iterative and incremental product

derivation.

2.2 SERVICE-ORIENTED COMPUTING (SOC)

Since 70s, the programming languages incorporated the concept of abstractions from

details of software functionality. The functional decomposition was the first technique

adopted. In this direction, with the increasing complexity, concepts of encapsulation were

introduced in the programming languages. This increase of abstraction is an important

step towards service-orientation, because it is one of the key principles of Service-Oriented

Computing (SOC) (Vale et al., 2012).

SOC is the computing paradigm that utilizes services as essential element for developing

applications that address the needs of customers (Papazoglou, 2003). Three areas compose

the basis of service-orientation: programming paradigms, distributed computing, and

2.2 SERVICE-ORIENTED COMPUTING (SOC) 19

business computing (Krafzig et al., 2004).

Based on services, SOC can support a process of quick development, with low-cost,

interoperable, evolvable, and massively distributed applications. Services are autonomous

(an autonomous piece of software has the freedom and control to make its own decisions

without external involvement), platform-independent (can be accessed independent of

hardware or software platform on which was implemented), that can be described, pub-

lished, and discovered. They perform the most varied functions that range from answering

simple requests to sophisticated business processes (Papazoglou et al., 2007). Moreover,

when developers make use of the full potential of semantic for services, the results are

easily customizable modules, which simplify the future software development (Huhns and

Singh, 2005).

In order to achieve all goals and consequently satisfy these requirements, services

should be technology neutral (invocation mechanisms must use protocols, descriptions and

discovery with widely accepted standards), loosely coupled (it is not necessary to know

the internal functionality of service neither have any internal structures), and support

location transparency (definitions and locations of services must be stored in repository

available for the most kinds of customers) (Papazoglou, 2003).

2.2.1 Goals and Benefits of Service-Oriented Computing

Service-oriented computing has a extremely wide vision, which makes SOC very interesting

to companies willing to improve the efficiency of their IT department. Erl (2007) identified

seven goals that form the vision and established a target for enterprises that adopt SOC.

Figure 2.9 shows and categorizes these goals in two groups (strategic goals and

strategic benefits) because three of them (increased organization agility, increased return

on investment, and reduced IT burden) are concrete benefits resulting from other four

(increased intrinsic interoperability, increased federation, increased vendor diversification

options, and increased business and technology domain alignment) (Erl, 2007):

Software interoperability occurs when the exchange information between programs is

allowed. Programs with this feature are desirable because avoid the necessity of integration.

Service-orientation has as goal to establish native interoperability within services thereby

defining, a foundation for the realization of other strategic goals and benefits.

Increased federation is the second goal of software-oriented computing. Resources and

application united, providing autonomy and self-governance characterize federated IT

environments. In order to achieved it, the services are developed in a standardized way

and supporting composability.

20AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

Figure 2.9: Goals and benefits of service-oriented computing categorized in two groups:
strategic goals and resulting benefits (Erl, 2007).

Another target that determines guidelines for service-oriented is the variety of vendors.

This objective is based on the principle that it is beneficial for organizations having many

choices of vendors. This way, enterprises can perform changes without affecting the overall

architecture of the produced solutions.

The last goal classified as strategic is the increased business and technology domain

alignment. SOC introduces a design paradigm that promotes abstraction on many levels.

The establishment of service layers is one of the most efficient means where functional

abstraction is applied. It can also encapsulate and represent business models.

2.2.2 The Principles

Service-orientation aims at building distributed solutions. What differentiates service-

orientation from other paradigms is the way used to conduct the separation of concerns

and how the solution logic is shaped. Erl (2007) describes the principles that rule the

service-oriented computing:

- Service Contracts: service contracts are a focal point of service design because

they define everything that a service does. They are responsible for establishing the

constraints and technical requirements. Moreover, this principle describes semantic

information that the service owner wishes to make public.

2.2 SERVICE-ORIENTED COMPUTING (SOC) 21

Contracts aim at enabling services to have a meaningful level of interoperability,

thus reducing the need for data transformation and allowing that services be more

easily and intuitively understood.

- Service Coupling: represents the level of dependency among parts that compose

the service. This principle advocates a specific type of relationship inside and outside

of service, which emphasize always in reduction of dependency between the service

contract, its implementation, and its service consumers. The aim is to get the max

of independency among services and thus having the minimal impact when they

evolve.

- Service Abstraction: emphasizes the need to hide all possible details of a service,

avoiding unnecessary access to additional service details. As a result, this principle

provides the conditions to get a loosely coupled relationship, reducing costs and

effort of management the service.

- Service Reusability: reaffirm services as business resources with functional context

not defined. This ensures that services may be repeatedly leveraged over time,

providing return on the initial investment of delivering the service. Moreover, the

reuse of services increases the agility of companies, enabling a rapid fulfillment of

future business automation requirements through wide-scale service composition.

- Service Autonomy: services are inherently autonomous, and it means that they

have the freedom and control to make its own decisions without the need for external

approval. A fundamental objective of the service autonomy is to expand the amount

of control that a service has over its runtime environment. To achieve this goal,

autonomy requires a more isolated software implementation that increases the

independence among pieces of software.

- Service Statelessness: requires minimal consumption of resources with manage-

ment of state information. This concern relates with the availability of service,

because managing state information in excess can compromise it. Thus, it applies

the principle in order to increase service scalability and improve the potential for

service reuse.

- Service Discoverability: in an organizational environment, the term discovery

means more that only the need for something to be effectively searched and located.

In these situations, encompasses for example, the means of consistently communi-

cating information about resources (meta information), or still meta information

22AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

to be clearly documented by those who have the appropriate communication skills.

The aim of principle service discoverability is to express the purpose and capabilities

of the services, so that humans and software programs have capability to interpret

them.

- Service Composability: the sophistication adopted in each new service-oriented

solution suffers an increase. As consequence, the same happens with the complexity

of underlying service composition configurations. Thus, the ability to effectively

compose services becomes a critical requirement for achieving the goals established

for service-oriented computing. The service composability operates to ensure that

services are designed in order to participate as effective members of multiple compo-

sitions.

2.2.3 Service-Oriented Product Lines (SOPL)

Using the service orientation idea, the software development process changed. A system

is no longer developed, integrated, and released in a sequential way. Such as SPL, this

approach supports continuous change in expectations and customer requirements. Thus,

the system evolution occurs by means of the addition and integration of new services (Lee

et al., 2008).

Both approaches (SPL and SOC) encourage reusing the existing software assets

and capabilities rather than to develop them from scratch. It implies in productivity

gains, decreased development costs, improved time-to-market and competitive advantage.

However, both have also distinct goals that may be stated as (Cohen and Krut, 2007):

- Software product lines systematically capture and exploit commonality among a

set of related systems while managing variations for specific customers or market

segments.

- Service-oriented computing enables assembly, orchestration and maintenance of

enterprise solutions to quickly react to changing business requirements.

Service-Oriented Product Line (SOPL) is an approach that combines concepts and

techniques of SPL and SOC to achieve high customization, systematic reuse and other

benefits related to software product lines (Medeiros et al., 2009). On the other hand,

services can aid to achieve flexibility and dynamic reconfiguration, since in most of the

SPL approaches, is necessary to instantiate a product before delivering for customers,

making difficult to make any changes to the software (Vale et al., 2012).

2.2 SERVICE-ORIENTED COMPUTING (SOC) 23

The combination of these approaches has been a subject of considerable research interest

in recent years. Mohabbati et al. (2014) conducted a mapping study, which indicates the

combination of SOC and SPL as a promising way to development of architectures for

adaptive systems, with an effective response to dynamic functional and non-functional

requirements. Moreover, this integration enables reusing of architectures in different

instances.

Some researchers have presented work where SOPL is the alternative chosen for the

development of systems. Cohen and Krut (2007) presented two possibilities of connection

among SOC and SPL. In the first one, services are designed as an SPL. In this scenario,

services themselves would be configurable according to architecture variations or specific

features. Thus, the product line encompasses its model, design and development in the

context of service-oriented.

In the second one, services will be included within the SPL architecture. To achieve

this, developers should include a variation point in the architecture implemented as a

component or service. Depending on the features needed by the application, a specific

configuration selects the component or the service in accordance with specificities by

each alternative. Services in this context address possible selection of features such as: a

need for dynamic variation, exploitation of the availability of existing services or quick

construction of SPL systems (Cohen and Krut, 2007).

Kotonya et al. (2009) proposed an approach that integrates SPL and SOC through two

steps. They declared that to achieve success in promoting reusability in service-oriented

product-line development it is essential the correct specification and identification of

services with the right features. Thus, during feature analysis, the approach supports

service identification into a family of business processes.

Lanman et al. (2013) addressed the challenges to adopt SOA into an existing SPL. They

described that SOA is appropriate to solve problems faced by Live Training Transformation

(the product line strategy put in place by the United States Army Program Executive

Office for Simulation, Training and Instrumentation), more specifically in the following

three areas:

1 Lack of the ability to interoperate among systems;

2 Necessity of adaptation on-demand to user requirements; and

3 Capacity of processing and storing of a massive volume of data coming from a variety

of unmanaged clients and servers.

24AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

According to them, the process of migrating to SOA is not away from SPL. Since,

SPL process is useful for managing directly the development of SOA services. Almost all

changes in the process were additions with the aim of covering particularities of service

development. Thus, as the mentality of reusable services and shared development of

product lines has many similarities, the impact on the development in a shared service

oriented infrastructure is not as significant change in the developers ideal.

Gamez et al. (2015) used concepts from SPL to address the managing of variability

in transaction services selection. Based on an SPL approach, they developed a strategy

which considers a set of services that provide the same functionality as being part of a

service family. They believed to reduce the complexity of the service selection step from

repositories. This activity is part of a process of recursively constructing a value-add web

service, which becomes more challenging with increasing number and diversity of services

available on Internet (Mohabbati et al., 2014).

Figure 2.10 shows the situation where service technologies are responsible for implemen-

ting variability mechanisms to customize specific and variable features. The core services

are the main reusable assets that can be configured to build customized products allowing

new dimensions of customizations as supporting for dynamic variation and exploitation of

existing services.

Figure 2.10: Services within a Product Line (Ribeiro, 2010).

2.2 SERVICE-ORIENTED COMPUTING (SOC) 25

2.2.3.1 Applying SPLE for Development of SOPL .

Mohabbati et al. (2014) proposed a method to support the development and cus-

tomization of a family of SOC-based applications. It is an extension of the traditional

SPL life-cycle widely used in the SPL development. In this way, as in the previous

method, the proposal also defines two core activities: Service-Domain Engineering and

Service-Application Engineering, as showed in Figure 2.11 and 2.12 respectively.

Service-domain engineering is responsible for making and evolving the reuse infrastruc-

ture. It analyzes the requirements and the scope of an SPL as a whole. The output of this

process are common reusable business processes and services. In turn, service-application

engineering uses the reference architecture to derive individual services (or to customize

them). In the following, we describe the three main activities of service-domain engineering

(Mohabbati et al., 2014):

Figure 2.11: Service-Domain Engineering of an SOPL (Mohabbati et al., 2014).

26AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

Figure 2.12: Service-Application Engineering of a SOPL (Mohabbati et al., 2014).

- Domain analysis in SOPL covers the steps of SPL requirements engineering (D1)

and the analysis of variability using feature modeling (D2). As the traditional SPL

process, the first step performs activities such as elicitation of SPL business goals,

requirements specification, and verification if requirements can be managed in terms

of changes or refinements. Moreover, it is identified the commonality and variability

among the requirements of several stakeholders. The outcome of this phase are

requirements models that define the SPL scope and decide on the boundary of the

SPL.

Based on the requirements models, the second step performs its analysis and makes

a feature model as artifact. This includes knowledge of variability associated to

functional and non-functional requirements. Moreover, it can be used to indicate

the permissible configuration space and serves as guideline in the customization

process. In SOC, services are the basis of development, encapsulate functionality, and

2.2 SERVICE-ORIENTED COMPUTING (SOC) 27

provides individual non-functional properties. Thus, this proposal defines a feature

as an increment in the service functionality for the context of SOPL. Therefore,

based on the granularity levels, a feature can be implemented or associated to a

composite service.

- Domain design phase (D3), a reference architecture and reusable components

are developed based on the feature model of the requirement engineerings phase.

Moreover, the model mapping (D4) is in charge to establish the mapping relationships

between the features within the feature model and the corresponding activities

specified within the reference business processes model. Services are responsible for

activities of the reference business process. In other words, the activities of this

phase produce a reference architecture as the behavioral model of features for the

entire family and specify how features are composed at run-time.

- Domain implementation captures the non-functional requirements, since that

they also can vary for different stakeholders. Thus, the D5 step is responsible by

capturing and specify non-functional quality during the development of an SOPL.

Thus, some features are annotated with quality ranges in the feature model. These

annotations allow that engineers and developers evaluate progressively the impact

of variant features selected according to the quality characteristics that the services

provide. In the end, the reference business processes model is update to cover these

changes.

Next, the main activities from the application engineering life-cycle are described.

Basically, the steps that compose this life-cycle are related to customization and derivation.

Thus, the service-application engineering uses the variability defined in domain engineering

by selecting shared assets also developed in domain engineering (Mohabbati et al., 2014):

- Application Analysis initially discovers and captures the functional and non-

functional requirements of a stakeholder for deriving process variants, which can be

deployed as the final product. Moreover, the preferences of the stakeholder also are

stored to perform feature prioritization and selection. Others activities performed

are the validation and verification of application requirements model according to

stakeholder needs and SPL constraints.

- Application Design and Implementation uses feature model for managing and

selecting variants that compose service product instances. Moreover, it is in this

phase that occurs the prioritization of features and selection of sub-processes. All of

28AN OVERVIEW ON SOFTWARE PRODUCT LINES AND SERVICE-ORIENTED COMPUTING

this process is performed in order to satisfy stakeholders requirements. Even at this

stage, the feature model is specialized with the selection of optional features. Finally,

the reference business process model is configured and corresponding services are

selected.

- Application Deployment is the last phase of the process. It is responsible by

the deployment of customized services. After deployment, the execution of the

personalized services is monitored to ensure the compliance of the service with the

stakeholders requirements.

2.3 CHAPTER SUMMARY

This chapter presented the main concepts about Software Product Lines, Service-Oriented

Computing and Service-Oriented Product Lines. Regarding SPL, it discussed SPL develop-

ment, motivations and benefits for applying this approach. Moreover, we highlighted the

process of selecting and customizing shared assets during Application Engineering named

as Product Derivation. This process is responsible to bring return on initial investment

necessary to operate an SPL economically (Rabiser et al., 2010).

In addition, this chapter also presented the basic concepts related to SOPL that is

the combination of service-orientation and software product lines, and some important

directions in the field. Next chapter presents the measurement framework used in this

dissertation to evaluate the SPL implementations.

CHAPTER 3

AN OVERVIEW ON TECHNIQUES TO IMPLEMENT

VARIABILITIES

In the previous Chapter, we described that the combination of SOC and SPL, called

of Service-Oriented Product Line (SOPL), has started to receive growing attention by

researchers and practitioners, mainly, the way how variability can be implemented in

service-oriented product lines. Apel et al. (2008) and Smith and Lewis (2009) investigated

the most suitable ways to develop SPL where services are the core assets.

This dissertation focuses on the derivation process of products more specifically on

variability implementation in software product lines and service-oriented product line. In

order to identify how efficient some techniques used in this activity are, we studied the

main variability implementation techniques found in the literature. Moreover, this Chapter

presents a measurement framework used in the case studies for performing a quantitative

assessment of the chosen techniques with the support of variability mechanisms.

The remainder of this Chapter is organized as follows. Section 3.2 describes the

framework used in the assessment. Section 3.3 discusses the metrics that compose the

framework. Section 3.1 describes some techniques for implementing variabilities. Finally,

Section 3.4 summarizes this Chapter.

3.1 TECHNIQUES FOR IMPLEMENTING VARIABILITIES

This section presents some techniques used in the literature for implementing variability,

such as Conditional Compilation (CC2), Aspect-Oriented Programming (AOP), and Open

Services Gateway initiative (OSGi).

3.1.1 Conditional Compilation (CC2)

Conditional Compilation is a well-known annotation-based technique that enables control

over the code segments (Gacek and Anastasopoules, 2001). This technique is one the

most elementary, yet most powerful, approach to enable variabilities in implementation

artifacts (Matos Jr., 2008). Basically, for handling software variability, the preprocessor

29

30 AN OVERVIEW ON TECHNIQUES TO IMPLEMENT VARIABILITIES

directives indicate pieces of code that should be compiled or not, based on the value of

preprocessor variables (Gaia et al., 2014).

One advantage of this technique is to allow that the code be marked at different

granularities from a single line of code to a whole file (Gaia et al., 2014). As consequence,

it is possible to encapsulate multiple implementations in a single module. To select

the desired functionality should be used an appropriate conditional sentence. Moreover,

conditional compilation enables the separation of variabilities by the use of directives, in

other words, the insertion completes source files into code (Gacek and Anastasopoules,

2001).

Figure 3.1 shows a piece of code using conditional compilation to select lines of code

that compose the feature ”Bugs”.

Figure 3.1: Example of the conditional compilation implementation technique.

In line 154, there is a directive //#if $Bugs == "T" that indicates the beginning of

the code belonging to the ’Bugs’ feature. In line 175, there is a #endif directive that

determines the end of the code associated to this feature. The identifiers used in the

construction of these directives, in this case ’Bugs’, are defined in a configuration file

and are always associated with a boolean value. This value indicates the presence of the

feature in the product.

3.1.2 Aspect-oriented Programming (AOP)

Aspect-Oriented Programming (AOP) has been proposed as a technique for improving

separation of concerns, increasing reusability and software evolution. This technique

3.1 TECHNIQUES FOR IMPLEMENTING VARIABILITIES 31

supports modularization of crosscutting concerns by providing abstractions that enable to

separate and compose them to produce the overall system (Sant’anna et al., 2003).

Aspects are the main mechanism of modularization that provide a new abstraction

composing components (classes, methods, and so on.) at specific join points. They

encapsulate a concern code that would be tangled with and scattered across the code of

other concerns (Gaia et al., 2014).

AspectJ is an extension of Java for aspect-oriented programming. For this extension,

aspects are described in terms of pointcuts and advices: pointcuts are responsible for

describing the ’join points’ (well-defined points in the program flow, for example, method

calls) and their values; advice is a method-like abstraction that defines code to be executed

when a join point is reached.

Figure 3.2 shows an aspect implementation and how it can modularize a feature. Lines

9 to 11 show an intercept of execution before the method initialization. In turn, lines 15

to 35 present what will replace.

Figure 3.2: Example of AOP implementation technique.

3.1.3 Parameterization

The idea of parameterization as mechanism for implementing variability is to represent

reusable software as a library of parameterized components, which has the behavior

32 AN OVERVIEW ON TECHNIQUES TO IMPLEMENT VARIABILITIES

determined by the values of the parameters.

Parameterization avoids code replication through centralized design around a set of

variables. In other words, an instantiation determines the types that parameterize a class

(or function) resulting in data types or components of software more flexible. However,

despite the advantages (promote reuse, avoid replication of code and facilitate traceability),

the centralizing of code by defining parameters is often a very complex task (Gacek and

Anastasopoules, 2001).

Figure 3.3: Example of the parameterization implementation technique.

Figure 3.4: File config.properties.

A common use of this technique is the parameterization of a data structure, for

example, a stack, which contains a set of elements with the type that can be set through

a parameter.

Figure 3.3 shows part of the code that implements by parameterization the feature

”Bugs”. It is possible to identify in line 21, the verification used to enable or not the

feature code. Figure 3.4 shows part of file that contains the parameters values used in

verification.

3.1.4 Delegation

Delegation is an object oriented technique that removes variabilities from the classes which

implement commonality and place them in specific classes. In this way, objects extend

3.1 TECHNIQUES FOR IMPLEMENTING VARIABILITIES 33

their functionality by forwarding requests to other objects. For this, the delegating objects

hold references to objects which are able to deal with specific variations (Matos Jr., 2008).

In this context, when a delegating object requires an execution of code related to some

variation (optional or alternative), delegation objects are responsible to provide these

functionalities. Figure 3.5 shows this situation (Matos Jr., 2008).

Figure 3.5: Variability by delegation technique.

Delegation works will way when deals with optional features. However, it has difficulty

with alternative ones. In the first situation, there is only one indirection while in the last

one, many indirections are necessary at the variation point. Moreover, other problem

emerge in cases where the number of variants (e.g., of an object function) starts to grow

significantly. In many cases, additional delegation and probably source files are required

(Gacek and Anastasopoules, 2001).

3.1.5 Inheritance

Object-oriented languages provide inheritance as a mechanism of classes specialization.

With this technique, specialized classes are able to refine the structure and behavior of

more general classes (parent classes). Thus, new attributes or operations can be defined

and also redefine the behavior of some operations present in parent class (known as method

override) (Matos Jr., 2008).

In SPL context, positive variabilities (features implemented separately in distinct

modules: classes, packages, files) can be implemented as refinements of classes, adding

the necessary behavior and structure to deal with each variability (Figure 3.6). However,

the growth of the amount of different variabilities leads also to a growth of the number of

subclasses that in many cases increase the complexity producing an unclear inheritance

34 AN OVERVIEW ON TECHNIQUES TO IMPLEMENT VARIABILITIES

tree (Gacek and Anastasopoules, 2001).

Figure 3.6: Variability by Inheritance technique.

3.1.6 Libraries

Programmers use software libraries during the software development. These libraries are

a suite of code and data that become more easy the development process. In the context

of software development, the libraries are divided into two subgroups (static libraries and

dynamic link libraries), which can be used to provide variability to SPLs.

Static libraries are a simple and limited alternative to allow software variability. They

contain a set of external functions that can be linked to the code after it has been compiled.

Each these libraries providing some kind of variability support. For this purpose, it is

important to ensure that the signatures of the functions are known to the compiled code

(and will remain unchanged). Configuration management tools are useful during the

libraries selection process (Gacek and Anastasopoules, 2001).

Dynamic link libraries (DLL) are more robust than static libraries. They are loaded in

dynamic way (in the same process space or in separated like independent EXE’s) whenever

the applications require. Separation of variability is reached by developing distinct controls

where the operating system is responsible linking the DLLs to the application and resolve

the addresses for all methods (Gacek and Anastasopoules, 2001).

3.1.7 Open Services Gateway Initiative (OSGi)

OSGi technology is a set of specifications that defines an open, common architecture

to develop, deploy and manage services in a coordinated way for Java language. These

specifications aim to facilitate the development, reduce the complexity and increase the

3.1 TECHNIQUES FOR IMPLEMENTING VARIABILITIES 35

reuse of services developed. Another important characteristic is allow that applications

discover and use services provided by other applications running inside the same OSGi

platform (Ribeiro, 2010).

OSGi is a suitable technology for implementing variation points because offers an

easy way to include new components and services without being required to recompile

the whole system. In other words, it is possible to perform changes between different

implementations in a dynamic way (Almeida et al., 2008).

Figures 3.7 and 3.8 show OSGi implementation for the same functionality presented in

previous subsection. As the features are implemented as services, it is required a class for

starting or stopping them. Figure 3.7 shows this part of the code. In the lines 15 and 20

can be observed the methods responsible for starting and stopping the service respectively.

Figure 3.8 shows the class that implements the feature.

Figure 3.7: Service ativator.

Figure 3.8: Example of the OSGi implementation technique.

36 AN OVERVIEW ON TECHNIQUES TO IMPLEMENT VARIABILITIES

3.2 THE MEASUREMENT FRAMEWORK

According to Sant’anna et al. (2003), the measure of internal attributes such as size and

instability have no meaning when observed in isolation. However, the metrics are more

effective when combined to produce a measurement framework, which enables software

engineers to understand and interpret the meanings of the measured data.

For this reason, and following the idea of relationship among metrics proposed by

Ribeiro et al. (2011), a measurement framework was developed. It provides support for

assessing the code quality in context of SPL and SOPL projects. The metrics reused in

this framework for data collect were defined or used in different studies such as McCabe

(1976), Sant’anna et al. (2003), Almeida et al. (2008) and Gaia et al. (2014). Figure 3.9

shows the measurement framework.

Figure 3.9: The Measurement Framework.

As it can be seen in Figure 3.9, the suite developed is composed of six metrics. These

metrics grouped provide the necessary conditions to analyze code quality, and thus meets

3.3 METRICS FOR CODE QUALITY EVALUATION 37

the requirements of measurement.

Moreover, three different levels compose the framework: code quality is the response

variable studied in this work. For this purpose, reusability and maintainability are the

qualities observed in the system. These are influenced by the factors level (complexity,

stability and modularity) categorized and quantified using the defined metrics.

3.3 METRICS FOR CODE QUALITY EVALUATION

In this section, we discuss the set of metrics used to compose the framework that

will be responsible by quantitatively evaluate each implementation technique. These

metrics are grouped according to three criteria: metrics to evaluate the complexity of

the implementation artifacts; stability metrics used to measure instability of source code;

finally metrics related to modularity of the implementation.

1. M1. Complexity Metrics

A critical issue in SPLs domain is how to perform an efficient separation of concerns

and modularize the systems in order to have modules and components well defined,

testable and more reusable (Sant’anna et al., 2003). In this scenario, structural

dependencies between services and components have a significant influence on system

complexity (Ribeiro, 2010). In this context, the following metrics can be used to

assess the complexity of source code artifacts:

Cyclomatic Complexity (CC1) - Cyclomatic complexity is measured in terms of

the number of paths through a program. Values obtained with aid of this metric are

useful to keep the size of components or services manageable and allow the testing

of all independent paths. In this sense, the cyclomatic complexity metric can be

used to analyze the complexity of each component developed (Almeida et al., 2008).

The cyclomatic complexity is calculated from a connected graph of the service or

component:

CC1 = E - N + p, where: (.)

E = the number of edges of the graph.

N = the number of nodes of the graph.

p = the number of connected services or components.

38 AN OVERVIEW ON TECHNIQUES TO IMPLEMENT VARIABILITIES

According to McCabe (1976), modules with CC1 among 1 and 10 are simple pro-

grams. Values between 11 and 20 represent programs more complex with moderate

risk. In turn, values ranging between 21 and 50 represent a complex program with

high risk. Values of CC1 above 50 indicate untestable programs.

Lines of Code (LOC) - Some metrics were proposed for measuring size. One

of the simplest one is lines of code that counts all lines for each implementation,

excluding comments and blank lines. This measure provides grounds for comparison

between systems, but different programming styles can bias the results of this metric

application. Because of this, it is necessary to ensure the same programming style

in all projects developed (Sant’anna et al., 2003).

Weighted Operations per Component or Service (WOCS) - The quantity of

time and effort required for developing and maintaining a service or component can

be measured by the number of methods and their complexity. Hence, the Weighted

Operations per Component or Service (WOCS) determines the complexity of service

or component based on its operations (methods) that will be required by other

services or components (Ribeiro, 2010). Consider a component or service C with

operations O1,..., On. Let c1, ..., cn be the complexity of the operation, then:

WOCSC = c1 + ... + cn (.)

For this metric, the number of parameters of an operation is the key of complexity.

Thus, operations with many parameters are more likely to be complex than other

which requires few parameters. In this way, the complexity of operation Ok is

defined as: ck = αk + 1, where αk denotes the number of formal parameters of Ok

(Matos Jr., 2008).

2. M2. Stability Metrics

A single change can begin a cascade of changes of independent modules or services

when there is a fragile design and difficulties in reusing. Thus, both the extent of

change and its impact cannot be predicted by the designer (Sant’anna et al., 2003).

In this context, the metric to measure instability of source code artifacts used was:

Instability Metric for Service or Component (IMSC) - IMSC is supported

3.3 METRICS FOR CODE QUALITY EVALUATION 39

by fan.in and fan.out, where fan.in (for function ’A’) is calculated by the number of

functions that call function ’A’. In turn, fan.out is the reverse procedure, that is, the

number of functions that the function ’A’ performs requests. The value measured

by IMSC reflects interaction between services or components through sending and

receiving messages (Ribeiro, 2010). Thus, this metric is defined as following:

IMCS =
fan.out

fan.in+ fan.out
(.)

The instability metric has range [0, 1], where I = 0 indicates a maximally stable

category and I = 1 indicates a maximally instable category, which means that the

service or component is very instable and most difficult the maintenance.

3. M3. Modularity Metrics

Decomposition mechanisms used both in design and implementation are closely re-

lated to Separation of Concerns (SoC). Concerns are an alternative for decomposing

software in smaller parts and at the same time more manageable and comprehensible.

Moreover, they are regarded equivalent to features for some researchers (Gaia et al.,

2014). Thus, the following metrics were chosen to support the modularity analysis

of source code artifacts:

Concerns Diffusion over Components (CDC) - This metric quantifies the

degree of feature scattering considering the granularity level of components. CDC

counts the number of components whose purpose is to contribute to the implemen-

tation of a concern. A high value for CDC indicates that a feature implementation

can be scattered (Gaia et al., 2014).

Concerns Diffusion over Operations (CDO) - Similar to CDC, Concern Dif-

fusion over Operations also quantifies the degree of feature scattering, but to the

level of granularity of methods. It counts the number of methods and constructors

performing a feature (Gaia et al., 2014).

These two last metrics were adapted (as in Gaia et al. (2014)) to consider the

ratio of the measured value to the total value on that release, it means, for example,

that the relative CDC calculated represents the percentage of classes that are used

to implement the feature. Thus, these relative metrics allow to analyze together the

40 AN OVERVIEW ON TECHNIQUES TO IMPLEMENT VARIABILITIES

set of metric values for all features. For both metrics, a lower value implies a better

result.

3.4 CHAPTER SUMMARY 41

3.4 CHAPTER SUMMARY

In this Chapter, we presented the measurement framework which will be used to compare

SPLs implementations, as well as the set of metrics for code evaluation. The metrics

are related to complexity, stability and modularity. We also discussed some of the most

relevant techniques to handle variabilities at the implementation level.

Next chapter presents a case study to investigate how efficient are some techniques

used to implement variability in software product lines and service-oriented product line.

CHAPTER 4

THE CASE STUDY

As stated in Chapter 2, through variability management, SPL engineering provides

required conditions to differentiate products in the same software domain. In order to do

it, software engineers have to define which techniques are the most suitable to implement

the variabilities defined in the management process. Aiming to aid this process, we

analyzed some techniques through a case study.

Case study is a commonly used research strategy in several areas including software

engineering that has as objective to improve the software engineering process and the

resultant software products (Runeson et al., 2012). Yin (2009) says that case study is an

empirical investigation of a contemporary phenomenon within its real-life context, mainly

when the boundaries between phenomenon and context are unclear.

Runeson et al. (2012) claim that the strategies adopted during the execution of the

research must be defined based on the purposes of the case study: exploratory, descriptive,

explanatory, and improving. This Chapter presents an exploratory case study aiming at

investigating different variability mechanisms to implement software product lines.

The remainder of this Chapter is organized as follows. Section 4.1 presents the research

design with the most important definitions related to the case study research. The results

and findings are described in Section 4.2. Section 4.3 discusses the threats to validity; and

finally, Section 4.4 presents the Chapter summary.

4.1 CASE STUDY PROTOCOL

Runeson et al. (2012) define a structure for an exploratory case study as means to overcome

existing limitation resources and time limits. This research follows the protocol definition

proposed by them in the next sub-sections.

4.1.1 Objective

One of the goals of this case study is to make a contribution for the body of knowledge on the

development process of SPL and SOPL, mainly, in the variability implementation. Thus,

the overall goal of the case study is to investigate the code quality inside this context. To do

43

44 THE CASE STUDY

that, we analyzed some implementations performed through some variability techniques

most used for developing SPL systems (conditional compilation and aspect-oriented

programming). Moreover, we also used one mechanism (Open services gateway initiative)

for implementing SOPL and identifying its behavior in reuse.

Although conditional compilation is not a new variability techniques, we decided to

choose it because it is still a state-of-the practice option adopted in SPL industry (Gaia

et al., 2014). Moreover, many large open-source systems (including the Linux kernel)

have also used CC for variability realization (Zhang et al., 2016). In turn, aspect-oriented

programming is mainly used in code tracing, logging and exception handling. Due to this,

there is still not enough evidence of its successful practical usage in variability realization,

what justifying its study (Zhang et al., 2016). Finally, OSGi was chosen because of its

support to implementing components and managing their interaction and lifecycle, unlike

of Web Services that has some limitations in terms of the degree of interaction between

the components (services, in this case) Almeida et al. (2008).

This objective was refined through the GQM (Goal/Question/Metric) paradigm (Basili

et al., 1994) to obtain the specification of a measurement system that has as targeting a

particular set of issues and of rules for the interpretation of the measurement data. In

other words, the case study must be conduced in accordance with a specific goal, a set of

questions that represent the operational definition of the goal, and the related metrics

that must be collected to aid answering the questions (Ribeiro, 2010). Thus, following

the GQM template, it aims at:

Goal. Analyze the variability implementation techniques (conditional compilation,

OSGi, and aspects) for the purpose of evaluation with respect to reusability, maintainability,

complexity, stability and modularity from the point of view of software engineers and

researchers in the context of a software product line and service-oriented product line

project.

Hypotheses. According to Kitchenham et al. (1995), it is important to define the

expected effects for the object being analyzed. Moreover, they also state that formally, we

can never prove hypotheses, we can only disprove them. Thus, we should also define what

is not expected. Because of this, it was established hypotheses which the experiment will

accept or reject. For this study, it means that there is no difference among the techniques

for implementing variabilities:

4.1 CASE STUDY PROTOCOL 45

H0 : CC2CC1 = AOPCC1 = OSGiCC1

: CC2LOC = AOPLOC = OSGiLOC

: CC2WOCS = AOPWOCS = OSGiWOCS

: CC2IMSC = AOPIMSC = OSGiIMSC

: CC2CDC = AOPCDC = OSGiCDC

: CC2CDO = AOPCDO = OSGiCDO (.)

In turn, the alternatives hypotheses are valid when the null hypotheses are rejected. In

this scenario, there are differences among the technologies for implementing variabilities

studied:

Ha : CC2CC1 6= AOPCC1 or CC2CC1 6= OSGiCC1 or AOPCC1 6= OSGiCC1

: CC2LOC 6= AOPLOC or CC2LOC 6= OSGiLOC or AOPLOC 6= OSGiLOC

: CC2WOCS 6= AOPWOCS or CC2WOCS 6= OSGiWOCS or AOPWOCS 6= OSGiWOCS

: CC2IMSC 6= AOPIMSC or CC2IMSC 6= OSGiIMSC or AOPIMSC 6= OSGiIMSC

: CC2CDC 6= AOPCDC or CC2CDC 6= OSGiCDC or AOPCDC 6= OSGiCDC

: CC2CDO 6= AOPCDO or CC2CDO 6= OSGiCDO or AOPCDO 6= OSGiCDO (.)

4.1.2 The Case

The independent variable of this study is the variability mechanism used to implement the

SPL: compilation conditional, Aspect-Oriented Programming and Open Services Gateway

Initiative. In order to evaluate these different variability implementation techniques, this

case study was developed.

The SPL under study is an academic simulator of a warehouse SPL implemented

by the RiSE Labs group. The development team was composed of one Ph.D. student

and one M.Sc. student. This SPL was inspired on the scenario proposed by Apel et al.

(2008) which provides conditions to investigate the source code related to modularity

and software variability. Figure 4.1 shows a screenshot of the most complete product

of the Warehouse SPL developed by RiSE Labs group using conditional compilation as

variability implementation technique.

46 THE CASE STUDY

Figure 4.1: Screenshot a Warehouse SPL product implemented with conditional compila-
tion.

The Warehouse SPL is composed of 23 features that allow the simulation of basic

functionalities such as get customer requests, checking the availability of ordered goods,

ordering the goods from an inventory and billing.

In the first phase, the students developed the SPL from the scratch using conditional

compilation as variability mechanism. Three releases were developed where the release 1

contains the core asset of SPL and the subsequent ones incorporate changes to implement

others features. The other implementations using AOP and OSGi were developed based

on this first release. For OSGi, the services were used to resolve features, it means that

services are the main core assets, where for each feature, a corresponding service was

developed in the implemented SPL. Table 4.1 shows all developed scenarios that were

achieved by including, changing, or removing features. Figure 4.2 shows the feature model

of the SPL.

As aforementioned, a set of scenarios that represent the changes performed among the

releases were implemented. Two change scenarios for each mechanism resulted in a total

of nine releases. Figure 4.3 and 4.4 show some measures about the size of the Warehouse

SPL in terms of the number of components (class and class refinements and aspects), and

methods.

Columns R.1 to R.3 represent the different releases of the SPL and the number of

components varies from 41 (in release 1 for conditional compilation) to 72 (in release 3

for OSGi). The number of components required in all releases by CC2 implementation is

smaller than AOP and OSGi (which requires more components).

As the number of components, the OSGi implementation is the one that requires more

4.1 CASE STUDY PROTOCOL 47

Table 4.1: Warehoure features for releases.

Release 1 Release 2 Release 3
Access Control x x x
User x x x
Add User x x x
Edit User x x x
Product x x x
Add Product x x x
Edit Product x x x
Acquisition x x x
Shopping Cart x x x
New Shopping Cart x x x
Edit Shopping Cart x x x
Ordering x x x
Availability Checking x x x
Payment x x x
Shipping x x x
Normal Billing x
Billing withDiscounting x x
Debit Card x x x
Credit Card x x
Remove User x
Remove Product x
Remove Shopping Cart x
Status Monitoring x

48 THE CASE STUDY

Figure 4.2: Warehoure feature model.

methods (278) followed by AOP and CC2. It occurs because both AOP as OSGi need

to add methods that are used as part of configuration of these variability mechanisms.

Thus, this characteristic makes the number of classes and methods increase in relation to

conditional compilation.

4.1 CASE STUDY PROTOCOL 49

Figure 4.3: Warehouse SPL implementation (Components).

Figure 4.4: Warehouse SPL implementation (Methods)

50 THE CASE STUDY

4.1.3 Units of Analysis

The unit of analysis in this case of study is the evaluation of the variability implementation

techniques. The execution process of the case study was divided in these steps. Initially, we

developed and collected the data for analysis from the SPL implemented using conditional

compilation. Then, we performed this same process using AOP and finalized with the

SOPL developed with OSGi.

4.1.4 Case Study Research Questions

According to Runeson et al. (2012), the desired knowledge during the case study must be

based on the research questions. Furthermore, the resolution of these questions means

that the case study achieved its objectives.

Thus, we defined the following research questions (RQ) in this case study:

RQ 1: How complex are the services and components developed using CC2, AOP or

OSGi?

Rationale: this question investigates structural dependencies between components or

services. This kind of dependency has influence on the system complexity, thus, the goal

is to identify which mechanism produces best results.

RQ 2: How stable are the services and components developed using CC2, AOP

or OSGi?

Rationale: this research question identifies which mechanism produces better results

for stability. With a fragile design and development may be triggered an independent

cascade of changes when a single change is performed in a component. Thus, this aspect

is very important.

RQ 3: How modular are the services and components developed using CC2, AOP or

OSGi?

Rationale: developers often are aiming to implement modular software, and at the same

time, more manageable and comprehensible. In this context, RQ 3 aims at supporting

our analysis about the modularity level of services and components.

4.1 CASE STUDY PROTOCOL 51

4.1.5 Data Collection

Runeson et al. (2012) state that the main decisions about methods for data collection

are defined at design time for the case study. Moreover, they present three principles for

data collection: (i) use multiple sources of data; (ii) create a case study database; and (iii)

validate data and maintain a chain of evidence.

They also claim that available sources of expected data influence the methods of data

collection. An example of this occurs when researchers intend to obtain information from

software engineers with interviews, focus groups, and questionnaire surveys which are

clearly methods of data collection indicated (Runeson et al., 2012).

Data collection can be classified in regard to degree of involvement of software engi-

neers. In the first degree (inquisitive techniques), researchers have direct contact with

the interviewees and collect data in real time (e.g. interviews). In the second degree

(observational techniques), the engineers involvement occurs in indirect way, in other

words, the researcher collects the data without interaction with the interviewees (e.g.

instrumenting systems). Finally in the third degree, there is only the study of work

artifacts (Lethbridge et al., 2005).

For this case study, we used the method of third degree once that researchers had

contact only with the software artifacts as data source. Thus, we adopted the static

analysis (generates findings without executing the program) of a software as data collection

method. This technique is indicated when the program behavior is not the focus of the

study.

In this technique, the code analysis extracts a very large amount of information.

However, to get useful information, it is necessary parsers and other analysis tools, which

cannot always be mature enough (Lethbridge et al., 2005). We overcome this obstacle

using the plugin Metrics1 for the Eclipse platform, which provides conditions to measure

several metrics.

4.1.6 Data Analysis

We define the strategy for data analysis based on the theoretical propositions of (Runeson

et al., 2012). They gave support in decisions about what kind of data should be object of

study or ignored. These propositions also assist in the development of a suitable data

collection plan to literature review and research questions.

In order to perform this study, a quantitative analysis was applied in the data collected.

1http://sourceforge.net/projects/metrics/

52 THE CASE STUDY

This analysis was performed in accordance with the literature review and the framework

previously presented (Section 3.2). It was divided in complexity, modularity, and stability.

Each subsection of analysis describes the results obtained with the application of the

metrics on the implemented releases. It must be highlighted that the values measured for

complexity, modularity, and stability represent the level of influence which these quality

factors have on code reusability and maintainability.

4.2 RESULTS AND FINDINGS

This section presents the data collected after implementation. Moreover, it is performed a

quantitative analysis related to complexity, stability and modularity.

4.2.1 Complexity Analysis

Three metrics were used in the process of analysis such as presented in Figure 3.2 :

cyclomatic complexity, lines of code, and weighted operations per component or Service.

Figure 4.5 shows a graphic with mean values measured of cyclomatic complexity for

the releases of Warehouse. As it can be seen, OSGi mechanism has the lowest cyclomatic

complexity compared to the other techniques. Among its releases, the variation practically

does not exist, remaining at roughly 1.2. CC2 presents the higher mean however, in

release 2, the AOP mechanism had mean values were very close, with values close to 1.5.

Figure 4.5: Warehouse Cyclomatic Complexity.

Unlike what happened with CC2 analysis, OSGi is the variability mechanism that

needs more lines of code among the techniques studied. When conditional compilation

4.2 RESULTS AND FINDINGS 53

is used in the implementation, the range was 2487 to 3309 lines among the releases.

The variation between products for AOP was lower between 2649 to 2933. Finally, the

range for OSGi was of 2992 to 3309. The differences of lines of code used among the

mechanism is explained in part by the fact that CC2 inserts its preconditions in pieces

of code commented only in the base product. In this way, when the others releases are

derived the preconditions are removed. Moreover, the own characteristics of the other

techniques make them need more lines of code. Figure 4.6 shows the number of lines of

code for each release discussed.

Figure 4.6: Warehouse Lines of Code.

The last metric used to measure the Warehouse code complexity was weighted oper-

ations per components or service. For this metric, OSGi had values lower than others.

The difference among the values measured is considerable, once that OSGi average is half

when compared to AOP. Conditional compilation had the higher results, it is explained

by the fact that it had the implementation with fewer number of methods and classes

among the techniques studied. Thus, the number of parameters (key to calculate this

metric) is distributed in less methods, which leads to an increase of the mean for CC2.

Figure 4.7 shows the results discussed for this metric.

4.2.2 Stability Analysis

The results were computed based on the instability metric presented in Section 3.2.

Observing the graphic showed in Figure 4.8 is possible to identify that OSGi is the

mechanism with components or services more unstable in all releases analyzed. In turn,

AOP and CC2 had results very similar.

54 THE CASE STUDY

Figure 4.7: Warehouse Weighted Operations.

The values related to OSGi implementation can be explained through the way that

are defined the bundle context and additional code for providing discoverability for the

services. Thus, due to dynamic characteristic of this technique, it is not possible to

separate the persistence from the Bundle, resulting in a high coupling among services that

produces instability values more elevated.

Figure 4.8: Warehouse Instability.

4.2.3 Modularity Analysis

The metrics chosen to perform this analysis were concerns diffusion over components and

concerns diffusion over operations (as shown in Figure 3.2). As previously discussed, these

4.2 RESULTS AND FINDINGS 55

metrics were adapted and we considered the ratio of the measured value to the total value

on each release.

Regarding to CDC, Figure 4.9 shows that OSGi implementation is the most modular

when the criterion observed refers to the degree of feature scattering on the level of

components. AOP had mean with values intermediate, and CC2 implementation had the

worse result for this metric with mean always higher than the other variability mechanisms.

Figure 4.9: Concerns Diffusion over Components for Warehouse

This result was expected due the intrinsic features of the techniques analyzed. During

the development process using OSGi each feature was isolated in an service what by itself

provides some modularity. In an analogous way, features were inserted in aspects when

the development used AOP mechanism. Nevertheless, CC2 implementation does not have

a native way to isolate features.

Finally, CDO was the last metric applied in this case study. In contrast with the

results of CDC, the values achieved do not clarify which mechanism got better results.

They are very similar and sometimes a technique has slight superiority. Figure 4.10 shows

this situation.

4.2.4 Descriptive and Exploratory Analysis

We used the nonparametric Kruskal-Wallis test (KW) to compare the different mechanisms

of variability because in most of the samples, the normality hypothesis was rejected by

the Shapiro-Wilk test (SW) which prevents use of variance analysis.

The Kruskal-Wallis (KW) is an extension of the Wilcoxon-Mann-Whitney test (WMW).

It is a nonparametric test used to compare three or more populations. The underlying

56 THE CASE STUDY

Figure 4.10: Concerns Diffusion over Operations for Warehouse

hypothesis test is:

H0: All populations have identical distributions.

H1: At least two populations have different distributions.

The results are shown in Table 4.2. The comparison of variability mechanisms indicates

that LOC and CDO did not present statistically significant difference at the level of 5%.

The variables Instability had a borderline significance. It means that there is a difference

only in one of the mechanisms compared to others, as shown in the Boxplot of Figure

4.11, where only OSGi had higher values.

Table 4.2: Results of the quantitative analyses for Warehoure.

Variable Kruskal-Wallis Chi-squared H-value df
Cyclomatic Complexity 7.2000 5.6 2
Weighted Operations 7.2000 5.6 2
Lines of Code 5.4222 5.6 2
Instability 5.6000 5.6 2
Concerns Diffusion over Components 5.9556 5.6 2
Concerns Diffusion over Operations 0.5650 5.6 2

Thus, these results rejected the null hypotheses defined for the case study except for

CDO metric that did not present significant results in this study.

4.2 RESULTS AND FINDINGS 57

Figure 4.11: Boxplot comparing the variability mechanisms according to aspects complexity,
stability and modularity.

58 THE CASE STUDY

4.2.5 Results Summary

Table 4.3 summarizes the results achieved in this case study. They showed that there

are some aspects that must be considered when using different techniques to implement

variability in SPL or SOPL systems. In this sense, it was analyzed the differences between

each mechanism regarding to complexity, stability and modularity.

Moreover, statistical analysis was applied to test the hypotheses. The test rejected

five null hypotheses, except one related to CDO. These results can offer initial guidance

to classify in different priority levels the variability mechanisms.

Table 4.3: Results for the quantitative analysis for Warehoure.

Variability Mechanism Metrics Release 1 Release 2 Release 3

Compilation Conditional

CC1 1.609 1.586 1.609
LOC 2487 2697 2934

WOCS 8.756 8.744 8.848
IMSC 0.272 0.2651 0.2585
CDC 0.088 0.091 0.082
CDO 0.048 0.045 0.036

AOP

CC1 1.482 1.528 1.511
LOC 2649 2813 2933

WOCS 7.62 7.904 7.661
IMSC 0.27 0.269 0.268
CDC 0.083 0.086 0.077
CDO 0.047 0.044 0.036

OSGi

CC1 1.275 1.268 1.229
LOC 2992 3160 3309

WOCS 3.892 3.814 3.541
IMSC 0.342 0.327 0.337
CDC 0.074 0.076 0.065
CDO 0.048 0.046 0.039

4.3 THREATS TO VALIDITY

According to Runeson et al. (2012), the validity of a study expresses the the trustworthiness

of the results. Moreover, it is used to indicate in what extent the results are not biased

by the researchers subjective point of view. They also claim that the validity should be

addressed during all steps of the case study.

There are some ways to categorize the aspects of validity and threats to validity in the

4.4 CHAPTER SUMMARY 59

literature. This work used as basis the scheme proposed by Yin (2009), with the following

aspects: construct validity, internal validity, and external validity. Thus, the threats to

validity of this work are described next.

• Construct Validity: The fact that the main researcher is also involved in the

development process is a threat to construct validity for this case study, since he

can have influence on the results and conclusions of the work. In order to mitigate

this influence, another software engineer was involved in the development process of

the Warehouse. Moreover, for each mechanism studied, we developed three releases,

so it made possible to compare the results and identify any incoherent result.

• Internal Validity: This case study addressed different areas, such as, SOC, mech-

anisms for implementing variability, and the combination between SOC and SPL

known as SOPL. Understanding all of these areas would take a long time and effort.

Thus, it is possible some concepts may have been poorly understood. Trying to

solve these possible issues, we investigated related work during the since literature

review that could provide metrics to be used and how proceed during the evaluation

process.

• External Validity: (Runeson et al., 2012) claim that this aspect of validity is

concerned with to what extent it is possible to generalize the findings and to what

extent the findings are of interest to other people outside the investigated case. Thus,

as this study aims at identifying the most suitable variability mechanism, it may be

used as baseline for comparison in further studies developed in the same context.

However, the small domain analyzed is a threat the Warehouse is an academic

small project that may not have functional value with software product lines and

service-oriented product lines concepts and that makes it harder generalizations.

However, in order to solve these possible issues, we will replicate this study in

another domain.

4.4 CHAPTER SUMMARY

This Chapter presented a case study describing in details its objective, the case, units of

analysis, data collection and analysis and the main findings.

The case study aimed at comparing different variability mechanism and identifying

the applicability of them on the development of SPL and SOPL. In order to set up this

environment, we evaluated complexity, modularity, and stability.

60 THE CASE STUDY

Next Chapter presents a replicated case study applied in another domain. The goal is

to highlight the aspects identified in this study, and try to identify new evidence in the

area.

CHAPTER 5

THE REPLICATED CASE STUDY

Replications are useful since they allow understanding how many results were influenced

by the context. Moreover, when a replicated case study has the same results as the

previous one, it means that generalizations regarding the particular research questions

can be made (Runeson et al., 2012).

Juristo and Gómez (2012) present some definitions for replication in the scientific

context, including one that says it is a methodological tool based on a repetition procedure

that is involved in establishing a fact, truth, or piece of knowledge. Replications also

are classified into three groups based on the types analyzed: (i) replications that vary

little or not at all with respect to the reference experiment; (ii) replications that do vary

but still follow the same method as the reference experiment; (iii) replications that use

different methods to verify the reference experiment results (Gómez et al., 2010). Thus,

this Chapter presents a replicated case study that has as a basis all the steps defined in

the last case study presented in the previous Chapter. It is important to highlight that

this study was performed on another domain with new SPLs and SOPL.

The replicated case study presented in this Chapter aims at analyzing the variability

mechanisms used for implementing SPL and SOPL and comparing the results with the

last case study. The remainder of this Chapter is organized as follows. Section 5.1 presents

the replicated research design. The results and findings are described in Section 5.2 and

Section 5.3 presents the comparative analysis. Section 5.4 discusses the threats to validity,

and finally, Section 5.5 presents the Chapter summary.

5.1 CASE STUDY PROTOCOL

When generalizing results, the protocol used in a replicated case study must be identical to

the that applied in the original case. Thus, it is possible to demonstrate quality assurance

or to support a replication by other researchers. For this reason, the protocol and the

guidelines applied in the previous study were used in this replication to guarantee that

this case study will be as similar as possible to the original one.

Thus, the protocol definitions proposed are detailed in the next sub-sections: objective

61

62 THE REPLICATED CASE STUDY

(Section 5.1.1), the bounded system or case (Section 5.1.2), units of analysis (Section

5.1.3), case study research questions (Section 5.1.4), data collection instruments (Section

5.1.5) and data analysis procedures (Section 5.1.6).

5.1.1 Objective

As well as in the original case study, we replicated the case study aiming at making a

contribution to the body of knowledge in the development process of SPL and SOPL.

Thus, the overall goal of our replicate case study was to investigate the code quality inside

this context, hence, increasing the generalizations of the initial results.

For this study, we selected an more complex SPL (and consequently the SOPL devel-

oped with OSGi) that has its domain related to management of academic scientific events.

Thus, following the GQM template developed for the original case study, the goal of this

replication is:

Goal. Analyze the variability implementation techniques (conditional compilation,

OSGi, and aspects) for the purpose of evaluation with respect to reusability, maintainabil-

ity, complexity, stability and modularity from the point of view of software engineers and

researchers in the context of a service-oriented product line project.

Hypotheses. In a similar way, the hypotheses defined for the previous case study

will also be tested in this study. Thus, the null hypotheses which we would like to reject

are those that claim that there is no difference among the techniques for implementing

variabilities:

H0 : CC2CC1 = AOPCC1 = OSGiCC1

: CC2LOC = AOPLOC = OSGiLOC

: CC2WOCS = AOPWOCS = OSGiWOCS

: CC2IMSC = AOPIMSC = OSGiIMSC

: CC2CDC = AOPCDC = OSGiCDC

: CC2CDO = AOPCDO = OSGiCDO (.)

On the other hand, the alternatives hypotheses claim that there are differences among

the techniques for implementing variabilities:

5.1 CASE STUDY PROTOCOL 63

Ha : CC2CC1 6= AOPCC1 or CC2CC1 6= OSGiCC1 or AOPCC1 6= OSGiCC1

: CC2LOC 6= AOPLOC or CC2LOC 6= OSGiLOC or AOPLOC 6= OSGiLOC

: CC2WOCS 6= AOPWOCS or CC2WOCS 6= OSGiWOCS or AOPWOCS 6= OSGiWOCS

: CC2IMSC 6= AOPIMSC or CC2IMSC 6= OSGiIMSC or AOPIMSC 6= OSGiIMSC

: CC2CDC 6= AOPCDC or CC2CDC 6= OSGiCDC or AOPCDC 6= OSGiCDC

: CC2CDO 6= AOPCDO or CC2CDO 6= OSGiCDO or AOPCDO 6= OSGiCDO (.)

5.1.2 The Case

The SPL under study is an SPL for desktop applications that assists users in the man-

agement of academic scientific events. The development team for the base version of

the SPL used in this study was composed of one Ph.D. student and two M.Sc. students.

However, different from the previous case study, the main researcher did not participate

in all development phases. He worked on the development of the SPL through AOP and

the SOPL using OSGi based on conditional compilation version implemented by other

developers. Figure 5.1 shows a screenshot of the most complete product of the RISEEvent

SPL developed by RiSE Labs using conditional compilation as variability implementation

technique.

Figure 5.1: Screenshot of RiSEEvent SPL product implemented with conditional compila-
tion.

RiSEEvent is composed by 28 features which provide the required functionalities to

64 THE REPLICATED CASE STUDY

enable overall management of the entire academic scientific events, such as, submission,

registration and evaluation of the work, payment, event program, besides generating some

documentation such as reports, and certificates.

Table 5.1: RiSEEvent features for releases.

Release 1 Release 2 Release 3
EventProgram x x x
EventImportantDates x x x
Activity x x x
RegistrationUserActivity x x x
ReportsFrequencyperEvent x x x
ReportsFrequencyperActivity x x x
ReportsListofAuthors x x x
Bugs x x
Speaker x x
Organizer x x
RegistrationSpeakerActivity x x
RegistrationOrganizerActivity x x
CheckingCopyAtestado x x
CheckingCopyCertificado x x
PaymentAvista x x
PaymentDeposito x x
PaymentCartao x x
SubmissionParcial x x
InsertAuthors x x
Receipt x x
Reviewer x
ReviewRoundofReview x
ReviewSimpleReview x
SubmissionCompleta x
AssignmentChairindication x
Assignmentautomatic x
ConflictofinterestAutomatic x
Notification x

Based on the initial version implemented with conditional compilation (by other

developers), the main researcher decided to develop two other releases aiming to complete

the number of products for this variability mechanism to be evaluated. As the original

case study, the Release 1 contains the core assets of the application. Subsequently, changes

were incorporated to implement all features designed for this SPL. At the end of this

process, three scenarios for each variability technique through inclusion, changing, or

5.1 CASE STUDY PROTOCOL 65

removing classes were implemented. These scenarios are illustrated by Table 5.1 and

Figure 5.2 which present the feature model of RiSEEvent SPL.

Figures 5.3 and 5.4 present an overview of the set of scenarios implemented for

RiSEEvent SPL. As explained in the previous case study, the columns R1, R2, and R3

represent the different releases of the SPL. In RiSEEvent case study, the number of

components required in all releases by CC2 implementation is also smaller than AOP

and OSGi (which requires more components). In general, this result is similar when the

point of view observed is the number of methods, which had measured an interval ranging

from 529 to 1567. Only in the release 1 there was the occurrence of the implementation

developed with AOP to have the greatest number of methods among the releases analyzed.

The range for that was from 529 to 1567.

66 THE REPLICATED CASE STUDY

Figure 5.2: RiSEEvents feature model.

5.1 CASE STUDY PROTOCOL 67

Figure 5.3: RiSEEvent SPL implementation (Components).

Figure 5.4: RiSEEvent SPL implementation (Methods).

68 THE REPLICATED CASE STUDY

5.1.3 Units of Analysis

For this case study, the unit of analysis is similar to the previous one. First, we collected

the data from each SPL implementation in an individual way, and then we performed

their comparative analysis.

5.1.4 Case Study Research Questions

The main objective of the original study was to investigate the code quality in the context

of SPL and SOPL development applying the framework of the impacts of each mechanism.

This replication had the same purpose, but it also aimed to reinforce the results achieved

in the first case study and to enable the generalization of conclusions. Thus, we reused

the same research questions:

Question 1: How complex are the services and components developed using CC2,

AOP or OSGi?

Question 2: How stable are the services and components developed using CC2,

AOP or OSGi?

Question 3: How modular are the services and components developed using CC2,

AOP or OSGi?

More detail can be seen in GQM template of the previous study Subsection 4.1.

5.1.5 Data Collection

The case studies have many similarities. Both analyzed only the source code of SPLs

and SOPL. In this way, the replicated case also used the method of the third degree, of

which there is only the study of work artifacts (Lethbridge et al., 2005), in the data collect

aimed to perform static analysis.

5.1.6 Data Analysis

The strategy used in this case study was composed by a quantitative analysis of the data

obtained after the metrics application (Section 3.3) in the source code of RiSEEvent SPL

and SOPL. Next sections will present the analysis of complexity, modularity, and stability.

5.2 RESULTS AND FINDINGS 69

5.2 RESULTS AND FINDINGS

This section discusses the findings of the protocol proposed in the previous case study

when applied on the second SPL.

5.2.1 Complexity Analysis

This section presents the results obtained for the complexity metrics (cyclomatic complexity,

line of code, and weighted operations per component or Service). In Figure 5.5, it is

possible to observe the cyclomatic complexity collected from the implemented scenarios.

The releases implemented through conditional compilation had a more elevated cyclo-

matic complexity among the studied techniques. Another aspect identified is the difference

of values measured by each technique. CC2 and AOP values are closer to each other

than the OSGi mean. The first two had mean values measured at around 2.1 while OSGi

presented values to releases 1 and 2 of about 1.8 and to release 3 of 1.745

Figure 5.5: RiSEEvent Cyclomatic Complexity.

An opposite situation occurs when the observed criterion is lines of code. In this

context, AOP becomes the mechanism with the highest values measured and conditional

compilation required the lowest amount of lines of code. The exception happened in

release 3, which OSGi was the technique that used more lines of code. This scenario can

be seen in Figure 5.6.

Finally, the last complexity metric used was weighted operations per components or

service. It had a peculiarity, a wide variation in the results for OSGi. In the first release,

70 THE REPLICATED CASE STUDY

Figure 5.6: RiSEEvent Lines of Code.

OSGi had (with a large difference from other mechanisms) the smallest measured value.

However, in release 2, the situation changed and it made the technique more complex.

In release 3, this situation was repeated, but with the mean closer to other mechanisms.

Except the first, AOP was the technique with the best results. Figure 5.7 shows these

results.

Figure 5.7: RiSEEvent Weighted Operations.

5.2 RESULTS AND FINDINGS 71

5.2.2 Stability Analysis

In Figure 5.8 it can be observed that the components built with OSGi are the most

unstable among the ones studied. The other mechanisms had similar levels of instability,

with a slight tendency for the implementations that use conditional compilation to be

more stable.

Figure 5.8: RiSEEvent Instability.

5.2.3 Modularity Analysis

The last group of metrics used in these studies is related to the modularity of programs.

Figure 5.9 shows the results for CDC. Based on the results, we can state that features

implemented with OSGi are a little less diffuse among the components than the others

developed with AOP and conditional compilation. These had very similar results, which

were not expected, since it did not occur in the first case study.

Figure 5.10 displays the results achieved with the concern diffusion metrics over

operations. The collected data are again inconclusive regarding which mechanism had the

best performance. OSGi presented a large variation and the others had identical results in

both releases. It is possible that during migration from conditional compilation to AOP

some external factor had influenced this process.

72 THE REPLICATED CASE STUDY

Figure 5.9: Concerns Diffusion over Components for RiSEEvent.

Figure 5.10: Concerns Diffusion over Operations for RiSEEvent

5.2.4 Descriptive and Exploratory Analysis

As in the first case study, we used the nonparametric Kruskal-Wallis test to compare

the different mechanisms of variability and the results are presented in Table 5.2. They

indicate that (for RiSEEvent) only the results from Cyclomatic Complexity and Instability

which presented significant statistic difference at the level of 5% in comparison among the

variability mechanisms should be considered. As a result, most mechanisms presented

similar behavior in the Boxplot of Figure 5.11.

5.2 RESULTS AND FINDINGS 73

With these results, only the two null hypotheses related to cyclomatic complexity and

instability defined for this case study can be rejected. Consequently, the other metrics did

not produce significant results in this study.

Table 5.2: Results for the quantitative analysis for RiSEEvent.

Variable Kruskal-Wallis Chi-squared H-value df
Cyclomatic Complexity 7.2000 5.6 2
Weighted Operations 0.6222 5.6 2
Lines of Code 0.6222 5.6 2
Instability 72.000 5.6 2
Concerns Diffusion over Components 0.6050 5.6 2
Concerns Diffusion over Operations 0.0904 5.6 2

74 THE REPLICATED CASE STUDY

Figure 5.11: Boxplot comparing the variability mechanisms according to aspects complexity,
stability and modularity.

5.3 COMPARATIVE ANALYSIS 75

5.2.5 Results Summary

Table 5.3 summarizes the results found in this replicated case study where were analyzed

the differences between each mechanism related to complexity, stability and modularity.

As in the first case study, statistical analyses were applied to test the hypotheses. In this

case, were rejected two null hypotheses, indicating that only the alternative hypotheses

related to cyclomatic complexity and instability may be true. In this sense, these two

results can be combined with the results achieved in the previous case study to classify into

different priority levels the variability mechanisms during the decision model development.

Same as in the previous study, it is necessary to perform more detailed studies for verifying

the hypotheses that were not rejected.

Table 5.3: Results of the quantitative analysis for RiSEEvent.

Variability Mechanism Metrics Release 1 Release 2 Release 3

Compilation Conditional

CC1 2.165 2.137 2.15
LOC 9623 20420 26349

WOCS 7.098 7.533 7.285
IMSC 0.435 0.441 0.448
CDC 0.09 0.06 0.05
CDO 0.056 0.049 0.039

AOP

CC1 2.101 2.112 2.125
LOC 9922 20684 26719

WOCS 7.032 7.409 7.149
IMSC 0.484 0.498 0.503
CDC 0.097 0.06 0.049
CDO 0.054 0.049 0.039

OSGi

CC1 1.849 1.878 1.745
LOC 9911 20516 26741

WOCS 6.105 8.33 7.448
IMSC 0.624 0.666 0.664
CDC 0.088 0.058 0.043
CDO 0.069 0.051 0.038

5.3 COMPARATIVE ANALYSIS

In this section, we performed the comparison among the results obtained in both domains.

General Comparison. The SPL was implemented in JAVA language using the

Model-View-Controller (MVC) as the architectural pattern in the desktop domain. The

76 THE REPLICATED CASE STUDY

conditional compilation (CC2), Aspect-Oriented Programming (AOP), and Open Services

Gateway initiative (OSGi) were the techniques used to implement 23 features or services

and perform the variability among the products. These different products have in their

full releases 46, 56, and 72 Java classes for each technique used respectively.

As Warehouse, RiSEEvents had three main products implemented using conditional

compilation, aspect-oriented programming, and Open services gateway initiative with

495, 510, and 526 Java classes for each technique used. Table 5.4 compares the general

information for both systems.

Table 5.4: Comparative table with the Warehouse and RiSEEvent SPLs.

SPL Techniques Number of Classes LOC Number of Features

Warehouse
CC2 46 2934
AOP 50 2933 23
OSGi 62 3309

RiSEEvent
CC2 495 26349
AOP 510 26719 28
OSGi 526 26741

Complexity Comparison. The individual analysis allows us to observe that both

case studies had similar data related to the first complexity criterion (cyclomatic com-

plexity). OSGi was the technique with the best results in all products followed by AOP

with intermediary results. However, in the RiSEEvent the values for releases implemented

with conditional compilation were very close to AOP releases.

For the second criterion (lines of code), the results from both studies converged again,

but in RiSEEvent the measured values were closer. They presented conditional compilation

as the technique that needs fewer lines of code for implementing the SPLs. OSGi had

more lines of code in its implementation for Warehouse, however, AOP had more lines of

code in its implementation for two products of RiSEEvent (releases 1 and 2).

Finally, considering weighted operations per components or service there was an

unusual fluctuation of results obtained. OSGi had WOCS values in Warehouse and in the

first release of RiSEEvent smaller than other mechanisms had. However, for the second

release from RiSEEvent, the measured results had a considerable increase, which made

OSGi to have the worst results among the mechanisms in releases 2 and 3 of RiSEEvent.

These values indicate that the services responsible for implementation of features are

composed of possible god-classes, it means, classes that control too many other objects in

the system and so it becomes a class that does everything. The same variation did not

5.3 COMPARATIVE ANALYSIS 77

occur in Warehouse results, where OSGi had best results followed by AOP and CC.

Stability Comparison. Both case studies had the components developed with

conditional compilation more stable that the other ones. This result can be observed more

clearly in the replicated case that had the greatest difference between the data from CC2

and AOP. These statements can be verified in Figures 4.11 and 5.11.

Modularity Comparison. The results obtained indicate that OSGi had the best

components regarding to CDC metric . This can be observed only in the first case study

where the mean of OSGi had, in general, 0.01 of difference from another mechanism. In

the replicated case study, the results did not allow to infer any meaning to the measured

values.

Concerning CDO, we could not identify significant differences among the three ap-

proaches in both systems. Thus, based on the results presented in Tables 4.3 and 5.3 we

could not discard the null hypotheses with the use of concerns diffusion over operations

metric.

Table 5.5: Descriptive Statistics by Program.

Variable P. Min 1Â° Qu. Median 3Â° Qu. Max Mean SD CV SV

CC1
P1 1.229 1.275 1.511 1.586 1.609 1.454 0.154 10.60 -0.42
P2 1.725 1.878 2.112 2.137 2.165 2.027 0.163 8.06 -0.73

LOC
P1 2487 2697 2933 2992 3309 2886 256 8.89 0.09
P2 9625 9922 20516 26349 26741 18987 7362 38.77 -0.27

WOCS
P1 3.541 3.892 7.661 8.744 8.848 6.753 2.302 34.09 -0.49
P2 1.725 1.878 2.112 2.137 2.165 2.027 0.163 8.06 -0.73

IMSC
P1 0.259 0.268 0.270 0.327 0.342 0.290 0.035 11.92 0.59
P2 0.435 0.448 0.498 0.624 0.666 0.529 0.095 18.03 0.47

CDC
P1 0.065 0.076 0.082 0.086 0.091 0.080 0.008 10.05 -0.41
P2 0.043 0.050 0.060 0.088 0.097 0.066 0.020 30.40 0.43

CDO
P1 0.036 0.039 0.045 0.047 0.048 0.043 0.005 11.38 -0.49
P2 0.038 0.039 0.049 0.054 0.069 0.049 0.010 20.24 0.48

Figure 5.12 shows the boxplot comparing the results of the variables for each program.

It is observed, for example, that the minimum values of cyclomatic complexity, lines of

code and instability for the RiSEEvents program (P2) are higher than the maximum

values for the Warehouse program (P1). Table 5.5 presents the results of descriptive

statistics (minimum, 10 quartile, median, 30 quartile, mean, standard deviation, coefficient

of variation and skewness coefficient) from each variable for the programs. In this sense, the

variables with higher dispersion values (considered moderate in the context of statistics)

were lines of code (CV = 38.77%) and CDO (CV = 30.40%) for RiSEEvent and weighted

78 THE REPLICATED CASE STUDY

operations (CV = 34.09%) for Warehouse.

Figure 5.12: Boxplot for the variables by program.

5.3.1 Decision Model

The descriptive and exploratory analysis indicated that we should consider some factors

when using the techniques to implement variability. Each criterion considered in this

study (complexity, stability, and modularity) was detailed previously. In this sense, we

verified some differences among the techniques studied which allowed us to define an initial

5.3 COMPARATIVE ANALYSIS 79

Figure 5.13: Decision model process.

decision model. It was influenced by the work of Ribeiro (2010) where a decision model for

recommending variability mechanisms for three criteria was built. Moreover, the decision

model was based on the quantitative and statistical analyses previously presented.

In the development process, we considered only the data that rejected the null hypothe-

ses. Because of this, there is no indication for the most suitable techniques when software

modularity is assessed, for example, by CDO metric in the decision model. Moreover, as

a result of the lack of significative differences among the techniques two mechanisms can

be as indicated as first options for a particular metric observed.

The decision model is centered on variability mechanisms and has three inputs that

produce the most suitable indication for the observed criteria. The first input is the

variability mechanisms target of the study (conditional compilation, AOP, and OSGi); the

second one consists in the criteria chosen to compare the techniques (complexity, stability,

and modularity); and the last one are the metrics used to quantify the criteria observed

in the case studies.

Figure 5.13 shows this process that produces as output the recommended variability

mechanism for the criterion chosen. It is important to highlight that the decision model

makes a suggestion, but the user has the final decision.

Thus, based on the achieved results in first case studies, the decision model showed

in Figure 5.14 was elaborated. In this model, there are priorities (for each metric) that

indicate the most suitable mechanism for implementing variability in the context analyzed.

For example, according to the decision model, OSGi is the technique that produces the

best components considering cyclomatic complexity.

80 THE REPLICATED CASE STUDY

Figure 5.14: Warehouse Decision model.

Similarly, we developed other decision model based on the replicated case study results.

In this case, only the results from cyclomatic complexity and instability which presented

significant statistic difference at the level of 5%. Figure 5.15 shows RiSEEvent decision

model.

Figure 5.15: RiSEEvent Decision model.

Moreover, comparing the results we can assume this one as the model produced

with the results of both studies. Since the cyclomatic complexity and stability results

were evaluated in the original case study and reinforced with new assessments in the

5.4 THREATS TO VALIDITY 81

replicated case study. Thus, this second assessment allowed understanding what results

were influenced by the context, and provided support for making these generalizations

regarding the cyclomatic complexity and instability.

5.4 THREATS TO VALIDITY

As the original case study, this replicated study also presented threats to validity that are

described as follows:

• Construct Validity: This case study also had the main researcher as the developer

of the source code. However, different from the first study, there were more software

engineers involved in the development process. Moreover, the main researcher

participated in a more advanced stage, only in the migration from conditional

compilation to other mechanisms. Thus, this study can have an influence on the

results and conclusions of the work performed by the researcher. In the same way

as the first case study and aiming to mitigate this influence, three releases were

developed for each technique.

• Internal Validity: The wide knowledge areas addressed in this study together

with the context of RiSEEvent SPL (academic product line) are also threats for

the study as happened in the first case study. In order to mitigate these issues, a

compilation of the results through a comparison with data from both studies was

performed.

5.5 CHAPTER SUMMARY

This Chapter presented a replicated case study based on the same protocol of the study

discussed in the previous Chapter. We aimed to extend the original study replicating it

in a different SPL context following the same original design. Thus, it was applied the

same measurement framework in order to identify the level of complexity, modularity, and

stability of RiSEEvent SPL.

It was also detailed the comparison of results obtained with Warehouse SPL and

RiSEEvent SPL. Moreover, based on these results an initial decision model for recom-

mending the most suitable variability mechanisms for each criterion evaluated in the

studies was created.

Next Chapter presents the research contributions, future work and concluding remarks

of this dissertation.

CHAPTER 6

CONCLUSIONS

Software Product Lines can be used in different contexts. Nowadays, the implementation of

SPL with software assets developed as services has received the attention of researchers due

to its significant potential. In this context, this dissertation investigated the combination

of SPL and SOPL with emphasis on variability implementation, more specifically, the

choice of a specific variability mechanism according to a particular context. These concepts

achieve desired benefits such as improving reuse, decreasing development costs and time-to-

market and making flexible applications which fulfill the requirements of users or market

segment needs.

Initially, a brief literature review identified proposals of how variability implementation

is being addressed by researchers in SPL and SOPL context. Moreover, this activity was

also responsible for searching metrics and a guidelines for performing the evaluation of

the techniques used in SPL and SOPL implementations.

Regarding evaluation, three variability techniques were considered (conditional compi-

lation, aspect-oriented programming, and Open services gateway initiative), for evaluation

based on a measurement framework used as the basis to perform the assessment. This

framework was composed of metrics related to desired software qualities, which ensure

reusability and maintainability of the source code.

A case study was conducted in the warehouse context with the goal of comparing the

variability implementation techniques. The analysis provided data concerning to a set of

metrics. Next, a replicated case study was also performed in a different domain. This

replicated study was applied on a product line of academic events management and its

main goal was to obtain more evidence allowing a comparison among the studies.

Based on the quantitative and statistical analyses of the case studies, we defined

an initial decision model responsible for guiding software engineers during the choice of

techniques to implement variability in SPL and SOPL projects. This decision model is

able to indicate the suitable mechanism according to provided inputs, such as the criteria

chosen to compare the techniques (complexity, stability, and modularity) and metrics

used as the basis for comparison.

83

84 CONCLUSIONS

6.1 MAIN CONTRIBUTIONS

The main contributions of this work can be summarized into two aspects (i) an assess-

ment for comparing techniques used to implement variability in software product lines and

service-oriented product lines; (ii) two case studies in which were performed the evaluations

of variability techniques. These contributions are described as follows:

An assessment for comparing techniques used to implement variability in

software product lines and service-oriented product lines. Through this assess-

ment, three variability techniques (conditional compilation, aspect-oriented programming,

and Open services gateway initiative) were evaluated with respect to complexity, stability,

and modularity. Besides, the evaluation results were used to produce an initial decision

model for aiding software engineers on the task of choosing variability technique based on

a set of parameters.

Two case studies in which were performed the evaluations of variability

techniques. They were applied in an academic context in order to perform the assess-

ments proposed in this work. The original case study allowed comparing the variability

mechanism and identifying their applicability on the development of SPL and SOPL. In

turn, the replicated case study aimed to highlight the aspects identified in the previous

case study by performing the same study in a new SPL.

6.2 CONCLUDING REMARKS

Software Product Lines and Service-Oriented Computing encourage reusing the existing

software assets and capabilities rather than developing them from scratch. In order to

perform reusing, it is necessary to use techniques that support the variability management

activity.

Unfortunately, it is still not well defined among the variability techniques, which

one is most suitable for a particular case. Thus, the goal of this dissertation was to

investigate the variability implementation in software assets of software product lines and

service-oriented product lines.

Our findings from this work come from the evaluation of SPLs and SOPL in two case

studies through the application of a measurement framework. They helped to construct a

decision model that indicates the most suitable technique according to a set of criteria

observed.

6.3 FUTURE WORK 85

6.3 FUTURE WORK

Due to the time constraints imposed on a M.Sc. degree, this work can be seen as an initial

step towards an efficient and effective development of core assets in software product lines

and service-oriented product lines. In this way, more research needs to be conducted

in order to improve what was initiated, and new paths should be explored. Thus, the

following issues should be investigated as future work:

• Apply this evaluation in other scenarios. We believe that others case studies

in different domains should be performed in order to collect more evidence to support

generalizations. It is important that the new domain for this new study comes from

an industrial project. Thus, we can perform a cross analysis among the industrial

and academic SPLs.

• Improve the measurement framework. The metrics used to compose this

framework were developed in another context, such as traditional software devel-

opment. Thus, it is required that they can be refined for SPL and SOPL context.

Moreover, new criteria and metrics can be added, as lack of cohesion of methods, in

order to increase the coverage of the framework.

• Evaluate other variability mechanisms. OSGi was the unique technique really

related to implement services analyzed in this dissertation. Hence, new techniques

should be investigated and used, for example Java Web Services.

• Combination of techniques. Ribeiro et al. (2011) performed techniques combi-

nation aiming to provide variability to the services. Much in the same way, we can

investigate the applicability of this approach to our study context.

• Decision Model. The decision model presented in this dissertation is an initial

step to take some decisions through a model representation. Thus, it is important

to use new variability mechanisms, criteria, and domains in order to enlarge and

refine the decision model.

REFERENCES

Almeida, E., Santos, E., Alvaro, A., Garcia, V. C., Meira, S., Lucredio, D., and de Fortes,

R. (2008). Domain implementation in software product lines using osgi. In Composition-

Based Software Systems, 2008. ICCBSS 2008. Seventh International Conference on,

pages 72–81.

Apel, S., Kaestner, C., and Lengauer, C. (2008). Research challenges in the tension

between features and services. In Proceedings of the 2Nd International Workshop on

Systems Development in SOA Environments , SDSOA ’08, pages 53–58, New York, NY,

USA. ACM.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994). The goal question metric

approach. In Encyclopedia of Software Engineering . Wiley.

Carvalho, M. L. L., da Silva Gomes, G. S., da Silva, M. L. G., do Carmo Machado, I.,

and de Almeida, E. S. (2016). On the implementation of dynamic software product lines:

A preliminary study. IEEE Software.

Chang, S. H. and Kim, S. D. (2007). A variability modeling method for adaptable services

in service-oriented computing. In Software Product Line Conference, 2007. SPLC 2007.

11th International , pages 261–268.

Clements, P. C. and Northrop, L. (2001). Software Product Lines: Practices and Patterns .

SEI Series in Software Engineering. Addison-Wesley.

Cohen, S. and Krut, R. (2007). In Proceedings of the First Workshop on Service- Oriented

Architectures and Software Product Lines, 11th International Software Product Line

Conference.

de Souza, L. O., O’Leary, P., de Almeida, E. S., and de Lemos Meira, S. R. (2015).

Product derivation in practice. Information and Software Technology , 58, 319 – 337.

Deelstra, S., Sinnema, M., and Bosch, J. (2004). Experiences in software product families:

Problems and issues during product derivation. In In SPLC , pages 165 – 182. Springer.

87

88 REFERENCES

Dhungana, D., Seichter, D., Botterweck, G., Rabiser, R., Grünbacher, P., Benavides, D.,

and Galindo, J. A. (2013). Integrating heterogeneous variability modeling approaches

with invar. In Proceedings of the Seventh International Workshop on Variability Modelling

of Software-intensive Systems , VaMoS ’13, pages 8:1–8:5, New York, NY, USA. ACM.

El-Sharkawy, S., Kröher, C., and Schmid, K. (2011). Supporting heterogeneous composi-

tional multi software product lines. In Proceedings of the 15th International Software

Product Line Conference, Volume 2 , SPLC ’11, pages 25:1–25:4, New York, NY, USA.

ACM.

Erl, T. (2007). SOA Principles of Service Design (The Prentice Hall Service-Oriented

Computing Series from Thomas Erl). Prentice Hall PTR, Upper Saddle River, NJ, USA.

Ferreira, G. C. S., Gaia, F. N., Figueiredo, E., and de Almeida Maia, M. (2014). On the

use of feature-oriented programming for evolving software product lines - a comparative

study. Science of Computer Programming , 93, Part A, 65 – 85. Special Issue with

Selected Papers from the Brazilian Symposium on Programming Languages (SBLP

2011).

Gacek, C. and Anastasopoules, M. (2001). Implementing product line variabilities. In

Proceedings of the 2001 Symposium on Software Reusability: Putting Software Reuse in

Context , SSR ’01, pages 109–117, New York, NY, USA. ACM.

Gaia, F. N., Ferreira, G. C. S., Figueiredo, E., and de Almeida Maia, M. (2014). A

quantitative and qualitative assessment of aspectual feature modules for evolving software

product lines. Science of Computer Programming , 96, Part 2, 230 – 253. Selected and

extended papers of the Brazilian Symposium on Programming Languages 2012 (SBLP

2012).

Gamez, N., El Haddad, J., and Fuentes, L. (2015). Managing the variability in the

transactional services selection. In Proceedings of the Ninth International Workshop on

Variability Modelling of Software-intensive Systems , VaMoS ’15, pages 88:88–88:95, New

York, NY, USA. ACM.

Gomaa, H. (2004). Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, USA.

REFERENCES 89

Gómez, O. S., Juristo, N., and Vegas, S. (2010). Replications types in experimental

disciplines. In Proceedings of the 2010 ACM-IEEE International Symposium on Empirical

Software Engineering and Measurement , pages 3:1–3:10, New York, NY, USA. ACM.

Huhns, M. and Singh, M. (2005). Service-oriented computing: key concepts and principles.

Internet Computing, IEEE , 9(1), 75–81.

Juristo, N. and Gómez, O. S. (2012). Empirical software engineering and verification.

chapter Replication of Software Engineering Experiments, pages 60–88. Springer-Verlag,

Berlin, Heidelberg.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. (1990). Feature-

oriented domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon

University Software Engineering Institute.

Kitchenham, B., Pickard, L., and Pfleeger, S. L. (1995). Case studies for method and

tool evaluation. Software, IEEE .

Klewerton, W. and AssunÃ§Ã£o, G. (2015). Search-based migration of model variants to

software product line architectures. In Proceedings of the 37th International Conference

on Software Engineering - Volume 2 , ICSE ’15, pages 895–898, Piscataway, NJ, USA.

IEEE Press.

Kotonya, G., Lee, J., and Robinson, D. (2009). A consumer-centred approach for service-

oriented product line development. In Software Architecture, 2009 European Conference

on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference

on, pages 211–220.

Krafzig, D., Banke, K., and Slama, D. (2004). Enterprise SOA: Service-Oriented

Architecture Best Practices (The Coad Series). Prentice Hall PTR, Upper Saddle River,

NJ, USA.

Krueger, C. W. (2007). BigLever Software Gears and the 3-tiered SPL Methodology. In

Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented Programming

Systems and Applications Companion, OOPSLA ’07, pages 844 – 845, New York, NY,

USA. ACM.

Lanman, J., Darbin, R., Rivera, J., Clements, P., and Krueger, C. (2013). The challenges

of applying service orientation to the u.s. army’s live training software product line. In

90 REFERENCES

Proceedings of the 17th International Software Product Line Conference, SPLC ’13, pages

244–253.

Lee, J., Muthig, D., and Naab, M. (2008). An approach for developing service oriented

product lines. In Software Product Line Conference, 2008. SPLC ’08. 12th International ,

pages 275–284.

Lethbridge, T. C., Sim, S. E., and Singer, J. (2005). Studying software engineers: Data

collection techniques for software field studies. Empirical Softw. Engg., 10(3), 311–341.

Linden, F. J. v. d., Schmid, K., and Rommes, E. (2007). Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering . Springer-Verlag New

York, Inc., Secaucus, NJ, USA.

Lisboa, L. B., Garcia, V. C., de Almeida, E. S., and de Lemos, S. R. M. (2011). Toolday:

A tool for domain analysis. Int. J. Softw. Tools Technol. Transf., 13(4).

Matos Jr., P. O. A. (2008). Analysis of Techniques For Implementing Software Product

Lines Variabilities . Master’s thesis, Recife.

McCabe, T. (1976). A complexity measure. Software Engineering, IEEE Transactions

on.

Medeiros, F., de Almeida, E., and Meira, S. (2010). Sople-de: An approach to design

service-oriented product line architectures. In J. Bosch and J. Lee, editors, Software

Product Lines: Going Beyond , volume 6287 of Lecture Notes in Computer Science, pages

456–460. Springer Berlin Heidelberg.

Medeiros, F. M., de Almeida, E. S., and Meira, S. R. L. (2009). Towards an approach for

service-oriented product line architectures. In Software Product Line Conference, 2008.

SPLC ’08. 12th International .

Mohabbati, B., Asadi, M., Gasevic, D., and Lee, J. (2014). Software product line

engineering to develop variant-rich web services. In Web Services Foundations, pages

535–562.

O’Leary, P., Richardson, I., McCaffery, F., and Thiel, S. (2009). Preparing for Product

Derivation - Activities and Issues. In ICSOFT 2009 - Proceedings of the 4th International

Conference on Software and Data Technologies, Volume 1, Sofia, Bulgaria, July 26-29,

2009 , pages 121 – 126.

REFERENCES 91

Papazoglou, M. (2003). Service-oriented computing: concepts, characteristics and

directions. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of

the Fourth International Conference on, pages 3 – 12.

Papazoglou, M., Traverso, P., Dustdar, S., and Leymann, F. (2007). Service-Oriented

Computing: State of the Art and Research Challenges. Computer , 40(11), 38 – 45.

Parnas, D. (1976). On the design and development of program families. Software

Engineering, IEEE Transactions on, SE-2(1), 1 – 9.

Pohl, K., BÃ¶ckle, G., and Linden, F. J. v. d. (2005). Software Product Line Engineering:

Foundations, Principles and Techniques . Springer-Verlag New York, Inc., Secaucus, NJ,

USA.

Rabiser, R., Grunbacher, P., and Dhungana, D. (2010). Requirements for product

derivation support: Results from a systematic literature review and an expert survey.

Inf. Softw. Technol., pages 324 – 346.

Rabiser, R., O’Leary, P., and Richardson, I. (2011). Key activities for product derivation

in software product lines. J. Syst. Softw., 84, 285 – 300.

Ribeiro, H. B. G. (2010). An Approach to Implement Core Assets in Service-Oriented

Product Lines . Master’s thesis, Federal University of Pernambuco, Recife.

Ribeiro, H. B. G., de Almeida, E. S., and de Lemos Meira, S. R. (2011). An approach

for implementing core assets in service-oriented product lines. In Proceedings of the 15th

International Software Product Line Conference, Volume 2 , SPLC ’11, pages 17:1 – 17:4,

New York, NY, USA. ACM.

Runeson, P., HÃ¶st, M., Rainer, A., and Regnell, B. (2012). Case Study Research in

Software Engineering - Guidelines and Examples . John Wiley & Sons, Inc.

Sant’anna, C., Garcia, A., Chavez, C., Lucena, C., and v. von Staa, A. (2003). On

the reuse and maintenance of aspect-oriented software: An assessment framework. In

Proceedings XVII Brazilian Symposium on Software Engineering .

Schmid, K. and de Almeida, E. S. (2013). Product line engineering. IEEE Software,

30(4), 24–30.

92 REFERENCES

Schulze, M., Mauersberger, J., and Beuche, D. (2013). Functional Safety and Variability:

Can It Be Brought Together? In Proceedings of the 17th International Software Product

Line Conference, SPLC ’13, pages 236 – 243, New York, NY, USA. ACM.

Sinnema, M., Deelstra, S., and Hoekstra, P. (2006). The covamof derivation process. In

Proceedings of the 9th International Conference on Reuse of Off-the-Shelf Components ,

ICSR’06, pages 101 – 114, Berlin, Heidelberg. Springer-Verlag.

Smith, D. and Lewis, G. (2009). Service-oriented architecture (soa) and software

product lines: Pre-implementation decisions. In Proceedings of the 13th International

SoftwareProduct Line Conference (SPLC’09) - 3rd International Workshop on Service

OrientedArchitectures and Product Lines (SOAPL’09), San Francisco, California, USA.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014).

Featureide: An extensible framework for feature-oriented software development. Science

of Computer Programming , 79, 70 – 85.

Vale, T., Figueiredo, G. B., de Almeida, E. S., and de Lemos Meira, S. R. (2012). A

Study on Service Identification Methods for Software Product Lines. In Proceedings of

the 16th International Software Product Line Conference - Volume 2 , SPLC ’12, pages

156 – 163, New York, NY, USA. ACM.

Yin, R. (2009). Case Study Research: Design and Methods. Applied Social Research

Methods. SAGE Publications.

Zhang, B., Duszynski, S., and Becker, M. (2016). Variability mechanisms and lessons

learned in practice. In Proceedings of the 1st International Workshop on Variability and

Complexity in Software Design, VACE ’16, pages 14–20, New York, NY, USA. ACM.

	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1—Introduction
	Motivation
	Goal of this Dissertation
	Related Work
	Out Of Scope
	Statement of the Contributions
	Research Design
	Dissertation Structure

	Chapter 2—An Overview on Software Product Lines and Service-Oriented Computing
	Software Product Lines (SPL)
	Advantages
	The SPL Development Process
	Variability Management
	Product Derivation

	Service-Oriented Computing (SOC)
	Goals and Benefits of Service-Oriented Computing
	The Principles
	Service-Oriented Product Lines (SOPL)
	Applying SPLE for Development of SOPL

	Chapter Summary

	Chapter 3—An Overview on Techniques to Implement Variabilities
	Techniques for Implementing Variabilities
	Conditional Compilation (CC2)
	Aspect-oriented Programming (AOP)
	Parameterization
	Delegation
	Inheritance
	Libraries
	Open Services Gateway Initiative (OSGi)

	The Measurement Framework
	Metrics For Code Quality Evaluation
	Chapter Summary

	Chapter 4—The Case Study
	Case Study Protocol
	Objective
	The Case
	Units of Analysis
	Case Study Research Questions
	Data Collection
	Data Analysis

	Results and Findings
	Complexity Analysis
	Stability Analysis
	Modularity Analysis
	Descriptive and Exploratory Analysis
	Results Summary

	Threats to Validity
	Chapter Summary

	Chapter 5—The Replicated Case Study
	Case Study Protocol
	Objective
	The Case
	Units of Analysis
	Case Study Research Questions
	Data Collection
	Data Analysis

	Results and Findings
	Complexity Analysis
	Stability Analysis
	Modularity Analysis
	Descriptive and Exploratory Analysis
	Results Summary

	Comparative Analysis
	Decision Model

	Threats to Validity
	Chapter Summary

	Chapter 6—Conclusions
	Main Contributions
	Concluding Remarks
	Future Work

