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RESUMO

Atualmente, a simulação de objetos deformáveis desempenha papel importante em vários
campos ligados à Ciência da Computação, como a computação gráfica, projeto assistido
por computador, cirurgias assistidas por computador e robótica. Nesse contexto, a simu-
lação de objetos deformáveis com acurácia e em tempo-real é uma tarefa extremamente
dificil para as aplicações que requerem simulações mecânicas interativas como são os casos
dos ambientes virtuais, simuladores cirúrgicos e jogos. Podemos dividir as abordagens
que dão suporte ao tratamento de modelos deformáveis em dois grandes grupos: baseados
em mecânica do cont́ınuo, como Método de Elementos Finitos (FEM - Finite Element
Method) ou Análise Isogeométrica (IGA - Isogeometric Analysis); e usando representações
discretas, como modelo massa-mola (MSM - Mass Spring Model). Métodos baseados na
abordagem cont́ınua são conhecidos por seu alto custo computacional e acurácia, en-
quanto que os métodos discretos, embora simples e adequados para simulações mecânicas
interativas, são dif́ıceis de parametrizar. A falta de um método geral baseado em f́ısica
ou sistemático para determinar a topologia de malha ou os parâmetros do MSM a partir
de um material conhecido foi a principal motivação desse trabalho, no sentido de gerar
um modelo de baixo custo computacional, como o MSM, a partir de um modelo de alta
precisão como o FEM. Portanto, partindo da premissa de simplicidade e adequação do
MSM para simulações mecânicas interativas, nesta tese propomos uma metodologia para
parametrizar o MSM baseada em modelos cont́ınuos. Desenvolvemos duas abordagens
orientadas à dados (data-driven) para a parametrização do MSM usando modelos FEM
e IGA, este último como referência de derivação com elementos de ordem superior. Com
base nos resultados experimentais, a precisão alcançada por estas novas metodologias
é mais elevada do que a de outros trabalhos similiares na literatura. Em particular, a
nossa proposta alcança excelentes resultados na parametrização do MSM com elementos
de ordem superior.

Palavras-chave: Modelos Deformáveis, Modelos Baseados em F́ısica, Parametrização
de Modelos Massa Mola, Modelos de Elementos Finitos, Análise Isogeométrica.
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ABSTRACT

Nowadays, the simulation of deformable objects play important roles in several fields re-
lated to Computer Science such as computer graphics, computer aided design, computer
aided surgery and robotics. In this context, simulation of deformable objects with accu-
racy and in real-time is an extremely difficult task for applications that require interactive
mechanical simulations such as virtual environment, surgical simulation and games. We
can divide the approaches that offer support for the treatment of deformable models into
two groups: based on continuous mechanics, like Finite Element Model (FEM) or Isogeo-
metric Analysis (IGA); and using discrete representations, as Mass-Spring Model (MSM).
Continuous-based methods are known for their high computacional cost and accuracy,
while discrete methods, although simple and suitable for interactive mechanical simula-
tions are difficult to parametrize. The absence of a general physically based or systematic
method to determine the mesh topology or MSM parameters from a known material was
the main motivation of this work, in the sense to generate a model of low computational
cost, such as MSM, from a model of high accuracy as the FEM. Assuming the premise
of simplicity and suitability of the MSM for interactive mechanical simulations, in this
thesis we propose a methodology to parametrize the MSM based on continuous models.
We developed two data-driven approaches to the parametrization of the MSM by using
FEM and IGA models, the latter as reference for derivation with higher order elements.
Based on experimental results, the precision achieved by these new methodologies is
higher than other similar approaches in literature. In particular, our proposal achieves
excellent results in the parametrization of the MSM with higher order elements.

Keywords: Deformable Models, Physics Based Models, Mass-Spring Parameterization,
Finite Element Model, Isogeometric Analysis.
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Chapter

1
INTRODUCTION

Deformable objects span a wide range of different object types with different physical
properties, such as jelly, cloth, biological tissue, water, wind. The behavior of deformable
objects is considered more difficult to deal with than rigid body simulation for several
reasons. First, degrees of freedom needed to describe the motion of a single deformable
object can boost in large scale compared to a single rigid object (REDDY, 2013). Sec-
ond, since deformable objects could potentially self-intersect, geometric problems such
as detecting collisions and self-intersections should be handled. Third, the physics of
deformable objects is governed by a constitutive law describing relationship between
physical properties inside object, such as stress and strain (ERLEBEN et al., 2005). So,
the behavior simulation of a deformable model in an interactive system with precision
and in real time is an extremely difficult task.

1.1 MOTIVATION

Nowdays, the behavior simulation of deformable objects play important roles in sev-
eral fields such as computer graphics, computer aided design, computer aided surgery,
robotics, games, and other simulation applications (WU; WESTERMANN; DICK, 2015;
ROYER et al., 2015). In computer graphics applications, deformable models have been
widely used for the animation of clothing (PROVOT, 1996; LONG; BURNS; YANG,
2011), facial expression and characters (LEE; TERZOPOULOS; WATERS, 1995; KäHLER;
HABER; SEIDEL, 2001). In computer aided design, deformable models are used as im-
portant tool for geometric modeling which enables the modeler sculpting complex shapes
in a easy fashion (TERZOPOULOS; QIN, 1994; IX; QIN; KAUFMAN, 2001). In com-
puter aided surgery, deformable models are needed in simulation of human tissues which
demand both real time and physically realistic modeling of complex, non-linear, de-
formable tissues (XU et al., 2011; COMAS, 2010). In robotic, they have been considered
in the path planning process as a relevant component on perceiving the surroundings and
modeling the environment (FRANK et al., 2014). In computer games, non-physically
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2 INTRODUCTION

and physically based techniques have been widely used to improve the game engine per-
formance. Here, the choice depends on the dilemma between real-time and accuracy.
All aforementioned fields share a common goal: they search to find out the visually and
physically plausible response which has caused the growth of works to the area referred
as physics-based deformable model (NEALEN et al., 2006).

The physics-based deformable model is an interdisciplinary field that elegantly com-
bines continuum mechanics, numerical analysis, differential geometry, approximation the-
ory and computer graphics into a powerful toolkit. Hence, deformable models based on
physical laws have been developed in an attempt to exhibit a realistic behavior with
the desired accuracy. Among the models that exhibit a realistic behavior there are two
categories : those based on continuum mechanics and those using discrete representa-
tions. The first class is usually generated by finite element models (FEM) and among
the discrete models, the most commonly used is the mass-spring model (MSM).

The FEM is a common and accurate way to compute complex deformations of de-
formable object due to its connection with continuum mechanics. In this context, con-
stitutive laws are used for the computation of the symmetric internal stress tensor and
a conservation law gives the final partial differential equation (PDE) that governs the
dynamics of the material (ERLEBEN et al., 2005; NEALEN et al., 2006). The FEM
performs discretization of continuous object into a set of elements such that global de-
formation is considered locally in each element. Deformation within an element is taken
into account by the interpolation of nodal displacements as governed by the underlying
constitutive laws (CHOI et al., 2004).

In Figure 1.1 one can see outlined the pieces utilized in the simulation of deformable
object based on continuum mechanics. In summary, the continuum mechanic gives the
formulation of partial differential equation to the deformable object which is solved using
the finite element method and numerical time integration. A visual simulation succes-
sively returns the dynamic solution with the deformed geometry and forces, which then
can be rendered on displays.

The FEM has an alternative methodology that was pointed out in (HUGHES; COT-
TRELL; BAZILEVS, 2005) considering a NURBS-based framework, which nowadays is
known as Isogeometric Analysis (IGA) (COTTRELL; HUGHES; BAZILEVS, 2009). Iso-
geometric analysis is a technique for the discretization of partial differential equations,
inspired by the desire to unify the fields of computer aided geometric design (CAGD) and
the finite element method (FEM). The IGA uses the same kind of basis functions that
CAGD uses, such as B-splines, NURBS, T-splines, subdivision surfaces, etc., instead of
traditional C0-continuous Lagrange finite element interpolatory polynomials (TEMIZER;
WRIGGERS; HUGHES, 2011). So, one of the advantages of IGA models is the usage
of a common geometric representation for creating CAD models, meshing and numerical
simulation.

The MSM has been a discrete approach widely employed for simulation of deformable
object. The MSM approximates a continuous body by a finite set of mass points (nodes)
and massless springs connecting them; therefore, it is also called a particle system ap-
proach. The deformation of the body is described as a displacement of mass points,
evoked by internal and external forces. MSM are simple to implement and can be faster
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Figure 1.1: Outline of the simulation of deformable object based on continuum mechanics

then the continuous ones, and so, more suitable for real time and interactive applica-
tions (NEALEN et al., 2006). There are three important advantages that make the MSM
very atractive: simplicity in its mathematical formulation, great versatility for topological
changes, and a well-suited data structure for parallel computing.

However, the main limitation of the MSM is the difficulty of designing them to rep-
resent the mechanical behavior of deformable objects with enough accuracy (LLOYD;
SZéKELY; HARDERS, 2007). In practice, to design the MSM with sufficient accuracy
we need a proper selection of mesh topology, spring and damping constants, and nodal
mass values. The typical practice in the literature is somewhat ad hoc, the cell types and
connectivities are empirically assumed, usually based on the structure of the geometric
model at hand, and the parameters are either hand tuned to get a reasonable behav-
ior (NATSUPAKPONG; ÇAVUSOGLU, 2010). In this direction, an interesting strategy
could be to use the measured elasticity to set the parameters in the MSM leading us to
find out a method which is able to establish a link between the mass spring model and
the constitutive equations.

Many improvements in the MSM designing have been presented by several authors
in order to become the simulation of deformable models accurate and realistic. Some of
them have conducted research that aim to developing new methods for obtaining of spring
coefficients (LLOYD; SZéKELY; HARDERS, 2007; SILVA; GIRALDI; APOLINARIO,
2015) whereas others have proposed modify the traditional structure of the MSM by
including force-based constraints (CHOI et al., 2004; BAUDET et al., 2009) or by adding
special hinge as angular or bending springs (PROVOT, 1996; BOURGUIGNON; CANI,
2000; GIRALDI; ORTIZ; JR, 2006). Among them there is a consensus that exist an
acceptable approach to computing the nodal masses values as in (DEUSSEN; KOBBELT;
TüCKE, 1995; BAUDET, 2006), however, the problem of selecting the appropriate spring
and damping constants is still unsolved (NATSUPARKPONG, 2009; SAN-VICENTE;
AGUINAGA; CELIGUETA, 2012).



4 INTRODUCTION

1.2 CONTEXT

In computer graphics applications and related fields, the search for models that enable
real-time dynamic simulation of deformable objects is an active area of research (LEE
et al., 2012; LIU et al., 2013; WU; WESTERMANN; DICK, 2015). In these fields,
a wide variety of physically based models has been developed to address the challenge
of simulating natural elements and deformable materials (MOORE; MOLLOY, 2007;
JACOBSON et al., 2014).

Notwithstanding of the MSM advantages, it is known that methods that are based
on the continuum mechanics are, in general, more realistic than their MSM counterparts
(GELDER, 1998; LLOYD; SZéKELY; HARDERS, 2007; DELINGETTE, 2008). In fact,
the mechanical systems in elasticity theory are characterized by their macroscopic param-
eters (Young’s module and Poisson’s ratio) and constitutive equations (ZIENKIEWICZ;
TAYLOR; ZHU, 2005). However, there is no general physically based or systematic
method in the literature to determine the mesh topology or MSM parameters from known
such set up (SAN-VICENTE; AGUINAGA; CELIGUETA, 2012).

When comparing mass-spring and continuous models the following questions arise:
(1) Which set of elastic material properties can be accurately simulated by a particular
spring mesh model ? (2) How to derive a mass-spring system from continuum mechanics ?
(3) How to specify system parameters (masses, spring constants, mesh topology) in order
to match physical requirements ?

The questions (1) and (3) have been more or less addressed by works that adapt MSM
to describe different elastic behaviors such as anisotropy, heterogeneity, non linearity and
also incompressibility (see (BAUDET et al., 2009) and references therein).

In this work, we are interested to answer question (2) focusing on deformable objects
in interactive mechanical simulations. Deriving the MSM parameters of a continuous
models allow us to emulate the mechanical behavior of non-rigid objects due to external
influences in real-time with physically realistic deformation. So, a new method to deter-
mine MSM parameters, such as mass, spring stiffness coefficient and damping constants,
using continuous models as reference will be presented.

Besides, and specially important for this work, the MSM derivation from FEM model
were restricted to linear elements (NATSUPAKPONG; ÇAVUSOGLU, 2010; SAN-VICENTE;
AGUINAGA; CELIGUETA, 2012). Up to the best of our knowledge, FEM models with
higher order elements have not been considered in the MSM derivation literature. On the
other hand, the isogeometric analysis framework, allows to use NURBS to represent both
geometry and physical fields in the solution of problems governed by partial differential
equations (PDE) and also enable higher-order elements.

1.3 OBJECTIVES AND CONTRIBUTIONS

The main goal of this thesis is to propose computational methods to the MSM param-
eterization with application in interactive mechanical simulations of deformable objects
using continuous models as reference of derivation in order to ensure maximum accuracy.
To achieve this main goal we propose two approaches to determine the MSM parame-
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ters : one using the FEM as reference model; and other one with NURBS-based IGA as
reference. In both the aim is to determine the MSM parameters (mass, spring stiffness
coefficient and damping constants) in a systematic procedure that allows both the models
behave similarly.

Thereby, this thesis has important contributions to the parameterization of mass-
spring models that is a topic of great interest to physics-based deformable models area.
The main contribution is the proposal of the two new approaches to design mass-spring
models, that is, to define their inner parameters (mass, stiffness coefficient and damping
constant) and mesh topology in order to represent the mechanical behavior of deformable
objects with enough accuracy. As secondary but no less important contributions, we
highlight: an innovative proposal to derive the MSM parameters by using isogeometric
analysis; a proposal of two new objective functions for data-driven methods; an innovative
application of the higher order elements for the MSM parameterization; an improvement
into accuracy of geometry description applicable to interactive mechanic simulations; an
effective heuristic to deal with tradeoff between geometry complexity and error rate in
optimization problems involving springs parameters (stiffness coefficient, rest length);
a software structure named Multi-model Analysis Framework (MAF) that was used to
developed all our work.

1.4 THESIS OUTLINE

The remaining content of this thesis is organized as follows: in Chapter 2, we present
the theoretical basis for two continuous models (FEM and IGA) that will be used in
the proposals to the MSM parameterization. In this chapter, we highlight the relevant
characteristics to emulate the mechanical behaviour of deformable objects accurately in
addition to describing briefly the B-Spline and NURBS theories that is a prerequisite for
isogeometric analysis. The description to the parameterization strategies together with a
simplified formulation of the MSM are presented in the Chapter 3. The aim of this chapter
is to show how it is difficult the MSM parameterization and how different categories of
approaches face this issue. The proposal of parameterization based on acceleration is
carried out in Chapter 4. Here, we use the FEM as reference model to compute the MSM
parameters in a data-driven strategy. In Chapter 5 we propose a mass-spring model
NURBS-based wherein control points are treated like mass points connected by massless
springs and the parameterization is accomplished by using the NURBS-based IGA as
reference model. Our discussion of results and contributions of this thesis are presented
in Chapter 6. Finalizing the content, we have the Appendix A where we briefly present
our software structure named Multi-model Analysis Framework(MAF) that was used to
develop all our work.
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2
The applications with interactive mechanical simulations include mainly animation, virtual environments,

surgical training and games. In these applications it is required to emulate the mechanical behaviour of

non-rigid objects (deformable objects) in real-time. The mechanical behavior of deformable objects can

be described by continuum elasticity theories adding accuracy to simulations. The finite element method

(FEM) is a continuous deformable model often used to solve elasticity problems. Recently isogeometric

analysis (IGA) has been applied as an alternative methodology to the FEM with promising results. In

this chapter we present the theoretical basis for these two models highlighting the relevant characteristics

to emulate the mechanical behaviour of deformable objects accurately.

CONTINUOUS MODELS

The simulation of deformable objects has been the focus of attention in several fields such
as computer graphics, computer aided design, robotics, computer aided surgery, games,
and other simulation environments. All aforementioned fields share a common goal: they
search to find out the visually and physically plausible deformation in a computer-aided
enviroment. This search has caused the growth of works to the area referred as physics-
based deformable model (NEALEN et al., 2006; LONG; BURNS; YANG, 2011; WU;
WESTERMANN; DICK, 2015; ROYER et al., 2015).

For the computer science community, the genesis of physics-based deformable mod-
els is a seminal manuscript on elastically deformable models where Terzopoulos (TER-
ZOPOULOS et al., 1987) added physical properties directly in a graphical object and
inaugurated the term deformable models. According to Meier et al (MEIER et al., 2005),
a deformable model can be defined in either one dimension (lines and curves), two di-
mensions (surfaces), or three dimensions (solid objects). As noted by these authors, the
interactive mechanical simulation is an important field of application for deformable mod-
els. In this area is required of the deformable model emulate the mechanical behaviour
of non-rigid objects due to external influences in real-time with physically realistic defor-
mation.

These real time applications (that require interactive mechanical simulations) include
mainly animation, virtual environments, surgical training and games. In animation, the
simulation must be fast enough to provide useful feedback to the animator. In virtual
environments, the objects must deform in real time, in response to user input. In surgical

7
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training and games with haptic force feedback, forces due to the deformation must also
be computed in real time (JAMES; PAI, 1999; ZERBATO; GALVAN; FIORINI, 2007;
HUANGFU; YAN; LIU, 2013). The primary issue to be solved by these applications is
how to deal with the tradeoff between interactivity and accuracy.

The techniques for simulating deformable objects can be grouped into two categories
(MORRIS; SALISBURY, 2007): constitutive and non-constitutive models. That for
convenience, we will name the constitutive and non-constitutive models as the continuous
and discrete models, respectively. Approaches based on continuous models generally
use equations from physics to describe how a material will behave in terms of physical
constants that describe real materials ( Poisson’s ratio, Young’s modulus). These methods
are traditionally accurate relative to discrete methods. However, the continuous methods
are generally associated with significant computational overhead, often requiring solutions
to large linear systems, and thus cannot generally be applied to interactive simulations.
When these approaches are adapted to interactive simulations, generally through an
assumption of linear elasticity.

The discrete approaches rather than using physical constants (e.g. Young’s modulus)
to describe a material, such approaches describe objects in terms of constants that are
particular to the simulation technique employed. Many approaches in this category are
variants on the grid of masses and springs, whose behavior is governed by spring constants
that can’t be directly determined for real materials. In general, these methods are thus
not accurate in an absolute sense. However, many approaches in this category are proper
for interactive simulations.

The relationship between continuous and discrete models also can be explored in order
to take advantage of vocation of discrete models for interactive mechanical simulations. In
general, the researchers try to find out ways to design discrete models so that continuous
and discrete models behave similarly (BIANCHI et al., 2004; BAUDET et al., 2009). An
approach often used to perform this task is to derive the discrete model parameters, in par-
ticular the spring coefficients, from the continuous models (LLOYD; SZéKELY; HARD-
ERS, 2007; NATSUPAKPONG; ÇAVUSOGLU, 2010; SAN-VICENTE; AGUINAGA;
CELIGUETA, 2012; SILVA; GIRALDI; APOLINARIO, 2015).

Therefore, in order to take advantage of vocation of discrete models for interactive
mechanical simulations our research is directed to find out a set of parameters for the
discrete model from a continuous model so that both behave in similarly. In this sense, the
knowledge about theoretical basis of the continuous models has a paramount importance.

The finite element method (FEM) is a continuous deformable model often used to solve
elasticity problems(ZIENKIEWICZ; TAYLOR; ZHU, 2005; RAO, 2004; SADD, 2009).
Recently isogeometric analysis (IGA) has been applied as an alternative methodology to
the finite element methods with promising results (ESPATH; BRAUN; AWRUCH, 2011;
COTTRELL; HUGHES; BAZILEVS, 2009).

In this chapter we present the theoretical basis for these two continuous models. In
particular, we will bring a more detailed treatment of the finite element theory to be able
to exploit it opportunely in designing of the discrete model and software implementation.



2.1 CONTINUUM ELASTICITY THEORY 9

m

 mu

 mx

Figure 2.1: Displacement field in continuous body.

2.1 CONTINUUM ELASTICITY THEORY

Continuum mechanics is a branch of mechanics that deals with the analysis of the kine-
matics and mechanical behavior of rigid and deformable bodies. It is concerned with
the mechanical behaviour of solids and fluids on the macroscopic scale ignoring the dis-
crete nature of matter, utilizing the average values of physical quantities such as den-
sity, displacement, velocity and so on as continuous (or at least piecewise continuous)
(SPENCER, 2004; REDDY, 2013).

The theory of elasticity is a sub-branch of continuum mechanics that deals with the
mechanical behaviour of deformable solid bodies. Following theoretical development made
by Nealen et al (NEALEN et al., 2006), in continuum mechanic a deformable body is
typically represented by its undeformed shape (also called equilibrium configuration, rest
or initial shape) and its material properties that define how it deforms under applied
forces. Assuming the rest shape as a continuous connected region M ⊂ R3, thus the
coordinates m ∈M of a point in the object are called material coordinates of that point.
Considering a discrete case of M , we have a discrete set of points that represent the rest
shape of the object. Under the action of forces, the object deforms and a point originally
at location m (i.e with material coordinates m) moves to a new position x(m), that
correspond to the spatial coordinates of that point. Once new positions are defined for
all material coordinates m, x is a vector field defined on M . On the other hand, the
deformation can also be specified by the displacement vector field u(m) = x(m) −m
defined on M , as we can observe in Figure 2.1. Thus, we can compute the elastic strain
ε which is dimensionless quantify that in the 1D case can be expressed simply by 4l

l
,

where l is the length. Spatially constant displacement field represents a translation of the
object with absence of strain. Therefore, it becomes clear that strain must be measured
in terms of spatial variations of the displacement field u = u(m) = (u, v, w)T .
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In general, computer graphics and related fields have chosen to express strain by

εG =
1

2

(
∇u + (∇u)T + (∇u)T ∇u

)
, (2.1)

εC =
1

2

(
∇u + (∇u)T

)
, (2.2)

where εG ∈ R3×3 is Green’s non-linear strain tensor,εC ∈ R3×3 is Cauchy’s linear strain
tensor, and the gradient of the displacement field is denoted by the 3 by 3 matrix ∇u.

The computation of the stress σ takes place through a constitutive law (or also called
material law). Usually, the symmetric internal stress tensor σ ∈ R3×3 for each material
point m based on the strain ε at that point is computed using Hooke’s linear material
law given by

σ = Eε, (2.3)

where E is fourth-order tensor which relates the coefficients of the stress tensor linearly
to the coefficients of the strain tensor.

For isotropic materials (a material which has the same mechanical properties in all
directions), the coefficients of E depend only on Young’s modulus and Poisson’s ratio.
Two very common elastic models used in deformable bodies simulations are: a) the linear
elastic model, using the linear Cauchy strain tensor εC with Hooke’s linear material law;
b) The St. Venant-Kirchoff elastic model using the non-linear Green’s strain tensor εG in
combination with Hooke’s linear material law.

2.2 FINITE ELEMENT METHOD

The finite element method (FEM) is a systematic technique to obtain numerical solution
of partial differential equations (PDEs) describing the continuum behavior of deformable
objects. In other words, the objective of FEM when applied to deformable object simula-
tion is to solve PDEs provided by the elasticity theory (for more details about elasticity
theory the reader is referred to authors (ZIENKIEWICZ; TAYLOR; ZHU, 2005; SADD,
2009)).

In the finite element method, the actual continuum or body of matter, such as a solid,
liquid, or gas, is represented as an assemblage of subdivisions called finite elements. These
elements are considered to be interconnected at specified joints called nodes or nodal
points (LOGAN, 2011). Hence this process of modeling a continuous body by dividing
it into an equivalent system of smaller bodies or units (finite elements) interconnected at
points common to two or more elements (nodal points or nodes) and/or boundary lines
and/or surfaces is called discretization (RAO, 2004) . In Figure 2.2 it is shown a 2D
elliptical continuous body (a) with its discretization (b) under loads F1, . . . F4.

Since the actual variation of the displacement inside the continuum is not known and
it is necessary to calculate the deformation, one can assume that the variation of the
displacement inside a finite element can be approximated by a simple function. These
approximating functions (also called interpolation models) are defined in terms of the
values of the displacements at the nodes. Thus, each finite element has associated some
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Figure 2.2: Finite element discrezatization. The continuous body (a) and its discretiza-
tion(b).

interpolation function that define the displacement of any internal point in function of
the displacement of the nodes of that finite element. In this way, solving the mechanical
problem just in the nodes of the finite elements gives the approximated displacement field
of the whole continuos body.

Let express the previous ideas as mathematical fashion. Thus, let (x1, x2, x3) be an
inertial cartesian frame of reference in R3. The key idea in FEM is to subdivide the
object domain Ω into subdomains or finite elements Ωe, e = 1, 2, · · ·, ne, and consider the
following finite element approximation on each element

x (x1, x2, x3, t) =
n∑
i=1

Ne
i (x1, x2, x3) xei (t) , (2.4)

where x is the deformation field of the body as a function of the material point coordinates
(x1, x2, x3) and time t, Ne

i , i = 1, 2, · · ·, n are the interpolation functions, and xei ∈ R3,
i = 1, 2, · · ·, n are the coordinates of the nodes of the element Ωe.

In what follows we suppose that there is a reference configuration for the body, de-
noted by Ω0, with mass density and external body force field given by ρ0 and b0, re-
spectively. At the element level without damping, the FEM equations have the form
(NATSUPAKPONG; ÇAVUSOGLU, 2010):

Me ¨̂xe +Re (x̂e) = f e, (2.5)

where x̂e =
[

(xe1)T (xe2)T . . .
(
xen−1

)T
(xen)T

]T
and:

Me =

ˆ
Ωe0

NeTρ0N
edV, Re =

ˆ
Ωe0

BeTS(Nex̂e)dV, (2.6)

f e =

ˆ
Ωe0

NeTb0dV +

ˆ
∂Ωe0

NeT sdA, (2.7)

with I ∈ R3×3 and Ne = [Ne
1I Ne

2I · · · Ne
nI] ∈ R3×3n , Be = [Be

1 Be
2 · · · Be

n] with

Be
i ∈ R9×3 which first column is

[
Ne
i,1 0 0 Ne

i,2 0 0 Ne
i,3 0

]T
and the other ones
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are cyclic permutation of these elements (Ne
i,j ≡ ∂Ne

i/∂xj). Also, we have Ωe
0 ⊂ Ω0

is the regular region that is occupied by the element in the reference configuration,
s is the surface traction at the boundary of Ωe

0, and S(Nex̂e) represents the compo-
nents of the divergence of the stress tensor σ which is symmetric with components:
σx1,x1 , σx2,x2 , σx3,x3 , σx1,x2 , σx1,x3 , σx2,x3 .

After the element level equations are assembled, the resulting system has the general
form:

MFEM
¨̂x +R (x̂) = f , (2.8)

which is a system of ordinary differential equations. In its most general formulation the
matrix MFEM is positive definite, squared, and dense as it comes from the hessian of
kinetic energy expressed using shape functions (ZIENKIEWICZ; TAYLOR; ZHU, 2005).
The off-diagonal terms help to preserve the linear and angular momentum and give inertial
contributes not depending on the considered node.

If the displacement gradient is small and the residual stress in reference configuration
vanishes, then the relationship between the stress (σ) and the strain (ε) of the material
can be approximated by linearization: σ = Gε, where G is a matrix parameterized by
the Lame’s constants, which are characteristics of the material (see (ZIENKIEWICZ;
TAYLOR; ZHU, 2005; SADD, 2009) for details). In this case, we can show that equation
(2.8) can be written as:

MFEM
¨̂u + KFEM û = f , (2.9)

where ûe = x̂e− x̂e0; that means, the displacement respect to the reference configuration.
The KFEM is the stiffness matrix of the linearized FEM. Behind the expression (2.9)
there is a simple definition of the elastic energy given by the quadratic function:

Ep (û) =
1

2
(û)T KFEM (û) . (2.10)

Also, we can introduce a dissipative term that is a linear function of ˙̂u, generating the
model:

MFEM
¨̂u + DFEM

˙̂u+ KFEM û = f , (2.11)

where DFEM is the finite element damping matrix, which is commonly chosen by using
the generalized Rayleigh model (LLOYD et al., 2008):

DFEM = MFEM

L∑
i=0

γi
(
M−1

FEMKFEM

)i
.

The solution of a general continuum problem by the finite element method always
follows an orderly step-by-step process. In general, these step-by-step are organized into
a sequence of activities which are: a) discretization of continuous body; b) selection of a
proper interpolation or displacement model; c) derivation of element equations; d) assem-
bly of element equations to obtain the overall equations; e) introduction of boundary con-
ditions and solution for the unknown nodal displacements. The FEM literature (QUEK;
LIU, 2003; RAO, 2004; REDDY, 2005; ZIENKIEWICZ; TAYLOR; ZHU, 2005; LOGAN,
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Selection of element  
type and discretization For e=1...ne 

For g=1...ng 

Basis function computation 
(values,derivatives) 

Addition of contributions  
to Ke,fe 

Assemblage Ke→K,fe →f  

Solve Ku=f  

Boundary condition 
addition  

Figure 2.3: Flowchart of activities for the solution of general continuum problem by FEM
in equilibrium static scenario.

2011) presents detailed discussion about these steps. However, given their importance
for this work, we have summarized them through the flowchart in Figure 2.3 which is an
adaptation made from the reference (COTTRELL; HUGHES; BAZILEVS, 2009).

The flowchart in Figure 2.3 has as first process to gather some tasks which involves
dividing the body into an equivalent system of finite elements with associated nodes and
choosing the most appropriate element type to model most closely the actual physical
behavior. The choice of element type used in a finite element analysis carries implicity
the selection of displacement model. In other words, that mean the element type indi-
rectly controls the selection of interpolation function which in turn define displacement
model. In general, the displacement model is taken in the form of a polynomial and
linear, quadratic, and cubic polynomials are frequently used as functions because they
are simple to work with in finite element formulation and an easy and systematic method
of generating interpolation functions of any order can be achieved by simple products of
Lagrange polynomials which has been the preferred choice in classical FEM (RAO, 2004;
ZIENKIEWICZ; TAYLOR; ZHU, 2005).

After this first processing step, the stiffness matrix and force vector of each element
are calculated and assembled into the global structures (global stiffness matrix and force
vector). We can see two loops to perform these tasks: the most internal loop which
adds contributions calculated by each integration point (quadrature points) to element
structures; and the most external loop which assembled local element structures into
global ones. Concluded the assembly process the boundary conditions are introduced
and finally the system is solved.

Once chosen the displacement model to linear or higher order polynomial (quadratic,
cubic, etc), the discretization of the region (or domain) can be improved by two methods.
In the first method, known as the r-method, the locations of the nodes are altered without
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changing the total number of elements. In the second method, known as the h-method,
the number of elements is increased. On the other hand, if improvement in accuracy is
sought by increasing the order of the interpolation of polynomial, the method is known
as the p-method (RAO, 2004).

Problems involving curved boundaries cannot be modeled satisfactorily by using
straight-sided elements (linear elements) (RAO, 2004). As demonstrated in (ZIENKIEWICZ;
TAYLOR; ZHU, 2005), the using of higher order elements can significantly improve both
the displacements and stresses obtained. Besides, fewer higher order elements are needed
to achieve the same degree of accuracy in the final results. In this context, a family of
elements known as ”isoparametric” elements are widely used.

In isoparametric formulation, the term isoparametric is derived from the use of the
same interpolation function (named shape function) N to define the element’s geometric
shape and to define the displacements within the element. Isoparametric element equa-
tions are formulated using a natural (or intrinsic) coordinate system (ξ, η, ζ), usually
dimensionless with range (ξ, η, ζ) = (±1,±1,±1), that is defined by element geometry
and not by the element orientation in the global-coordinate system. There is a relation-
ship (called a transformation mapping) between the natural coordinate system (ξ, η, ζ)
and the global coordinate system (x, y, z) for each element of a specific structure, and this
relationship must be used in the element equation formulations (RAO, 2004; LOGAN,
2011). Thus, the isoparametric (ξ, η, ζ) and global reference systems (x, y, z) are related
by the following elementary equation:

x (ξ, η, ζ) =
n∑
i=1

N e
i (ξ, η, ζ)xei ,

y (ξ, η, ζ) =
n∑
i=1

N e
i (ξ, η, ζ) yei , (2.12)

z (ξ, η, ζ) =
n∑
i=1

N e
i (ξ, η, ζ) zei ,

These equations are used to rewrite the integrals in equation (2.6) in terms of the natural
system as

Me =

ˆ 1

−1

NeTρ0N
e det (J) dξdηdζ, (2.13)

Ke =

ˆ 1

−1

BeTS(Nex̂e) det (J) dξdηdζ, (2.14)

where the shape functions Ne depends on natural coordinate(ξ, η, ζ), and det (J) is the
Jacobian determinant of the mapping from natural coordinate system (ξ, η, ζ) to the
global coordinate system (x, y, z).

2.3 BASIC B-SPLINE THEORY

The isogeometric approach has been developed using the NURBS which are built from
B-Spline and so a discussion of B-Spline is a natural starting point for their investigation.
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The sections 2.3-2.4 give a very brief overview about B-Spline and NURBS. The interested
reader in NURBS theory may consult the introductory text in (PIEGL, 1991) or for a
more detailed treatment can resort to the books(PIEGL; TILLER, 1997; FARIN, 1997).

A B-Spline entity is a generalization of the curve, surface or solid of Bezier defined by a
linear combination of control points and basis functions over a parametric space wherein
the basis functions are called B-Spline (short for basis spline) (FARIN, 1997; PIEGL;
TILLER, 1997). The parametric space is divided into intervals and the B-Spline is defined
piecewise on these intervals, with certain continuity requirements between the intervals.
Thus, B-Spline functions are instances of piecewise polynomial functions associated with
each interval. These interval are gathered under the set of coordinates in the parametric
space known as knot vector. Due to its relevance in the B-spline theory, we can define it
as

Definition 1. A knot vector is a finite, monotonically increasing sequence of real numbers
express by

Ξ = (ξ1, . . . , ξm) , ξi ≤ ξi+1, ∀i = {1, . . . ,m− 1} . (2.15)

Each item ξi, i ∈ {1, . . . ,m} is referred as knot. A knot ξi is termed interior knot if
(ξ1 < ξi) and (ξi < ξm). The knot ξi has multiplicity l = |{ξj | j ∈ {1, . . . ,m} ∧ ξi = ξj}|
such that l is the occurrences number of knot ξi in Ξ. A knot span is the interval between
two consecutive knots (ξi, ξi+1) for ∀i = {1, . . . ,m− 1} which is termed empty knot span
when ξi = ξi+1.

Having defined the knot vector, we can proceed with the B-Spline basis functions
definition.

Definition 2. Let p ≥ 0 and Ξ = (ξ1, . . . , ξm) be the polynomial order 1 and knot vector
from the B-Spline basis functions, respectively. By considering the multiplicity of any
interior knot is at most p and number of basis functions is n = m−p−1, the n univariate
B-Spline basis functions Ni,p (ξ) : [ξ1, ξm] → R, i = 1, . . . , n are defined by the Cox-de
Boor recursion formula (BOOR, 1978) as follows:

Ni,0(ξ) =

{
1, if ξi ≤ ξ < ξi+1

0, otherwise,
(2.16)

when p = 0 and for a polynomial order p ≥ 1

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (2.17)

The knot vector has a significant influence in the B-Spline generated. In general, one
can use three types of knot vectors: uniform, open uniform (or just open) and nonuniform.

1The convention we will adopt is that the order p = 0, 1, 2, 3, etc., refers to constant, linear, quadratic,
cubic, etc., piecewise polynomials, respectively. What we refer to as “order” is usually referred to as
“degree” in the computational geometry literature.
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Definition 3. The knot vector Ξ is said to be open if the multiplicity of a knot is at most
p, except the end knots which have multiplicity (p + 1). Uniform knot vectors satisfies
ξi+1− ξi = ∆ξ = const., for i = 1, ...,m− 1. Uniform knot vectors yield periodic uniform
basis functions. An open uniform knot vector has also the property ξi+1 − ξi = ∆ξ for
internal knots but it has multiplicity of knot values at the ends equal to (p+ 1). Finally,
nonuniform knot vectors may have either unequally spaced (ξi+1 − ξi = ∆ξ ) and/or
multiple knot values at the ends or even for the internal knots.

From (2.16) and (2.17), one can verify that B-Spline basis functions possess the fol-
lowing properties (PIEGL; TILLER, 1997):

a) Partition of unity:
∑n

i=1Ni,p (ξ) = 1.

b) Pointwise nonnegativity: Ni,p (ξ) ≥ 0 ∀ξ.

c) Linear independence:
∑n

i=1 αkNi,p (ξ) = 0⇐⇒ αk = 0, k = 1, . . . , n.

d) Local support: Ni,p (ξ) = 0 if ξ /∈ [ξi, ξi+p+1].

2.3.1 Multivariate B-Spline Basis Functions

Multivariate B-Spline basis functions are defined by tensor products of univariate B-Spline
basis functions. In order to build multivariate B-Spline basis functions, we introduce the
d-dimensional multi-index i ∈ Nd.

Definition 4. Let Ξ =
(
Ξ(1), . . . ,Ξ(d)

)
be the knot vectors, one for each dimension such

that

Ξ =
(

Ξ(1) =
(
ξ

(1)
1 , . . . , ξ(1)

m1

)
, . . . ,Ξ(d) =

(
ξ

(d)
1 , . . . , ξ(d)

md

))
,

from which it is defined the parametric space as

Ω̂ =
(
ξ

(1)
1 , ξ(1)

m1

)
× . . .×

(
ξ

(d)
1 , ξ(d)

md

)
. (2.18)

Definition 5. Let U = (u1, . . . , ud) be the upperbound multi-index for each dimension
and let I(U) be the function that generates a set of tuples for d-dimensional multi-index
i ∈ Nd defined by

I(U) = {(i1, . . . , id) ∈ {(1 . . . u1)× . . .× (1 . . . ud)} , us ∈ U , s = 1 . . . d} .

Definition 6. Let upperbound multi-index Ub = (u1 = n1, . . . , ud = nd) be the number of
basis functions along each dimension. Thus, we define index space for the basis functions
as

Ib = I(Ub),

where the subscript b means ”basis”.
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Definition 7. Let upperbound multi-index Uk = (u1 = m1, . . . , ud = md) be the number
of knots for each knot vector along each dimension. Thus, we define index space for the
knot vectors as

Ik = I(Uk),

where the subscript k means ”knot”, and m1 = n1 + p1 + 1, . . . ,md = nd + pd + 1.

Definition 8. We define corresponding d-variate B-Spline basis functions as

Ni,p (ξ) =
d∏
s=1

Nis,ps

(
ξ(s)
)

= N
(1)
i1,p1

(
ξ(1)
)
· . . . ·N (d)

id,pd

(
ξ(d)
)
, (2.19)

where i ∈ Ib is d-dimensional multi-index, ξ =
(
ξ(1), . . . , ξ(d)

)
are the coordinates value

along each parametric direction, and p = (p1, . . . , pd) denote the polynomial order along
each parametric direction.

2.3.2 B-Spline Geometries

Once defined the B-Spline basis functions, we can consider the creating of several geom-
etry using the functions basis discussed above.

Definition 9. Let Ni,p (ξ) be a family of d-variate B-Spline basis functions where i ∈ Ib,
ξ =

(
ξ(1), . . . , ξ(d)

)
and p = (p1, . . . , pd) are the coordinate values and the polynomial

orders along each parametric direction. Given a control mesh pi ∈ R3, the generalized
geometry mapping g : Ω̂→ Ω ⊂ Rd is defined by

g (ξ) =
∑
i∈Ib

Ni,p (ξ) pi, (2.20)

where Ω̂ and Ω ⊂ Rd represent the parametric and physical spaces, respectively.

For d = 1, the geometry mapping g defines the B-Spline curve. Thus, we have the
B-Spline parametrization given by

Ib = {i1 ∈ {(1 . . . n1)}} , p = p1, Ξ = Ξ(1), ξ = ξ(1).

The B-Spline surface is defined by g when d = 2 and the B-Spline parametrization is
given by

Ib = {(i1, i2) ∈ {(1 . . . n1)× (1 . . . n2)}} ,
p = (p1, p2) ,

Ξ =
(
Ξ(1),Ξ(2)

)
,

ξ =
(
ξ(1), ξ(2)

)
.
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The geometry mapping g define a B-Spline solid for d = 3, where the B-Spline parametriza-
tion is given by

Ib = {(i1, i2) ∈ {(1 . . . n1)× (1 . . . n2)× (1 . . . n3)}} ,
p = (p1, p2, p3) ,

Ξ =
(
Ξ(1),Ξ(2),Ξ(3)

)
,

ξ =
(
ξ(1), ξ(2), ξ(3)

)
.

2.4 NON-UNIFORM RATIONAL B-SPLINE

It is not always possible to model exactly all geometric entities by piecewise polynomials
such as B-Spline. Many important geometric entities can only be obtained through a
projective transformation of a B-Spline entity in Rd+1 yielding a rational B-spline into
Rd. Examples of geometric entities are conic sections, such as circles and ellipses, can be
exactly constructed by projective transformations of B-Spline quadratic curves.

2.4.1 Rational B-Spline Curves

Definition 10. Let p̃i be a control points in the four-dimensional homogeneous coordi-
nate space such that

p̃i =

(
wipi
wi

)
, i = 1 . . . n,

we can define a polynomial B-Spline curve in the four-dimensional homogeneous as

c̃ (ξ) =
n∑
i=1

(
wipi
wi

)
Ni,p (ξ) . (2.21)

By projection in the three-dimensional space we obtain the rational curve:

c (ξ) =

∑n
i= wiNi,p (ξ) pi∑n
j=1wjNj,p (ξ)

=
n∑
i=1

Ri,p (ξ) pi, (2.22)

where Ri,p (ξ) are the rational B-spline functions given by:

Ri,p (ξ) =
wiNi,p (ξ)∑n
i=1 wiNi,p (ξ)

. (2.23)

This function defines a curve of class Cp−1 in R3, which is called a B-Spline curve.
The points pi are called control points and the corresponding polygon is the defining
polygon or control polygon. Important properties about these curves are:

1. End points interpolation: in the case of open knot vector we have c (ξ1) = p1 and
c (ξn+p+1) = pn.
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2. Affine Invariance: If ψ (r) = Ar + v is an affine transformation then ψ (c (ξ)) =∑n
i=1Ni,p (ξ)ψ (pi).

3. Strong convex hull property: the curve belongs to the convex hull of its control
polygon.

Remark. When the rational B-spline functions are computed with non-periodic and non-
uniform knot vector they are named Non-Uniform Rational B-Splines (NURBS).

2.4.2 B-Spline Rational Surfaces and Solids

Analogous to the B-Spline basis functions the multivariate NURBS basis functions also
can be defined with multi-index. Thereunto, we begin by defining the generalized multi-
variate NURBS basis functions.

Definition 11. Let Ξ =
(
Ξ(1), . . . ,Ξ(d)

)
be the knot vectors, one for each dimension as

defined in (4). We define corresponding d-variate NURBS basis functions as

Ri,p (ξ) =
d∏
s=1

N
(s)
is,ps

(
ξ(s)
)

=
wiN

(1)
i1,p1

(
ξ(1)
)
· . . . ·N (d)

id,pd

(
ξ(d)
)∑

i′ wi′N
(1)

i′1,p1
(ξ(1)) · . . . ·N (d)

i′d,pd
(ξ(d))

, (2.24)

where i, i′ ∈ Ib are d-dimensional multi-indexes, ξ =
(
ξ(1), . . . , ξ(d)

)
are the coordinates

value along each parametric direction, and p = (p1, . . . , pd) denote the polynomial order
along each parametric direction.

Definition 12. The NURBS curve, surface and solid are defined analogously to the Def-
inition 9. To generate NURBS geometry just replace the basis functions in the expression
(2.20) by NURBS basis functions , which leads us to

g (ξ) =
∑
i∈Ib

Ri,p (ξ) pi. (2.25)

Remark. In almost all practical circumstances, the modeling of complex topologies with
conventional NURBS need several tensor product pieces which should be patched to-
gether, whence comes the idea of NURBS patches. In other words, a NURBS patch is a
particular set of knot vectors, polynomial order, and control points associated with a spe-
cific region of the model. Each patch has its own parameter space. Large geometries are
frequently built from many patches. When two patches meet, the control points coming
from each side must be identical along the interface where they meet, and the correspond-
ing knot vectors must be identical as well. Under these conditions, only C0-continuity of
the basis is achieved across the patch boundaries (BAZILEVS et al., 2010).

Assumption 13. Hereinafter, we assume for the remainder of this thesis that all used
NURBS geometries will be built from a single NURBS patch.
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2.5 ISOGEOMETRIC ANALYSIS

To perform the behavior simulation of deformable objects we can think about an engine
which is composed by three linked parts: the geometric model, dynamic model and ren-
dering module. The former can be realized in the context of parametric frameworks like
Non-uniform Rational B-Spline (NURBS) (PIEGL; TILLER, 1997; FARIN, 1997). The
dynamic model needs physic models that incorporate dynamic quantities like velocity,
mass and force distributions, into an evolution equation that governs the shape deforma-
tion (ERLEBEN et al., 2005). The latter includes global/local illumination techniques
to generate the scene with the desired realism (AKENINE-MöLLER; HAINES; HOFF-
MAN, 2008). Of course, from what has been presented so far that this work is focused
only on the first two components.

The use of NURBS as geometric model in the simulation context of deformable ob-
jects can bring improvements due to the features that NURBS offers. The NURBS is a
mathematical framework commonly used for generating and representing curves, surfaces
and solids (PIEGL; TILLER, 1997). It offers an unified mathematical basis to describe
analytic and free-form shapes with great flexibility and precision. It became a standard
for CAD (Computer Aided Design) systems due to its excellent mathematical, numeric
and algorithmic properties.

In turn, try to gather NURBS with a dynamic model in the context of deformable
model it is not something recent. The researchers have explored ways to couple the
NURBS geometric representation with physic modeling. One of the seminal works is
the Dynamic NURBS (D-NURBS) method developed by Terzopoulos and Qin (TER-
ZOPOULOS; QIN, 1994) that aimed at applying the deformable modeling approach to
shape design.. In D-NURBS, the NURBS control points and the weights play the role of
generalized coordinates, and the dynamical equations are derived from the Hamiltonian
principle. The deformation of a NURBS body is described by displacement the control
points and weights.

However, it was the need to unify the analysis process of the FEM with higher ac-
curacy of geometry representation that has linked the geometric model of NURBS with
finite element analysis. For this, the isogeometric analysis (IGA) has been introduced in
(HUGHES; COTTRELL; BAZILEVS, 2005) as an alternative to FEM-based method for
the analysis of problems governed by partial differential equations, inspired by the desire
to unify the fields of computer aided geometric design (CAGD) and FEM.

The main feature of IGA is the ability to maintain the same exact description of the
computational domain geometry throughout the analysis process, including refinement.
In the words of Bazilevs (BAZILEVS et al., 2013), the IGA is an inherently higher-order
accurate technique which uses basis functions emanating from CAGD, such as B-splines,
NURBS, T-splines, subdivision surfaces, etc., instead of traditional C0-continuous La-
grange finite element interpolatory polynomials (TEMIZER; WRIGGERS; HUGHES,
2011). These basis functions are of higher-order continuity than in the standard FEM.
This additional continuity is a distinguishing feature of IGA and it is beneficial in many
applications. Due to the increased order and smoothness of the underlying basis functions,
IGA is able to tolerate larger levels of mesh distortion than standard finite elements with-
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Selection of element  
type and discretization For e=1...ne 

For g=1...ng 

Basis function computation 
(values,derivatives) 

Addition of contributions  
to Ke,fe 

Assemblage Ke→K,fe →f  

Solve Ku=f  

Boundary condition 
addition  

Figure 2.4: Flowchart of activities for the solution of general continuum problem by IGA
in equilibrium static scenario

out compromising solution accuracy. These are features that we can explore to improve
the quality of MSM derivation process and the accuracy of geometry representation.

In the words of Cottrell et al (COTTRELL; HUGHES; BAZILEVS, 2009), the iso-
geometric analysis has a structure quite similar to classical FEM. Such similarity can be
observed by the orderly step-by-step that the finite element method follows to solve a gen-
eral continuum problem. In section 2.2, we summarized these general steps through the
flowchart in Figure 2.3. The mandatory modification to the flowchart such that it could
be used into isogeometric analysis is shown in Figure 2.4. As can be seen, the flowchart
structure is identical. However, we have highlighted in gray and red dotted lines those
activities that must be modified to comply isogeometric analysis requirements. The ac-
tivities related to selection of elements, discretization and basis functions computation
due to isoparametric concept depends on the choice of basis functions. Therefore, in
short, the major difference between classical FEM and IGA is the basis functions being
used.

Since exists an strong connection between classical FEM and IGA it is expected that
the conceptual itens of the IGA also keep some relation with the FEM. In FEM there is
one notion of a mesh and one notion of an element as seen in section 2.2. The key idea
in FEM is to subdivide the object domain into subdomains or finite elements with each
subdomain represented by a set of element equations which are systematically recombined
into a global system to compute the fields variable in question (e.g., displacement, velocity,
temperature, etc.). All these items are also present in NURBS-based IGA model, however
they are defined and treated differently.

Lagrange interpolation polynomials have been the standard choice for basis functions
in finite element method from almost the very beginning of finite element research. They
are the overwhelming choice whether the preferred metric is their prevalence in commer-
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cial codes or in research articles (BENSON et al., 2010). On the other hand, basically
all functions used in CAD could be used as basis for isogeometric analysis, provided that
they fulfill the necessary conditions for basis functions in modeling tasks, such as local
support and partition of unity (COTTRELL; HUGHES; BAZILEVS, 2009; NGUYEN;
BORDAS, 2015). Non-uniform Rational B-Splines are the most widespread technology
in today’s CAD programs and they fulfill the necessary conditions mentioned above,
therefore they are adopted for analysis. In the next sections, we present more detail of
the theoretical apparatus of the isogeometric analysis which is indispensable to a better
understanding of NURBS-based IGA framework.

2.5.1 Element Formulation

Undoubtedly, the core of the finite element method is the idea of element. An element
represents the elemental unit of solution in the solving of global problem. It holds a
number of attributes that can influence the solution quality. Therefore, the study of
element properties are extremely important for proper application of the finite element
method. Given such importance, it is compulsory to understand how the element is
defined in the context of isogeometric analysis.

Likewin in the finite element method, a NURBS-based IGA element is formed by
a set of nodes and corresponding interpolation functions. The nodes from FEM have
their counterpart in the NURBS control points as well as interpolation functions have
matching with NURBS basis functions. Hence, the control points constitutes the degrees
of freedom in each element such that the analysis and boundary conditions are applied
to them. However, a NURBS-based IGA element has characteristic and formulation
differents from those found in FEM elements. To understand these differences we will
develop a formulation for the NURBS-based IGA.

Definition 14. Let Ξ =
(
Ξ(1), . . . ,Ξ(d)

)
be the knot vectors, one for each dimension as

set out in Definition 4 and let Ik be the index space corresponding to Ξ. We denote
a tensor product mesh which divides the parametric domain Ω̂ as a set built from the
following formation rule

K̂ =
{

(Ξi,Ξi+1) =
(
ξ

(1)
i1
, ξ

(1)
i1+1

)
×, . . . ,×

(
ξ

(d)
id
, ξ

(d)
id+1

)
| i ∈ Ik ∧ i ∈ {i− 1}

}
, (2.26)

where each d-dimensional κi ∈ K̂ is termed parametric element. These elements are
typically a line segment in 1-dimensional problems, a quadrangle in 2-dimensional and a
hexahedron in 3-dimensional case.

Notice that the ordered pair forming the Cartesian product in expression (2.26) are
knot spans in their respective knot vectors (see Definition 1). Therefore, we must be aware
to ocurrences of empty knots span which could cause line, quadrangle or hexahedron
to have dimensional size (length, area, volume) equal to zero. To remove parametric
elements with these characteristics, we define a subset from K̂ as

K̃ =
{
κi ∈ K̂ | ξ(s)

is
= ξ

(s)
is+1, s = 1 . . . d

}
,
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Figure 2.5: The parametric mesh K̂ dividing the parametric domain Ω̂.

which allow us to define the set MΩ̂ as

MΩ̂ = K̂ − K̃. (2.27)

Remark. The set MΩ̂ is called parametric mesh on Ω̂ containing only elements with
proper dimensional size. We termed κi ∈ K̃ as empty parametric element due to the
fact that it has empty knot span. Otherwise when κi ∈MΩ̂, it is termed non-empty
parametric element.

Example. To further clarify these definitions, let us consider the 2-dimensional case with
the following NURBS parameters:

Ξ(1) =

{
0
ξ
(1)
1

, 0
ξ
(1)
2

, 0
ξ
(1)
3

, 0.2
ξ
(1)
4

, 0.4
ξ
(1)
5

, 0.4
ξ
(1)
6

, 0.8
ξ
(1)
7

, 1
ξ
(1)
8

, 1
ξ
(1)
9

, 1
ξ
(1)
10

}
,

Ξ(2) =

{
0
ξ
(2)
1

, 0
ξ
(2)
2

, 0
ξ
(2)
3

, 0.5
ξ
(2)
4

, 1
ξ
(2)
5

, 1
ξ
(2)
6

, 1
ξ
(2)
7

}
,

Ik = {(i1, i2) ∈ {(1 . . .m1 = 10)× (1 . . .m2 = 7)}} .

In Figure 2.5 is shown the parametric mesh K̂ that contained all elements κi including
those with empty knot span. One can view knot labels and their respective values ξi which
are distributed on parametric domain Ω̂. We pictured each κi ∈ K̃ (empty element) with
gray color, and each κi ∈MΩ̂ (non-empty element) is pictured with green color.

In the region on the right of Figure 2.5 , we highlight the set MΩ̂. We gather the
knot labels with multiplicity l > 1 under its reference value. Analyzing the distribution of
knots values inMΩ̂ which is an immediate consequence of the formation rules for the sets

K̂ and K̃, we achieve to conclusion that lead us to a natural definition of NURBS-based
IGA element.
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Definition 15. Given the knot vectors Ξ =
(
Ξ(1), . . . ,Ξ(d)

)
and the parametric space

confined to Ω̂ = (0, 1)d, the NURBS-based IGA element is defined by the cartesian
product between the ordered pair of knots in each direction belonging to a non-empty
knot span, namely:

Ω̂e = κi ∈MΩ̂

whereMΩ̂ the parametric mesh on Ω̂ containing only non-empty elements, and i ∈ Ik is
multi-index to index space of the knot vectors.

2.5.2 Discretization and Analysis

As seen in the Definitions (9) and (12), the B-spline and NURBS mappings transform
coordinates in parameter space Ω̂ to physical space Ω. Applying the key idea in finite
element method that is to subdivide the object domain into subdomains or finite elements,
we can define these two spaces in terms of elements as

Ω̂ =
ne⋃
e=1

Ω̂e, Ω =
ne⋃
e=1

Ωe, (2.28)

where ne is the total number of elements in the mesh MΩ̂, and Ωe is an element in the

physical space. Analogous to the expression (2.25), the geometric mapping g : Ω̂e →
Ωe ⊂ Rd can be obtained as

g
(

Ω̂e

)
=
∑
i∈Ib

Ri,p

(
Ω̂e

)
pi. (2.29)

In a sense, the expression (2.28) reflects the discretization of parametric and physical
spaces by the respective elements. In classical FEM, the discretization process generates
a only mesh under which will take place the analysis process. In case of the expression
(2.28) it is perceived two meshes: parametric and physical. Furthermore, by expression
(2.29) we can conclude that each element Ω̂e has its image Ωe in the physical space, ie,
parametric and physical meshes have a dependent relationship in which we can add yet
the spatial configuration of a third mesh: control mesh.

In Figure 2.6(a) is shown parametric mesh for knot vectors

Ξ(1) = Ξ(2) = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} .

In Figure 2.6(b) it is illustrated the NURBS geometric mapping for the parametric space
of Figure 2.6(a). Here, the control mesh is shown in red dotted lines with control points
denoted by black circles. The non-interpolatory nature of control points can be seen
through the delineation of the physical mesh (colored in green with blue lines indicating
the elements boundary).

In the context of deformable models, the analysis process in FEM is related to obtain
numerical solution of partial differential equations describing the continuum behavior of
deformable objects. The main focus of the analysis, as mentioned in section 2.2, is to
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(a) (b)

Figure 2.6: The geometry mapping g between parameter space (a) Ω̂ and physical space
(b) Ω.

assemble the governing algebraic equations in matrix form and to compute the unknown
values of the primary field variable (e.g., displacement, velocity, temperature, etc.). The
assembly of the governing algebraic equations (see section 2.2) can be expressed in terms
of summation as

ne∑
e=1

(
Me ¨̂u + Keû = f e

)
,

where the summation symbol indicates the assembling procedure to evaluate the global
system of equations, considering contributions at element level; Me, Ke are the mass and
stiffness element matrices, respectively; and f e is the force vector at element level. In
static analysis, it is dropped the term with the mass matrix (as detailed in the flowchart
in Figure 2.4) and equation becomes

ne∑
e=1

(Keû = f e) .

The Gaussian quadrature rule is applied to the evaluation of the element matrices
during numerical integration. Integrals defining the matrix terms, which are initially
defined in the physical space, are transferred to the parametric space and then to the
space containing the quadrature points (parent space), where the numerical integration
is actually performed.

The transformation from the physical space to the parent space is ilustraded in Fig-
ure 2.7, where Gaussian quadrature is carried out, is achieved by using a composition of
two consecutive transformations: the physical space (x) is transferred first to the para-
metric space (ξ̂) through a geometrical mapping and then to the parent space (ξ̃) through
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−1
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1

Ω̃e

˜ξ(2)

˜ξ(1)

Ω̂e

Ωe

Figure 2.7: The spaces (physical, parametric and parent) utilized in the numerical inte-
gration of the element matrices

a second mapping, which is affine. Spatial derivatives of basis functions with respect to
Cartesian coordinates are substituted by the corresponding derivatives with respect to
the parametric coordinates as follows (ESPATH; BRAUN; AWRUCH, 2011):

∂R

∂xi
=
∂R

∂ξ̂j

∂ξ̂j
∂xi

,

where the second term on the right-hand side of expression represents the inverse of the
Jacobian matrix. Since the numerical integration is performed in the parent domain, the
Jacobian determinant is evaluated with:

J =

∣∣∣∣∣∂xi∂ξ̃j

∣∣∣∣∣ =

∣∣∣∣∣∂xi∂ξ̂k

∂ξ̂k

∂ξ̃j

∣∣∣∣∣ .
The parametric coordinates ξ̂ =

(
ξ̂1, ξ̂2, ξ̂3

)
related to the quadrature points defined in

the parent space ξ̃ =
(
ξ̃1, ξ̃2, ξ̃3

)
can be obtained considering the NURBS multi-index

i ∈ Ib associated to element κi ∈MΩ̂, that is:

ξ̂ = ξ̂i +
(
ξ̃ + 1

) ξ̂i+1 − ξ̂i
2

.

To construct the IGA solution field over a NURBS patch, the isoparametric concept
is applied by representing the discrete solution û in terms of the NURBS basis functions,
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which, in turn, are determined by the given geometry mapping

û (ξ) =
∑
i∈Ib

Ri,p (ξ) ui,

where ui are the control variables or degrees-of-freedom. Assuming the geometric map-
ping g (see Definitions 9 and 12 ) is invertible, these NURBS basis functions can be
brought into the physical space by

Ri,p (x) = Ri,p (ξ) ◦ g−1.

Thus, given the solution in the parametric space û (ξ), its physical space counterpart
may be defined as

u (x) =
∑
i∈Ib

Ri,p (x) ui.

2.6 CONCLUSIONS

Interactivity is an important requirement for applications such as animation, virtual
environments, surgical training and games. These applications need to perform the sim-
ulation of mechanical behaviour in real-time; that means that one second of simulation
corresponds to one second of real life.

The techniques for simulating deformable objects can be grouped into continuous and
discrete models. The continuous methods are traditionally accurate relative to discrete
methods due to its connection with continuum mechanics as can be seen in sections
2.1-2.2.

In this chapter we mainly describe two continuous models: the finite element method
(FEM) and isogeometric analysis (IGA). These models can be used to perform mechan-
ical simulation of deformable objects. In general, they cannot be applied to interactive
simulations due to their high computational cost.

The described characteristics of two methods can be used to design discrete models so
that continuous and discrete models behave similarly. The main of these characteristics
is accuracy to simulate mechanical behaviour. However mesh refinement techniques and
the use of higher order elements (isoparametric concept) also can be applied to improve
both accuracy of geometry and solution of field variable.

The next chapter is about the discrete methods. In particularly, we describe the
mass spring model (MSM) and how continuous models has been applied to design the
parameters of discrete models.





Chapter

3
The MSM has been a discrete approach widely employed to simulation of deformable object which is

simple to implement and can be faster then the continuous ones, and so, more suitable for real time and

interactive application. However, obtaining parameters like stiffness coefficients still remains an open

challenge in MSM design. In this chapter we present a simplified formulation to MSM together with the

description to the parameterization strategies of the MSM.

DISCRETE MODELS

We can characterize a discrete deformable model as the one that does not use the physical
constants directly related to the simulated material (eg Young Modulus). These models
apply a network of masses and springs to simulate the mechanical behavior of deformable
objects which is governed by spring constants. In general, these methods are not accurate
in an absolute sense. However, many discrete approaches are fully adapted for interactive
simulations.

Mass-spring models are probably the simplest and easiest models to implement among
all discrete deformable models one can find in the literature (MEIER et al., 2005; NEALEN
et al., 2006). In many interactive applications the MSM are used to simulate the behavior
of different real-world objects. The MSM can be applied where the simulation based on
continuous would be computationally unfeasible for real-time applications(JARAMILLO;
PRIETO; BOULANGER, 2013).

There are three important advantages that make the MSM very atractive: sim-
plicity in its mathematical formulation, great versatility for topological changes, and
a structure well-suited for parallel computing. Hence, MSM techniques have been used
to model deformable objects (NEALEN et al., 2006), for woven cloth simulation sim-
ulation (VOLINO; THALMANN, 2000) and soft organic tissues, like muscles, face or
abdomen in virtual surgery applications (CHEN et al., 2007; ZERBATO; GALVAN;
FIORINI, 2007; BASAFA; FARAHMAND; VOSSOUGHI, 2008; VICENTE et al., 2009;
OTAMENDI, 2011) .

Regardless of the advantages and capabilities of the MSM for interactive mechan-
ical simulations, it has drawbacks. The main limitation of the MSM is the difficulty
of designing it to represent the mechanical behavior of deformable objects with enough

29
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accuracy. One way often used to surpass this limitation is to derive the MSM param-
eters, in particular the spring coefficients, from a continuous model due to its accuracy
(BIANCHI et al., 2004; LLOYD; SZéKELY; HARDERS, 2007; BAUDET et al., 2009;
NATSUPAKPONG; ÇAVUSOGLU, 2010; SAN-VICENTE; AGUINAGA; CELIGUETA,
2012; SILVA; GIRALDI; APOLINARIO, 2015).

Due to these facts, we have to solve a research problem which can be summarized as
follows: on one hand we have interactive mechanical simulations and a model that for
its characteristics has a vocation for real time application but is limited in accuracy. On
the other hand, the continuous model that is accurate has been used to derive spring
stiffnesses from elastic properties (Young’s modulus and Poisson’s ratio).

In this way, our work contributes to the parameterization of the MSM using a con-
tinuous model as reference. For this, in this chapter we present the theoretical basis for
the mass spring model and pointed out the main solution strategies to the problem of
parameterization.

3.1 MASS SPRING MODEL

One possibility for deformable objects simulation is to apply discrete models based on
mass-spring models (MSM). Likewise in the FEM case, the object geometry is represented
by a mesh with nodes xi, i = 1, 2, . . . , n, which are connected according to some topology
T . But, in the MSM technique, the mesh nodes are treated like mass points while each
edge acts like a spring connecting two adjacent nodes. It is not used the notion of element
and each mesh node xi is represented in the global reference system as xi = (xi,1, xi,2, xi,3).
In order to compute the dynamic behavior of objects we derive forces at mass points from
potential energies that preserve distances between masses.

The elastic potential energy of the whole body is:

E (x̂) =
1

2

∑
(i,j)∈T

ksij
(
‖li,j‖ − l0i,j

)2
, (3.1)

where x̂ = (x1,x2, . . . ,xn) is the vector of all the particle positions like in section 2.2,
li,j = xi−xj, l

0
i,j is the rest length of the spring with end points xi, xj, denoted by i→ j,

and ksij is the stiffness constant of the spring. Therefore, the overall elastic force at a
mass point mi is derived as:

f ielastic = −∂E
∂xi

=−
∑
j∈Vi

ksij
(
‖li,j‖ − l0i,j

) li,j
‖li,j‖

, (3.2)

where Vi is the set of nodes linked to xi.
From equation. (3.2) it’s easy to see that f ielastic = −f jelastic. Besides, in the absence of

any damping, this conservative force will cause the system to oscillate around the solution
of E (x) = 0, which is the undeformed configuration x̂0. It corresponds to the reference
configuration Ω0 of the FEM model (notice that expression (2.10) also vanishes when
x̂ = x̂0). To add damping to linear spring forces defined by equation (3.2), we apply the
expression:



3.1 MASS SPRING MODEL 31

f idamp = −
∑
j∈Vi

kdij
li,j.l̇i,j
‖li,j‖

li,j
‖li,j‖

, (3.3)

with l̇i,j = ẋi − ẋj and kdij being the damping coefficient associanted to the spring i→ j.
The external force at node i is any general force acting on the system, e.g, gravitational

force:

f iext = f igrav = mig, (3.4)

So, given a particle i with mass mi and position vector xi, the Newton’s Laws allow to
get the following dynamic equation of motion (BOURGUIGNON; CANI, 2000; LLOYD
et al., 2008):

miẍi + f ielastic + f idamp = f iext, i = 1, 2, . . . , n. (3.5)

For simplicity, the sum of elastic and damping forces in expression (3.5) is often called
the internal forces acting at node i, and is denoted by:

f iint = f ielastic + f idamp. (3.6)

The obtained equations (.) need initial conditions composed by the initial configu-
ration and velocity to assure existence and uniqueness of the solution. These conditions
will be also the input to numerical approaches based on Leapfrog method for time in-
tegration of the ordinary differential equations. The Leapfrog integration is a second
order method which receives the positions xi(t), velocity ẋi(t), and the acceleration ẍi(t)
computed from the Equation 3.5 in order to calculate the new system state to timestep
t+4t by (POZRIKIDIS, 2008)

ẋi(t+4t) = ẋi(t) +
4t
2

ẍi(t), (3.7)

xi(t+4t) = xi(t) +4tẋi(t+4t). (3.8)

By similar reasoning to obtain the equation (2.9), we can compute the linearized MSM
equations of motion and write them in matrix form as:

MMSM
¨̂u +KMSM û = f , (3.9)

where û = x̂ − x̂0, MMSM = diag
[
m1I m2I . . . mnI

]
is the block diagonal mass

matrix, and the stiffness matrix KMSM encodes a first order approximation of the elas-
tic spring forces nearby the rest positions. More specifically, the matrix KMSM is the
Jacobian of the force vector (Equation 3.2) and the Hessian of the elastic potential en-
ergy (Equation 3.1) with respect to the particle positions, computed at the undeformed
configuration x̂0. It can be written in block form, where each block is given by,
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Ki,j
MSM =

∂2E (x̂0)

∂xi∂xj
(3.10)

which is a 2× 2 matrix in 2D or 3× 3 matrix in 3D.
Paying attention to the MSM formulation (Equation (3.5)), we can note the presence

of the three basic components of a mechanical system (KELLY, 2011): inertia, measured
by nodal masses values mi; stiffness, measured by the stiffness constant of the spring
ksij; damping, measured by the damping coefficient kdij. The mechanical behaviour of a
system involves the transfer of its potential energy to kinetic energy and of kinetic energy
to potential energy, alternately, and optionally some energy is dissipated when the system
is damped. So, the parameters mi, k

s
ij and kdij determine the mechanical behaviour of

system assuming key role in the accuracy and realism of the simulations. Therefore, it
becomes paramount the designing of systematic procedures to assign parameters to the
MSM to ensure both visual realism and physical accuracy. In the next section we will
discuss methodologies proposed in the literature by addressing this issue.

3.2 PARAMETERS IDENTIFICATION

Many improvements in the MSM designing have been presented by several authors in
order to become the deformable model simulations more accurate and realistic. Some of
them have conducted research that aim to developing new methods for obtaining of spring
coefficients (LLOYD; SZéKELY; HARDERS, 2007; SILVA; GIRALDI; APOLINARIO,
2015) whereas others have proposed modify the traditional structure of the MSM by
including force-based constraints (CHOI et al., 2004; BAUDET et al., 2009) or by adding
special hinge as angular or bending springs (PROVOT, 1996; BOURGUIGNON; CANI,
2000; GIRALDI; ORTIZ; JR, 2006). Among them there is a consensus that exist an
acceptable approach for computing the nodal masses values as in (DEUSSEN; KOBBELT;
TüCKE, 1995; BAUDET, 2006), however, the problem of selecting the appropriate spring
and damping constants is still unsolved (NATSUPARKPONG, 2009; SAN-VICENTE;
AGUINAGA; CELIGUETA, 2012).

According to Lloyd et al (LLOYD; SZéKELY; HARDERS, 2007), two categories of
methods can be identified in the estimation of the parameters for MSM in order to guar-
antee an accurate and realistic behavior: analytical derivation methods and data-driven
techiniques that for simplicity we will call analytical-driven and data-driven methods,
respectively.. The first class is composed by those methods that try to obtain the values
of mass, stiffness and damping ratio that reproduce a known property of the reference
model through theoretical considerations (ZERBATO; GALVAN; FIORINI, 2007). These
methods seek to derive parameters starting from some analytical knowledge of the ma-
terial or model, such as the FEM. For instance, we can seek for a linearized MSM model
that produces elements with a stiffness matrix similar to that from linear FEM. This
reasoning strategy based on the FEM formulation was started by Van Gelder (GELDER,
1998) who initially derived an MSM, with topology given by a triangular mesh, equivalent
to the FEM in the context of linear elasticity. Specifically, it derives a formula for com-
puting the spring stiffness coefficient of an edge according to the geometry of the triangles
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incident upon that edge as well as material properties (Young’s modulus). However, this
approach did not show positive results and the conclusion was that, in general, there is
no possible solution that matches FEM and MSM stiffness matrices.

Some years later, (LLOYD; SZéKELY; HARDERS, 2007) demonstrated that there
is a particular case where both matrices are equal. This particular case occurs when
using equilateral triangle finite element and Poisson’s ratio equal to 1/3. The approach
results in explicit formulas for the MSM stiffness coefficients for triangle, rectangle, and
tetrahedron meshes. An extension of this work is found in (LLOYD et al., 2008) which
presents formulas to derive the dynamic MSM parameters (mass and damping) as well.
Also, it was demonstrated in (BAUDET et al., 2009) that Van Gelder’s approach is
restricted to null Poisson’s ratio. In this reference it is supposed a linear elastic, isotropic
and homogeneous materials and spring coefficients are determined to correctly simulate
shear, elongation (tensile) for these mechanical systems. Firstly, the method computes
the associated Lagrangian which depends on variables related to the material response
to the shearing/elongation stress. Next, expressions for the Lagrangian extremum are
computed to compose a system of equations together with the measured mechanical
characteristics definitions. The idea is to build a set of equations whose solutions give
the spring coefficients as function of the mechanical characteristics.

On the other hand, MSM models can be derived from a continuum approach by inter-
preting local expressions energy or force terms computed by finite difference or FEM for-
mulations. In this way, in (DELINGETTE, 2008) it is considered an isotropic membrane
represented by a triangular mesh and modeled by FEM. It is evaluated the membrane
energy necessary to deform a single triangle and demonstrated that it is a function of
square edge variation and the angles of the undeformed triangle. The obtained expression
is composed by two terms: the first one is interpreted as the energy of three tensile bi-
quadratic springs while the second term can be seen as three angular bi-quadratic springs
that prevent changes in vertex angles. This approach still requires Poisson’s ratio equal
to 1/3 and its extension to 3D is not yet available. A similar philosophy is used in (ETZ-
MUSS; GROSS; STRASSER, 2003) but in this case the membrane model is discretized
using a quadrilateral mesh and finite difference approaches. Besides, this reference de-
rives spring models using discrete versions of evolution equations instead of discretizing
the stretching energy as performed in (DELINGETTE, 2008).

The second category (data-driven approaches) is composed by methods that use a
minimization procedure to find the model that shows the closest behavior to that of the
observed (or simulated) deformable object. To implement such solution we must specify
some properties and/or constraints for the MSM and then to seek for the other ones by
optimizing an objective function that measures the similarity between the configurations
of both the MSM and the reference model. In these cases, it is common to use genetic
algorithms (VOLLINGER et al., 2009) and simulated annealing (MORRIS; SALISBURY,
2007). All theses methods share the same basic principle: applying random values to
different springs properties and correct the ones that induce the greatest error in order to
minimize the discrepancies. These methods are well suited for solving complex problems
involving non-linearity and can handle with discrete properties of the MSM configuration,
like the mesh topology (VOLLINGER et al., 2009). The main disadvantage of the use of
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these methods is the need for long computation times.
In order to avoid the limitations pointed out for the aforementioned model-driven

techniques, in (NATSUPAKPONG; ÇAVUSOGLU, 2010) an optimization strategy is pro-
posed to derive stiffness parameters based on the minimization of the difference between
the FEM and the linearized MSM stiffness matrices. The derivation is performed nearby
the steady-state solution of the FEM model; that means, the MSM governing equation
is linearized by using the first order approximation for the spring forces computed at the
rest nodal positions given by the FEM steady-state. Then, the optimization problem is
set up and its solution gives the stiffness coefficients of the springs. Another optimization
approach can be obtained using the eigendecomposition of the solution space following a
methodology imported from modal analysis in vibration theory. This approach performs
the analysis of the spectral properties and principal directions of the stiffness matrices in
order to find most suitable parameters for MSM (OTAMENDI, 2011).

3.2.1 Nodes Mass Identification

The computation of the mass matrix MFEM given by equation (2.8) does not offer a
systematic way to map the elements of matrix MFEM to the MSM masses. Therefore, to
identify the nodal masses of the MSM some heuristics are widely used.

The first possibility to derive the mass mi is to consider only the diagonal elements of
matrix M e associated with the element Ωe in expression (2.4), which allows an intuitive
physical association given by

mi = m̂e
ii, (3.11)

where m̂e
ii is the diagonal terms from the finite element lumped mass matrix (NATSU-

PAKPONG; ÇAVUSOGLU, 2010).
On the other hand, if the material density ρ is known, the node mass mi can be

computed considering the node i surrounding area/volume, so the problem rephrases
in defining a surface/volumetric region belonging to each node. In this case, a general
expression to compute mi is given by (BAUDET, 2006; LLOYD et al., 2008; SALA et
al., 2011)

mi =
∑
e∈Ωe

ρ
Λe
nn
, (3.12)

where Λe is area/volume from polygon/polyhedron, nn are the number of nodes of the of
polygon/polyhedron, Ωe is the set of polygon/polyhedron sharing the node i.

3.2.2 Springs Stiffness Identification

As mentioned previously, the springs stiffness coefficients can be determined through pa-
rameter estimation methodologies, to fit the MSM model to an experimentally measured
response or by mean of theoretical considerations about some analytical knowledge from
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material or model. It is already known that the stiffness coefficients can be analytically
computed under certain conditions. For instance, the spring coefficient in the 4-node
rectangle square element can be computed by expression

kedge =
∑
e∈Ωe

5

16
tE, kdiagonal =

7

16
tE, (3.13)

where t is thickness and E is Young Modulus, since Poisson’s ratio have been equals
to 1/3 (LLOYD; SZéKELY; HARDERS, 2007).

On the other hand, in the approach proposed by (GELDER, 1998), the stiffness
constant of a spring, with rest length c, representing the common edge of two neighboring
triangles of the mesh by (Ti) of surfaces |Ti| and with edges c, ai, bi (with i ∈ {1, 2}) is
given by

kc =
n∑
i=1

E

1 + ν

|Ti|
c2

+
Eν

1− ν2

a2
i + b2

i − c2
i

8|Ti|
, (3.14)

with ν, the Poisson’s ratio and E, the corresponding 2D Young’s modulus of the simulated
material. Moreover, Van Gelder’s results are restricted to ν = 0 to avoid negative value
of kc. However, these expressions are only defined for the 2D case. For the 3D case there
is no general solution to compute analytically the springs stiffness coefficients as shown
in the work (GELDER, 1998; LLOYD; SZéKELY; HARDERS, 2007; BAUDET et al.,
2009). This limitation leads us to methods that use a minimization procedure to find the
mass spring model that shows the closest behavior to that of the reference model or data
experimentally obtained.

In the static equilibrium, the MSM equations can be written as (LLOYD; SZéKELY;
HARDERS, 2007)

felastic (x̂,φ) = fext (3.15)

where felastic (x̂,φ) is an dn × 1 vector containing the spring forces, x̂ = (x1,x2, . . . ,xn)
is an dn × 1 vector that contains all the d-dimensional vertex positions xi, and φ =
(k12, k13, . . .) is the vector of the unknown spring stiffness coefficients. The vector fext on
the right hand side contains the external forces at each node. Given the external forces f ref

and the corresponding vertex positions xref of a reference model in the deformed state,
the goal is to optimize the spring coefficients so that the MSM and the reference model
behave similarly. The similarity criterion is usually defined as the Euclidean distance
between the nodes of the MSM and the reference model often expressed by

ϕ (φ) =
∑
i

∥∥∥xrefi − xi
(
φ, f ref

)∥∥∥2

, (3.16)
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where the positions xi
(
φ, f ref

)
are the equilibrium positions for a specific parameter

vector φ and external forces f ref . The functional ϕ (φ) must be minimized to obtain
optimal parameters φ̄ = arg min

φ
ϕ (φ). This involves computing the equilibrium positions

for each candidate parameter vector φ. In this optimization process, classical methods
can be used. However, usually they get trapped in local minima. Therefore, mostly
alternative methods have been used as genetic algorithms (VOLLINGER et al., 2009)
and simulated annealing (MORRIS; SALISBURY, 2007). Following the static equilibrium
reasoning we can develop an objective function that measures the similarity between the
reference model and the linearized MSM stiffness matrices. Thereby, equation (3.16) is
replaced by

φ̄ = arg min
φ

∥∥Kref −KMSM

∥∥2
. (3.17)

This methodology is followed by (NATSUPAKPONG; ÇAVUSOGLU, 2010; OTA-
MENDI, 2011) which determines stiffness parameters of linear mass-spring models with
the linear FEM model as the reference one.

Assumption 16. Henceforth, in the remainder of this thesis, we call ”Matrix Approach”
the approaches that use the expression (3.17).

In the next section we present an overview of the simulated annealing method which
will be applied in the solving of the optimization problems of this thesis.

3.2.3 Simulated Annealing

The idea of Simulated Annealing (SA) comes from a paper published by Metropo-
lis (METROPOLIS et al., 1953) that was generalized by the Kirkpatrick et al (KIRK-
PATRICK; GELATT; VECCHI, 1983) to include a temperature schedule for efficient
searching. In this latter, the SA is presented as probabilistic method for finding the
global minimum of a cost function that may possess several local minima (BERTSIMAS;
TSITSIKLIS, 1993).

The SA algorithm was inspired from the physical annealing analogy. Physical anneal-
ing is a process in which a solid is first heated until all particles are randomly arranged in
a liquid state, followed by a slow cooling process. At each (cooling) temperature enough
time is spent for the solid to reach thermal equilibrium, where energy levels follow Boltz-
mann distribution. As temperature decreases the probability tends to concentrate on low
energy states.

In simulated annealing we keep a temperature variable to simulate this heating pro-
cess. We initially set it high and then allow it to slowly ’cool’ as the algorithm runs. While
this temperature variable is high the algorithm will be allowed, with more frequency, to
accept solutions that are worse than our current solution. This gives the algorithm the
ability to jump out of any local optimums it finds itself in early on in execution. As the
temperature is reduced so is the chance of accepting worse solutions, therefore allowing
the algorithm to gradually focus in on a area of the search space in which hopefully, a
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close to optimum solution can be found. This gradual ’cooling’ process is what makes
the simulated annealing algorithm remarkably effective at finding a close to optimum
solution when dealing with large problems which contain numerous local optimums. The
Algorithm 3.1 shows the typical steps carried out during the optimization process with
simulated annealing.

Algorithm 3.1 A General Simulated Annealing Algorithm

Initialization(Current Solution,Temperature)
Calculation of the Current Cost
LOOP

New State
Calculation of the New Cost
IF4 (Current Cost− New Cost) ≤ 0 THEN

Current State = New State
ELSE

IF exp
(

Current Cost−New Cost
Temperature

)
> Random(0, 1) THEN

Current State = New State
ELSE

Reject
ENDIF

ENDIF
Decrease the temperature

EXIT When STOP CRITERION
ENDLOOP

3.3 CONCLUSIONS

The MSM is simple, fast and suitable for interactive mechanical simulations. In order to
ensure accuracy and realism in the simulation, the MSM parameters (nodal mass, stiffness
constant of the spring and damping constant) that control the mechanical behaviour must
be assigned rightly. Parameterization methods have been proposed to address this issue.

Some parameterization methods use analytical expressions to calculate the parameters
and so are simple and fast. However, they impose restrictions such as: specific values
of physical constants (Young Modulus, Poisson’s ratio); linearization of elastic force;
specific continuous model and its structures. Others parameterization methods compute
the parameters solving an optimization problem that fitting of deformation of the MSM
to some reference data. These methods are not subject to any condition other than the
reference data. The disadvantage of them is the necessity for long computation times.

In the next chapters, we will discuss a few more about the advantages and disadvan-
tages of the strategies for parameterization of the MSM. From these discussion, we will
propose two methods to the MSM parameterization: a) The acceleration-based approach
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that proposes the parameterization of the MSM using FEM as reference model in an en-
vironment free of static equilibrium and linearization of elastic force; b) The IGA-based
approach that performs the MSM parameterization using NURBS-based IGA as reference
model with higher order elements to improve accuracy and realism.

These methods will described in the next chapters. The acceleration-based approach
will be presented in Chapter 4. The IGA-based approach will be presented in Chapter 5.



Chapter

4
In general, the approaches to the MSM parameterization are built on static equilibrium scenario and

linearized elastic force. Besides, restrictions on physical constants (Young Modulus and Poisson’s ratios)

and on reference model need to be applied to enable the parameterization. In this chapter we propose a

method that overcomes these restrictions without interfering with any of the good qualities of the MSM.

PARAMETERIZATION BASED ON FEM

The problem of the MSM parameterization is an issue still investigated nowadays. In
particular, the selection of proper values for the spring and damping constants calcu-
lated without manual tuning is an open problem as mentioned in section 3.2. The main
argument for this claim is that the model parameters (spring coefficients, damping con-
stants and masses) are not related to elastic material constitutive laws in an obvious
way (LLOYD et al., 2008) and there is no general physically based or systematic method
in the literature to determine the element types or parameters from physical data or
known constitutive behavior (NATSUPAKPONG; ÇAVUSOGLU, 2010).

To tackle this challenge the researchers try to incorporate the accuracy and realism
from continuous models into the MSM in two ways: a) developing analytical expressions
linking properties of continuous model with the MSM (analytical-driven methods); b)
fitting of deformation of the MSM to some reference data by modifying its inner parame-
ters (data-driven approaches), where the reference data may be obtained experimentally
or generated by a continuous model like FEM (see section 2.2) or IGA (see section 2.5 ).
Of course, there are advantagens and disadvantagens to both approaches.

The analytical-driven methods are, in general, fast and able to give good results under
certain conditions. About these restrictions, we may recall that the analytical expressions
to calculate spring coefficients require Poisson’s ratio be assigned to a fixed value ,(VAN-
GELDER; WILHELMS, 1997; ETZMUSS; GROSS; STRASSER, 2003), restrictions to
angles between the springs (BAUDET et al., 2009), and linearization of MSM when the
derivation of analytical expression occurs from the stiffness matrices of models (LLOYD;
SZéKELY; HARDERS, 2007). For the latter, the analytical expression is only valid for
a stiffness matrix built with a linear finite element (mandatorily triangle or tetrahedron)
and Poisson’s ratio must assume a predefined value, generally 1/3.

The data-driven approaches is not subject to any condition other than the reference
data. It does not need any previous detail or information about mechanical behaviour of

39
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the body apart from the reference data. The body can show behaviour linear or nonlinear,
the derivation process will compute the parameters best-suited for the specific reference
data. Therefore, these methods generally lead to optimization problem which has as main
disadvantage the long computation time to find the optimal set of parameters.

In an overview about both approaches, we can affirm that:

� they pursued a similarity relationship from the continuum knowledge which can be
continuum mechanics or a continuum-based model as FEM;

� although there are approaches based on dynamic equilibrium both have mainly
focused on the static equilibrium in which estimate the stiffness coefficients is the
central goal;

� when procedure to estimation are built on FEM, both approaches rely exclusively
on linear elements;

� data-driven and analytical-driven methods to estimate spring coefficients by using
the matrix approach depend on linearization of elastic force;

� and finally, reviewing literature of the MSM parameterization, we find out that to
FEM models with higher order polynomial interpolation function have not been
considered in the MSM derivation literature, at least until current date.

These considerations lead us to research and propose a methodology that was free of:

� Static equilibrium;

� Linearization of elastic force;

� Restrictions of any order in Poisson’s ratio value;

� The use of the FEM as reference model with linear elements.

Aside from the arguments cited above in favor of the derivation from FEM with higher
order elements we also made efforts to contribute to an approach that would improve
the following limitations: conditioning for validity of the estimated parameter as those
imposed by analytical-driven methods; dependency of linear elements (both data-driven
and analytical-driven methods); linearization of MSM and necessity of static equilibrium.

Since many approaches accomplish the parameters derivation of MSM from a continuum-
based model, we also start our work research to find out the set of parameters that makes
the MSM behaves similarly to FEM. Thus, we propose the parametrization based on
acceleration approach. In this method, the main goal is achieve the parameterization of
the MSM in an environment free of static equilibrium and linearization of elastic force.
For this, our proposal is to define a new method to design the mass-spring systems that
uses a data-driven strategy under a dynamic scenario. The method may be summarized
into two stages: (a) Simulate the deformable object using a reference model and keep the
system state (position and velocities) of the particles; (b) Solve an optimization problem
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based on the acceleration of the reference and MSM models in order to compute the
stiffness parameters.

The derivation of the MSM parameters based on accelelation strategy was published in
(SILVA; GIRALDI; APOLINARIO, 2015) under the title “A new optimization approach
for mass-spring models parameterization”, in Elsevier’s journal Graphical Models. Our
proposal for MSM parameters derivation is based on the independence of the static equi-
librium and elastic force linearization.

4.1 ACCELERATION COST FUNCTION

To achieve independence from static equilibrium strategy and the linearization of elastic
force we start with the motion equation of the MSM (see Equation (.) ) in order to
define an objective function that expresses the optimization problem whose the solution
will result in estimated stiffness coefficients. We shall observe that the MSM motion
equation (.) can be rewritten to isolate the particle acceleration ẍi(t):

ẍi(t) =
f iext(t)− f iint (xi(t),φ)

mi

≡ ẍmsmi,t , (4.1)

where f iint (xi(t),φ) is the vector in expression (3.6) containing the internal forces that
depend on the stiffness and damping parameters assembled in the array φ. In the opti-
mization problem to be considered, we do not include the damping effects; so, the vector
f iint (xi(t),φ) includes spring forces only. Consequently, given position xi (t), velocity
ẋi (t) computed from the reference model, masses mi calculated by the equation (3.11) or
(3.12), we shall observe that ẍmsmi,t = ẍmsmi,t (k1, k2, . . . , km) in expression (4.1). Therefore,
we can define the cost function ϕ as

ϕ (φ) =
∑
i

τ∑
t=0

∥∥∥ẍrefi,t − ẍmsmi,t

∥∥∥2

, (4.2)

where φ = (k1, k2, . . . , km)T is the vector containing stiffness coefficients and τ is the last
instant of simulation. So, we should solve the optimization problem

φ̄ = arg min
φ
ϕ (φ) , (4.3)

in order to find the best values for the parameters in the vector φ.
To avoid that the optimization occurs at the whole solution space of the reference

model which would lead to computation cost prohibitively large, we impose a strong sim-
plification by observing that, to find φ̄ in expression (.) we need to solve the equations
∂ϕ
∂kα

= 0, α = 1, . . . ,m, given by (SILVA; GIRALDI; APOLINARIO, 2015):

∑
i

τ∑
t=0

(
ẍrefi,t − ẍmsmi,t

)
· ∂

∂kα
ẍmsmi,t = 0. (4.4)

The key idea is to find out the dominant terms in expression (.) and then to compute
kα that minimize them. So, let us take the configuration with highest elastic FEM energy
in the simulation times t0, t1, . . . , τ .
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If the FEM elastic energy is maximum at t = t we expect that the internal forces, and
consequently the particle accelerations, get also higher values at this simulation time.
Therefore, we could postulate that the dominant term in expression (4.4) is the one
corresponding to t = t and, consequently, a guess for the desired solution φ̄ would be:

¯̄φ = arg min
φ

∑
i

∥∥∥(ẍref
i,t
− ẍmsmi,t

)∥∥∥ . (4.5)

4.2 GROUPING SPRING

We can rewrite the elastic force in the expression (3.2) as

f ielastic =
∑
j∈Vi

[
ksi,jwe (xi,xj)

]
(4.6)

where

we (xi,xj) =

 (wij
e )1

(wij
e )2

(wij
e )3

 = −
(
‖li,j‖ − l0i,j

) li,j
‖li,j‖

.

For simplicity, let us assume that the cardinality of Vi is a constant N , for all i, then

f ielastic =

 (wi1
e )1 (wi2

e )1 (wi3
e )1 . . .

(
wiN
e

)
1

(wi1
e )2 (wi2

e )2 (wi3
e )2 . . .

(
wiN
e

)
2

(wi1
e )3 (wi2

e )3 (wi3
e )3 . . .

(
wiN
e

)
3




ki,1
ki,2
ki,3
...

ki,N

 , (4.7)

and hence

felastic =


W 1

W 2

. . .
W n−1

W n




φ1

φ2

...
φn−1

φn

 = AMSMφ, (4.8)

where felastic ∈ R3n , W i ∈ R3×Nand φi =
(
ki,1 ki,2 ki,3 . . . ki,N

)T ∈ RN . Therefore,
AMSM ∈ R3n×Nnand φ ∈ RNn.

Dropping the damping term of the MSM motion equation (.) , we have

miẍi + f ielastic = f iext, i = 1, 2, . . . , n, (4.9)

is equivalent to

MMSM
¨̂x + AMSMφ = fext,
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where x̂ = (x1,x2, . . . ,xn) and MMSM = diag
[
m1I m2I . . . mnI

]
∈ R3n×3n.

Therefore, internal forces f iint and external forces f iext in expression (.) can be as-
sembled in a global expression:

AMSMφ = b, (4.10)

where b = fext −MMSM
¨̂x.

Thus, equation (4.10) can be treated as a linear system with Nn unknowns and 3n
equations, where often Nn > 3n, ie, undetermined system with (in general) more than
one solution. To deal with such ill-posed problem we could impose a set of constraints
involving the stiffness coefficients in order to get a determined or an overdetermined sys-
tem. However, in this scenario, we should be carefull about the effects of these constraints
in the material properties; particularly for homogeneity and isotropy. In the MSM model,
these properties are consequences of the mesh topology, the stiffness coefficients and rest
lenghts, which control the degrees of freedom of the system. However, the larger the num-
ber of degrees of freedom is the more difficult to predict the variations in the mentioned
properties, which may bring undesirable consequences in the MSM derivation approach.
So, our strategy is steered by simplification: (a) We represent the reference configuration
Ω0 through a structured mesh; (b) The length l0ij is the length of the edge (i, j) in the
reference configuration; (c) Springs with the same rest length have the same stiffness
coefficient. In this way, we can predict, at least qualitatively, the consequences of the
MSM setup in the corresponding material properties.

Due to the assumptions (a)-(c) it is convenient to group the N.n springs by the rest
lengths l01, l02,...,l0m̄, because we have, in general, that m̄� N.n. Formally, this process is
equivalent to arrange each linear expression in equation (4.7) as:(

wi1
e

)
j
ki,1 +

(
wi2
e

)
j
ki,2 +

(
wi3
e

)
j
ki,3 + . . .

. . .+
(
wiN
e

)
j
ki,N = k1A

i
j,1 + k2A

i
j,2 + . . .+ km̄A

i
j,m̄, (4.11)

where:

Aij,α =
N∑
s=1

(
wis
e

)
j
fα (ki,s) , (4.12)

fα(ki,s) =

{
1 if l0i,s ∈ [l0α(1− γ), l0α(1 + γ)]

0 otherwise
, α = 1, . . . , m̄, (4.13)

with 0 < γ < 1 being a parameter to control the number of spring groups. This factor
γ controls the granularity of the spring groups around the rest length l0α. If it increases
then the granularity decreases, therefore we will have few spring groups. Otherwise, if
it decreases then the granularity increases, which implies an increase in the number of
spring groups.
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In this way, we can rewrite the linear system (4.10) such that, m̄ becomes the new
number of unknowns:

Āφ̄ = b, (4.14)

where the 3n× m̄ matrix Ā encode spring force coefficients grouped by rest length, and
φ̄ = (k1, k2, . . . , km̄)T is the array of stiffness constants to be computed.

4.3 DEFORMATION MEASUREMENT

In some situations, including the parameterization of the MSM, it is important to measure
the strain somehow. Therefore, in the following is presented a simple measure of strain
that will be used in the rest of this thesis.

Strain represented by the Greek letter ε, is a term used to measure the deformation
or extension of a body that is subjected to a force or set of forces. The strain of a body
is defined as the change in length divided by the initial length. In the simplest case
(one-dimensional), an edge (that represents a bar or a spring) can grow from its original
length l0 to its final length l. The change in length l− l0 represents the deformation of the
edge. In the literature (SADD, 2009; VABLE, 2009), the normal or extensional strain is
the intensity of deformation defined by the change in length divided by the initial length.
the strain can be defined as the ratio ε between the amount of stretching and the original
length given by

ε =
l − l0
l0

. (4.15)

To compute the global deformation for a mesh with n edges that have undergone
deformation, we can simplify the computation by using the expression

εG =
1

n

(
n∑
i=1

∣∣ε (li, li0)∣∣
)
, (4.16)

where εG is is the average deformation which is a result of summation involving individual
deformation ε (li, li0) of each edge i.

Furthermore, the global deformation express in (4.16) can be interpreted by taking
the relative percentage defined as

%εG = εG.100. (4.17)

4.4 PROPOSED METHOD

As seen in previous sections, we resort to the use a cost function based on the acceleration
of both models to ensure that our approach does not rely on static equilibrium neither
of the linearization of elastic force. The acceleration is a measure that involves the time
(it is the second derivative of the position with respect to time). So, we need temporal
evolution of the reference model to solve the optimization problem once the cost function
has a time component.
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To prevent a optimization process at the whole solution space (temporal evolution of
reference model) which would lead to computation cost prohibitively large, we made a
strong simplification which is find out the dominant term that occurs at t = t where the
FEM elastic energy is maximum. Furthermore, aiming to control the number of variables
to be calculated on the optimization, we can optionally accomplish a grouping of springs
by their rest length.

That said, the proposed method is summarized by the following procedures:

1. Initialization: (a) Define material properties (Young’s module and Poisson’s ratio),
mesh topology and numerical characteristics for the reference model; (b) Set the
MSM geometry as the same of the reference model and compute the masses using
expression (3.12); c) Set the initial conditions for the reference model. For MSM
meshing from FEM we use the mapping shown in Figure 4.1.

(a)

(b)

Figure 4.1: Mapping FEM to MSM meshes for 2D (a) and 3D (b) cases. On the left of
each sub-figure is the FEM mesh (blue points connected by black line). On the right of
each sub-figure is the MSM mesh which contains nodal masses linked by stretch (dotted
black) and shear (dashed black) springs.

2. Simulate the reference model for t = t0, t1, . . . , τ without damping and external
force.

3. Keep the vectors
(
x̂ref
t
, ẋref

t
, ẍref

t

)
at time t = t where the elastic energy is maxi-

mum.
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4. Compute ẍmsmi,t = ẍmsmi,t (k1, k2, . . . , km) or optionally ẍmsmi,t = ẍmsmi,t (k1, k2, . . . , km̄),

by inserting
(
x̂ref
t
, ẋref

t
, ẍref

t

)
in equation (4.1).

5. Calculate ¯̄φ by solving the optimization problem (4.5).

6. Calculate damping using expression

cij = α−1

(
2
√
kij (mi +mj)

l0ij

)
, (4.18)

where α ∈ N+ is scale factor to control the system damping effect.

From the mathematical viewpoint, the optimization problem in expression (4.5) can be
solved by traditional least square techniques. However, numerical and computational
aspects must be also considered. In our implementation, we use the simulated annealing,
implemented in our Multi-model Analysis Framework (described in section 3.2.3). As
usual practice, the criteria for stopping is a certain number of iterations (or temperatures)
has passed without acceptance of a new solution. However, the obtained solution can
give arbitrary stiffness coefficients such as negative or very small values if restrictions
are not enforced. Negative spring stiffness parameters can be avoided by limiting the
search space to non-negative values (LLOYD; SZéKELY; HARDERS, 2007). Also, to
prevent higher values that generate unstable results, we propose to limit the search space
by expression

kijb =
∑
e∈Ωe

√
d
E (1 + ν) max (Λe)

2
(
l0ij
)2 , (4.19)

where Λe is area/volume from polygon/polyhedron element, E is Young Modulus, ν the
Poisson’s ratio, d is problem dimension 2 or 3, l0ij is rest length, and Ωe is the set of
polygon/polyhedron sharing the node i.

4.5 RESULTS

The validity of the parameterization based on acceleration approach happened through
the simulation of 2D and 3D elastic objects. The first experiment was conducted using
the MSM itself as a reference model that aimed to assess the method’s behavior with
a non-linear model. Together with the first experiment we analyse the influence of α
(expression (4.18)) in the time step 4t with simulations that demonstrate the damping
effect in the system . In the sequel, a set of simulations and tests were conducted with
the linear elastic FEM as reference model: a) comparison of our proposal against the
matrix approach which was developed by Surya (NATSUPAKPONG; ÇAVUSOGLU,
2010) and Otamendi (OTAMENDI, 2011); b) the effects of the geometry discretization
on our approach; and c) the sensitivity of the solution obtained by our method to the
Poisson’s ratio value. We summarize the experiments with its objects and their geometries
in Table 4.1.
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Experiment Objects Size(meter) Nodes Springs

I) Square membrane 2× 2 9× 9 272
II) Square membrane 2× 2 5× 5 72

III)
Square membrane 2× 2 9× 9 72
Elastic cube 2× 2× 2 7× 7× 7 3258
Elastic plate 2× 2× 0.4 7× 7× 2 673

IV)
Square membrane 2× 2 101 328
Circular membrane Radius=1 89 316

V) Square membrane 2× 2 9× 9 272

Table 4.1: Experiments overview: I) Derivation with non-linear model; II) Analyzing
the influence of α and damping effect; III) Performance comparative against the matrix
approach; IV) Effects of the geometry discretization; V) Sensitivity to the Poisson’s ratio
value.

In order to provide quantitative results, the percentage of root mean square error
%erms, and the percentage of maximum error %emax of Euclidean distance between ref-
erence model and MSM nodes are calculated by (NATSUPAKPONG; ÇAVUSOGLU,
2010) :

%erms =
erms
omax

∗ 100, (4.20)

%emax =
emax
omax

∗ 100, (4.21)

where erms =
√

1
n

∑n
i=1 (xREFi − xMSM

i )
2
, emax = max

∣∣xREFi − xMSM
i

∣∣, omax is the max-

imum Euclidean distance between the undeformed and the deformed configurations of
reference model, n is the number of nodes in the models, and xREFi and xMSM

i denote
the positions of corresponding nodes of the reference and MSM models.

Experiment I) Derivation with a non-linear model. We instantiate a MSM model by
setting up the masses mi = 2kg, the stiffness kedge = 500, kdiag = 400, damping
coefficients null, mesh geometry given by Figure 4.2 with the rest length assigned
to l0edge = 0.250m, l0diag = 0.353m. For time integration we use the Leapfrog method
with time step 4t = 1/120 as the numerical integration scheme (expressions (3.7-
3.8). Then, we execute the our method’s procedures (just steps 1-5). For t = t, the
obtained MSM parameters are: kedge = 459.130, kdiag = 406.514.

In order to quantify the quality of the solution, we consider the already stated setup
but we apply an external force in the positive x-direction and negative y-direction:
f (fx, fy) = (5,−10) which in static equilibrium configuration yields a strain around 10%
that is computed by using expression (4.17). We solve the static equilibrium equations
and compute the percentage of root mean square error %erms, and the percentage of
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Figure 4.2: The MSM mesh for square elastic membrane. Fixed nodes are colored in red
darkness and free nodes are colored as blue. The nodes are linked by stretch (dotted
black) and shear (dashed black) springs

maximum error %emax of Euclidean distance between reference model and MSM nodes.
Here, we observe errors of %erms = 0.69, %emax = 1.20 between the configuration of
both MSM and reference model. Therefore, we conclude that the derived MSM and the
reference model behave very similar.

A computational experiment also carried out to study the evolution of the MSM
obtained over time by using the Leapfrog method and time step 4t = 1/480. For this,
we set the MSM with obtained parameters kedge, kdiag and we apply a constant force
in the positive x-direction and negative y-direction f (fx, fy) = (5,−10) . The damping
was incorporated into the MSM by expression (4.18) with scale factor α = 20 resulting in
crefedge = 17.88 and crefdiag = 28.84 for the reference model and cmsmedge = 24.24 and cmsmdiag = 29.07
for MSM derived. The Figure 4.3 shows the time evolution for errors computed by
expressions (4.20) and (4.21) in sub-figure (a), and deformation behaviour in sub-figure
(b). From these figures we conclude that the derived model has a very small error over
time, given by millimeters in order of magnitude. Furthermore, the deformation behavior
is practically identical over time for both the MSM models.

Experiment II) Analyzing the influence of α and damping effect. From the literature we
know if the spring stiffness is assigned so that it varies inversely with the rest length,
a reduction of the length directly implies a larger stiffness and, by consequence, a
smaller time step (PALOC; FARACI; BELLO, 2006). Observing our expression
(4.18) to calculate the damping constants cij we can apply this same reasoning
to it. In previous experiment we had to use a time step 4t = 1/480 linked to
an α = 20. Therefore, considering the relationship between spring stiffness and
rest length, we conduct a experiment to clarify the influence of α in the time
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Figure 4.3: Time integration analysis: (a) The percentage of root mean square error
%erms, and the percentage of maximum error %emax; (b) The deformation of MSM ref-
erence and the MSM derived
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Figure 4.4: The MSM mesh for 5 × 5 elastic membrane. Fixed nodes are colored in red
darkness and free nodes are colored as blue. The nodes are linked by stretch (dotted
black) and shear (dashed black) springs.

step 4t. We instantiate a MSM model by setting up the masses mi = 2kg, the
stiffness kedge = 500, kdiag = 400, l0edge = 0.50m, l0diag = 0.7071m, grid size of 2× 2
meters, mesh resolution of 5× 5 nodes and 72 springs as shown in Figure 4.4. We
used numerical integration scheme with Leapfrog method and time step 4t = 1/60

initially.

In the first round of simulations we have kept constant the time step 4t = 1/60. So,
we modify the α factor for α = 40, 60, 80, 100 generating respective time integrations.
Figure 4.5 shows deformation perceptual in time for theseα values. In this case, we noted
numerical instability for α < 40. In the second round of simulations, we set α = 1
and test different values for 4t. Here, we experimentally noted that for α = 1 we get
numerical stability only when 4t ≤ 1/3000.

From vibration theory (KELLY, 2011) we know that damping ratio ζi = 1 assumed
by Paloc (PALOC et al., 2002) is said to be critically damped, that mean that the system
quickly reaches the static-equilibrium position. So, the larger damping and stiffness carry
the system to stiff state, this in turn requires a tiny time step. Thus, the α role is to bring
the system for a underdamped state. The underdamped state can be seen in Figure 4.5
where a damping graduate reduction is shown as α increases.

The experiments III to V validate our proposal when considering the linear elastic
FEM as the reference model which is accurate only for small displacements (the global
deformation in expression 4.17 is %εG < 10%). In these experiments we make use of
elastic objects in 2D and 3D. For 2D case we use an elastic quadrilateral and circular
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Figure 4.5: The time evolution of deformation perceptual for the MSM with 4t = 1/60

and α = 40, 60, 80, 100

membrane, and for 3D case we instantiate a cube and a plate. The size of the objects and
the mesh resolution used for discretization have been shown in Table 4.1. Supplementing
this information, Figure 4.6 shows the FEM meshes for each object.

For the experiments III to V, at the initialization of our method’s procedures (step 1),
we define material properties Young’s modulus of 14.63 kPa and the Poisson’s ratio of 1/3,
unless otherwise stated. We used numerical integration scheme with central difference
method and time step of 4t = 1/160 to simulate FEM equation (2.9). We follow an elas-
ticity model for homogeneous, linear and isotropic material. We apply an isoparametric
Q4 element in 2D case and B8 element in 3D case (the reader is referred to the references
(COOK, 2001; ZIENKIEWICZ; TAYLOR; ZHU, 2005) for more about these elements).

Experiment III) Performance comparative against the matrix approach. . After the
execution of our method’s procedures we obtain the MSM parameters which are
shown in Table 4.2.

In this experiment, we call ”Matrix Approach” the methods present in (LLOYD;
SZéKELY; HARDERS, 2007; NATSUPAKPONG; ÇAVUSOGLU, 2010; OTAMENDI,
2011) which uses expression 3.17 to compute spring constants. We must take into account
that the matrix approach derives the parameters of MSM in the case of static equilibrium
and, consequently, they do not consider damping effects (LLOYD; SZéKELY; HARDERS,
2007; NATSUPAKPONG; ÇAVUSOGLU, 2010; OTAMENDI, 2011). So, we have to
solve the static equilibrium problem for FEM and MSM models to compare our method
with the matrix approach. For this, a traction force is applied to the free nodes in
positive x-direction and negative y-direction f (fx, fy) = (250,−400) for 2D case and
f (fx, fy) = (1000,−1000) for 3D case, causing deformation below 10%. The Euclidean
distance between FEM and MSM nodes in the corresponding equilibrium positions are
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(a) (b)

(c) (d)

Figure 4.6: The FEM meshes for (a) square and (b) circular membranes, (c) cube and
(d) plate. Fixed nodes are colored in red darkness and free nodes are colored as blue.
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Objects Spring Coefficients

Square Membrane
ktedge 6228.075

ktdiag 5086.067

Cube
ktedge 500.898

ktdiag 554.145(a) 929.238(b)

Plate
ktedge 156.564(a) 3492.760(b)

ktdiag 948.079(c) 1548.904(d) 624.774(e)

Table 4.2: MSM parameters derived by acceleration approach. The ktdiag in cube are

face(a) and internal(b) diagonals. The ktedge in plate are stretch springs in (a) x-direction

and y-direction and (b) z-direction while the ktdiag (c) are face diagonals in xy-plane, (d)
are face diagonals in xz-plane and yz-plane, and (e) are internal diagonals.

used for error evaluation. We report the error %erms and %emax, computed by expressions
(4.20)-(4.21), respectively, in Table 4.3. The comparison with the error obtained with the
matrix approach(NATSUPAKPONG; ÇAVUSOGLU, 2010; OTAMENDI, 2011) shows
that the proposed technique performs better in these tests, except for the cube.

Approaches
Membrane Cube Plate

%erms %emax %erms %emax %erms %emax

Matrix Approach 8.19 15.82 11.91 22.70 27.03 64.47
Our 5.59 7.92 13.31 33.06 12.12 24.59

Table 4.3: Comparative results with matrix approach from references (LLOYD;
SZéKELY; HARDERS, 2007; NATSUPAKPONG; ÇAVUSOGLU, 2010; OTAMENDI,
2011)

Experiment IV) Effects of the geometry discretization. Our purpose in conducting
this experiment is to investigate how different discretization of mesh can affect
the MSM parametrization. For this, we made a new discretization for the square
membrane which geometry data is kept in Table 4.1. Figure 4.7 shows this new
discretization. We take the FEM mesh of circular membrane already displayed in
Figure 4.6 (b). So, we executed our method’s procedures on these objects with time
step of 4t = 1/180 to simulate FEM equation (2.9).

In the case of quadrilateral membrane, we apply the expressions (4.11)-(4.13) with
m = 6, l01 = 0.125, l02 = 0.165, l03 = 0.253, l04 = 0.350, l05 = 0.460, l06 = 0.555. For t = t ,
the MSM parameters obtained are: k1 = 2.297×104, , k2 = 5.968×103, k3 = 6.235×103,
k4 = 1.034 × 104, k5 = 3.289 × 103, k6 = 6.417 × 103. For the circular membrane we
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Figure 4.7: New discretization for square membrane with non-regular mesh. Nodes col-
ored as red are fixed and those colored as blue are free.

ν
Stiffness Error

kedge kdiag %erms %emax

0.10 5308.765 6667.058 4.86 10.12
0.33 6228.075 5086.067 5.59 7.92
0.43 5658.309 5856.511 10.74 17.28

Table 4.4: Stiffness coefficients and errors for different Poisson’s ratio.

cluster the springs into m̄ = 24 groups with 0.094 ≤ l0i ≤ 0.445, and the values of stiffness
coefficients are 1.537× 103 ≤ ki ≤ 2.107× 104, i = 1, 2, . . . , 24.

The validation of the results is similar to the previous experiments, ie, we solve the
static equilibrium problem for FEM and MSM using the traction forces that act on
free nodes. Both square and circular membrane were subjected to the traction force of
f (fx, fy) = (250,−400). The obtained errors are: %erms = 2.42 and %emax = 8.77 for
square membrane; and %erms = 12.706 and %emax = 22.49 for circular membrane.

By comparing the values for the quadrilateral membrane with the ones reported on
Table 4.3 we can analyse the effect of the mesh type in the derived MSM. We notice that
for the non-regular mesh the percentage of error falls in the range [0,%erms + %emax] =
[0, 11.19] while for the regular one the corresponding interval is [0, 13.51], which indicates
a superiority of the former against the latter.

Experiment V) Sensitivity to the Poisson’s ratio value. We conduct this experiment
to investigate how Poisson’s ratios can affect the MSM parametrization. We ad-
dress this task by simulating the same object of Experiment I with Poisson’s ratio
ν ∈ {0.10, 0.33, 0.43}. After the execution of our method’s procedures the MSM
parameters obtained were summarized in Table 4.4.
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We carry out the validation of the obtained solutions following the same procedure
used in previous experiments. We apply a traction force to the free nodes in positive
x-direction and negative y-direction f (fx, fy) = (250,−400). and solve the static equi-
librium problem for FEM and MSM models. The error %erms and %emax, computed by
expressions (4.20)-(4.21), respectively, are also reported on Table 4.4. If compared with
ν = 0.33 ≈ 1/3, we observe that %erms only decreases for ν=0.10 and %emax always gets
larger. Therefore, the error range increases for ν 6= 1/3.

4.6 DISCUSSIONS

Carefully watching our experiments it is very clear that the great indicator of quality are
the percentage of root mean square error %erms , and the percentage of maximum error
%emax. These two measures quantify the difference between the reference model and the
simulated model in percentage terms. A high value means big difference between the two
models, that is, low similarity of behavior. So, our discussion is constantly referencing
the values for these measures.

In Experiment I, we were interested in checking our method in the MSM parame-
terization using a nonlinear model as reference. In this case, we choose the MSM itself
as reference model with square elastic membrane due to ease of set up the physical pa-
rameters of model. The results, despite the mesh simplicity are very convincing about
of the efficiency of the acceleration based approach. The observed values %erms = 0.69,
%emax = 1.20 attest that exists very little difference between the two models. That facto
can also be seen in the comparison of the time evolution between the two models.

While performing temporal integration of the first experiment, we note different time
steps between the two temporal integrations. The time step for the temporal evolution
of parameterization was of 4t = 1/120 and the time step for the temporal evolution
of experiment was of 4t = 1/480. The temporal evolution of parameterization has not
damping thus we deduce that the damping effect could bring numerical instability for the
temporal integration. This was the motivation for the Experiment II.

The experiment II was in fact a justificative for adding α into the expression of the
damping computation which appears in the reference (PALOC; FARACI; BELLO, 2006).
From arguments already exposed in the experiment itself, we demonstrate that the term
α controls the damping effect and indirectly ensures numerical stability during temporal
integration.

Following a common practice in the literature (LLOYD; SZéKELY; HARDERS, 2007;
BAUDET et al., 2009; NATSUPAKPONG; ÇAVUSOGLU, 2010; OTAMENDI, 2011;
SILVA; GIRALDI; APOLINARIO, 2015), in experiments III to V we parameterize the
MSM using the linear elastic FEM as reference model. That means that the reference
model follows the constitutive equations (see section 2.1) based on elasticity theory for
small deformations. Compared to other methods of literature (Experiment III) the ac-
celeration based approach achieved better results.

The experiment IV has an interesting aspect to consider that is how different dis-
cretizations affect the quality of the MSM parameterization. It is important to comprise
that the discretizations of this experiment are more complex than previous ones. In these
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discretizations the rest length of springs are heterogeneous. Faced this diversity in rest
length, we defined a heuristic to cluster the springs by its rest length (as detailed in
section 4.2). The results demonstrate that the combination of the heuristic with a mesh
refinement (differente discretization) improved the results.

As one may notice in experiments I-II, we have used the MSM as reference model.
On the other hand, experiments III-V were conducted by using the linear elastic FEM
as reference model. Therefore, it is demonstrated that the aceleration based approach is
not restricted to a specific model.

A limitation that was presented by the approach described in this chapter was the
difficulty to generate acceptable results with complex geometries in 3D case. In the next
chapter, we will treat of this issue in the context of isogeometric analysis which provides
well adapted tools to handling of complex geometry.



Chapter

5
Non-uniform Rational B-Spline (NURBS) is an well-established geometric tool with industry standard for

representing curves, surfaces and solids quite accurately. The Isogeometric Analysis (IGA) is a FEM-

like method that uses NURBS not only for the description of the geometries but also for the solution

of field variables. The IGA allows using of higher order elements and thereby opens up possibilities to

designing the MSM parameters for the applications that have interactive mechanical simulations such

that the geometry and derived parameters inherit the accuracy from NURBS-based IGA. In this chapter

we propose a NURBS-based MSM wherein control points are treated like mass points which are connected

by massless springs. In this proposal the stiffness coefficients are computed by using data-driven strategy

with a NURBS-based IGA model acting as reference model.

PARAMETERIZATION BASED ON IGA

The concern with accuracy and realism is a central theme in the simulation of deformable
objects. For models based on continuous like FEM, an improvement of accuracy and
consequently of realism can be achieved with mesh refinements in which the discretiza-
tion of the region can be improved by r-method, h-method or p-method (RAO, 2004;
ZIENKIEWICZ; TAYLOR; ZHU, 2005). A discrete model such as MSM has an inborn
inaccuracy because in general is not directly based on continuum mechanics. However, it
is possible to apply mesh refinement based on the techniques r-method and h-method to
improve accuracy of simulation. On the other hand, due to its discrete nature a approach
that uses the p-method concept cannot be applied.

To deal with complex geometries and problems involving curved boundaries the FEM-
based techniques can use higher order elements and isoparametric concept. These tools
can improve accuracy to both geometry description and the solution field variable. The
discrete models do not have a similar feature to improve accuracy.

To overcome the limitations of the MSM the researchers have been trying to incorpo-
rate the accuracy and realism from continuous models into the MSM by the parametriza-
tion process. However, the MSM parameterization from a continuous model with higher
order elements has not been explored, at least until the date of the last literature review-
ing. The contact with the isoparametric FEM and IGA led us to research the development
of a method that could fulfill this gap.

57
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As seen in Chapter 2, the IGA framework allows to use NURBS to represent both
geometry and physical fields in the solution of problems governed by partial differential
equations (PDE) and also enable higher-order polynomial basis functions which should
make simple the using of the FEM with higher order elements. It integrates the com-
puter aided design tools with finite element analysis into the same unified framework and
provides a very robust approach for numerical modeling with highly precise geometry
representation by using B-Splines and NURBS parametrization (COTTRELL; HUGHES;
BAZILEVS, 2009). These features can be exploited to improve the quality of derivation
process, the accuracy of geometry and the modeling of the deformable objects for the
MSM.

The characteristics of the IGA motivated us to propose a mass-spring model NURBS-
based wherein control points are treated like mass points which are connected by massless
springs. Hence, we term it of NURBS Mass-Spring Model, abbreviated to NMSM. To
setting NMSM parameters (mass, spring stiffness coefficient and damping constants) we
proposed a new data-driven strategy with a NURBS-based IGA model acting as con-
tinuum counterpart model. Our method computes the spring coefficients solving an
optimization problem based on the static equilibrium of NURBS-based IGA model and
NMSM; calculates particles mass following (BAUDET, 2006; LLOYD et al., 2008) and
derives the damping constant using a heuristic based on (PALOC et al., 2002). With
this approach, we increase the geometric accuracy in the representation of elastic objects,
since we have a mass-spring model based on NURBS; we can simulate deformation espe-
cially of curved shapes by exploring the NURBS features to refinement or manipulation
of high-order polynomial which improves smoothness in the deformations; we combine
the simplicity and computational efficiency of the MSM with NURBS to achieve defor-
mation simulation in real-time with realism similarly to the offered by NURBS-based
IGA model ; and finally we determine the NMSM parameters so that it behaves like IGA
(its counterpart continuum) eliminating the trial-and-error approach for the parameters
tuning.

5.1 THE NURBS MASS SPRING MODEL

Up to our actual knowledge of the MSM literature, a proposal that combines IGA, NURBS
and MSM is innovative because it uses the IGA model in the MSM parametrization ex-
ploring the IGA qualities such that: geometric accuracy, simplicity to modification of the
polynomial order in the basis functions, mesh refinement, relationship with constitutive
laws of material, and mainly be able to perform the MSM parametrization applying a
FEM with higher order elements. Therefore, the formulation that we will make in the
next sections is an important contribution of this thesis.

Definition 17. Be M = (V,E) a graph to the generic particle mesh where V =
{v1, . . . , vn} is the set of vertices and E = {e1, . . . , em} is the set of edges, formed by
pairs of vertices, such that

E (V ) = {(u, v) | u, v ∈ V, u 6= v} with E ⊆ E (V ) .
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We define the MSM mesh as an edge-weighted graph formed by the pair (M, l0) where
l0(e) : E → R+ is the rest length associated with each edge in E, each vertex vi ∈ V is
linked to a mass mi and position xi, such that vi → (mi,xi), and the edge ej ∈ E maps
the interconnection springs and dampers by the incidence matrix B = (bij)n×m defined
on the graph M = (V,E), given by

bij =

{
l0ij if vi ∈ ej
0 otherwise

, (5.1)

for which the Equations (.) and (3.6) hold true.

In our NMSM, the MSM mesh is built upon in the NURBS formulation where the
control points are turned into masses points connected by the massless springs network
with natural length greater than zero. Formally, we define the NMSM mesh as follow:

Definition 18. Let the generalized geometry mapping that according to the Definition
12 is given

g (ξ) =
∑
i∈Ib

Ri,p (ξ) pi, (5.2)

where i ∈ Ib are d-dimensional multi-indexes, ξ =
(
ξ(1), . . . , ξ(d)

)
and p = (p1, . . . , pd)

are the coordinate values and the polynomial order along each parametric direction, and
pi ∈ R3 is the control mesh. We define the NMSM mesh as an edge-weighted graph
(M, l0) where vi → (mi,pi) with i ∈ Ib. To make a counterpoint to the control mesh
pi ∈ R3 , we termed the NMSM mesh as the spring control mesh.

For NMSM meshing from NURBS based IGA model we use the mapping similarly to
that shown in Figure 4.1. But this time, the FEM nodes are turned into control points.
Thus, in Figure 4.1, the nodes on left side in figure form the control mesh which is mapped
to spring control mesh (right side in figure) which in addition to control points contains
stretch (edge) and shear (diagonal) springs.

The geometry complexity can degenerate quadrangle or hexaedron in the mapping of
Figure 4.1. For instance, in Figure 5.1(a) we have shown a circular membrane of unit
radius, with 16 control points. The associated shape functions are 2D NURBS, given by
expression (2.25), with polynomial order p = q = 2. The mapping pictured in Figure 4.1
generates the NMSM mesh shown on Figure 5.1 (b).

Analogously to linear IGA under small deformation scenario, we can derive the lin-
earized NMSM equations of motion. In order to perform this task we must linearize the
NMSM governing equation by using the first order approximation for the force of the
spring that connects nodes i and j around the rest nodal position

(
p0
i ,p

0
j

)
that results

in the expression

f (pi,pj) ≈ f(i,j) +

[
∂f(pi,pj)

∂pi
;
∂f(pi,pj)

∂pj

] [
(pi − p0

i )(
pj − p0

j

) ] . (5.3)
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(a) (b)

Figure 5.1: Mapping IGA to NMSM mesh. The control mesh (pictured in blue and black
line) and its corresponding physical mesh (fiiled in green) in sub-figure (a) is mapped to
spring control mesh (b). In both meshes the control points are pictured in blue points.
The stretch (dotted black) and shear (dashed black) springs are shown in (b).

The first term of expression (5.3) can be discarded because f(i,j) = f
(
p0
i ,p

0
j

)
=

−f
(
p0
j ,p

0
i

)
, and so, they will cancel each other when computing the resultant force.

The process of assembling the linearized equations for the springs gives a symmetric stiff-
ness matrix KNMSM , and, consequently, the linearized NMSM that has the governing
equation

MNMSM ẍ +KNMSMx = fext, (5.4)

where x = p̂− p̂0, the mass matrix MNMSM = diag
[
m1I m2I . . . mnpI

]
, p̂ is an

n · d× 1 vector that contains all the d-dimensional control points positions pi, and fext is
the vector that holds the action of external forces over the NMSM modes.

Similarly to Equation (.), the Equation (.) need initial conditions composed by
the initial configuration and velocity to assure existence and uniqueness of the solution.
As can seen in the section 3.1, these conditions will be the input to the Leapfrog method
for time integration.

5.2 NMSM PARAMETERIZATION BY IGA

In Figure 5.2, we show an overview of the main elements of our proposal. In general way,
our methodology uses the IGA-based model with all its theoretical apparatus. For this
reason, we dispose of NURBS framework for the object geometry representation. On left
side of Figure 5.2, we have control mesh, the underlying geometry (physical mesh) and
the material properties. On right side of Figure 5.2, it can be seen the spring control mesh
and its parameters (mass, spring stiffness coefficient and damping constants). It should
be noted that the underlying geometry (physical mesh) of the IGA model is identical to
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NMSM. The geometric match between the NMSM and the NURBS based IGA framework
is performed following the mapping in Figure 4.1, as represented by the blue arrow in
Figure 5.2. Hence, NURBS control points are mapped into particles masses with the
NMSM topology defined according to Figure 4.1.

From the view point of processing, Figure 5.2 depicts a sequence of steps that starts
with the construction of the geometry NURBS which depends on knot vectors, NURBS
basis functions and their respective polynomial orders; and continue with the definition of
the material properties which concludes the IGA model configuration (left side of figure).
Next, whole NURBS apparatus is transferred to the NMSM that uses the NURBS data to
generate the spring control mesh (represented by the blue arrow in Figure 5.2). The last
stage is the NMSM parametrization itself. Initially, a minimization problem involving the
function φ = min (fIGA − fNMSM) is solved to compute stiffness coefficients, where the
functions fIGA and fNMSM encode characteristics of the two models. The mass density ρ
from IGA model is used to compute particles masses, and finalizing stiffness coefficients
and masses are combined to yield damping constants.

In FEM analysis of linear elasticity, the properties of an elastic material are defined
from Young’s modulus and Poisson’s ratios (ZIENKIEWICZ; TAYLOR; ZHU, 2005). As
illustrated in Figure 5.2, we expect to map these properties to spring coefficients. For
this, we shall formulate a minimization problem that involves an objective function that
depends on the difference between functions fIGA and fNMSM which are used to measure
the similarity between the two models. Besides, the proposed method computes the
nodal masses by using a function f that depends on mass density ρ, and the damping
constants are calculated by an expression that includes the mass and spring coefficients.
In summary, our goal is to parametrize the NMSM model such that it behaves as NURBS
based IGA model.

In our approach to compute spring coefficients, we follow the static equilibrium rea-
soning (see Equations (3.15)- (3.17), section 3.2). However, we develop a new objective
function that measures the similarity between the reference model and the linearized
NMSM displacement by using their stiffness matrices. In static equilibrium we shall
observe that the linearized NMSM equation and the linearized IGA, calculated by ex-
pressions (5.4) and (2.9), respectively, simplifies to :

KNMSM û = fext =⇒ ûnmsm = (KNMSM)−1 fext, (5.5)

KIGAû = fext =⇒ ûref = (KIGA)−1 fext, (5.6)

where û = p̂ − p̂0. So, if we build the vector φ = (k1, k2, . . . , km̄)T that contains the
stiffness coefficients then KNMSM becomes a functional matrix of φ. Consequently, we
can postulate that the optimum φ̄ is given by the solution of the optimization problem

φ̄ = arg min
φ



√

1
np

∑np
i=1

∥∥∥urefi − unmsmi

∥∥∥2

maxi

(∥∥∥urefi ∥∥∥)
 · 100

 , (5.7)

where urefi = prefi −p0
i , unmsmi = pnmsmi −p0

i , are computed by equations (5.5)-(5.6), and
np is the number of control points, as explained in Chapter 2.
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Damping Constants (ci) 
 
 
 

Isogeometric Analysis Based NURBS Model NURBS Mass Spring Model  

 NMSMIGA ff min

Young Modulus 
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Figure 5.2: Overview of mapping from the NURBS-based IGA model to NMSM. On
the left side is gathered control mesh, material properties and NURBS apparatus. On
the right side is gathered spring control mesh with stretch and shear springs and its
parameters computed by means specific functions. The underlying geometry (physical
mesh pictured in green) is identical to both models.
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Algorithm 5.1 The NMSM Parametrization

1 In i tMode l s ( ) ;
2 Gamma := MaxGamma;
3 BestGroup := GroupByRest (Gamma) ;
4 Error := OptimizePhi ( BestGroup ) ;
5 While Gamma>GammaStep do
6 newGroup := GroupByRest (Gamma) ;
7 newError := OptimizePhi (newGroup ) ;
8 I f newError < Error Then
9 Error := newError ;

10 bestGroup := newGroup ;
11 End
12 Gamma := Gamma − GammaStep ;
13 End
14 ComputeMasses ( ) ;
15 ComputeDamping ( ) ;

Analogous to acceleration based approach (section 4.1), we compute the massesmi and
damping constants cij using expression (3.12) and (4.18). The Algorithm 5.1, summarizes
the main steps of the proposed method to NMSM parametrization.

The Algorithm 5.1 starts running procedure “initModels” which sets up the material
properties (the physical characteristics of deformable objects which comprises the Young
modulus, Poisson’s ratios and mass density) into the IGA model and keeps data required
for the NURBS setting as control points, polynomial order and knot vectors to both
models (IGA and NMSM). We have observed that the NMSM is set with the same
NURBS setting assigned to IGA model. At this point it is necessary a geometric mapping
to create the springs that will connect the NMSM mesh points. Figures 4.1 and 5.2 show
the mapping between IGA geometry and NMSM mesh.

After defining geometry and material properties, the algorithm enters a loop to find
out the spring groups that make the two models behave similarly (eg, which group setting
leads to the lower error between the two models). This task begins with the procedure
“groupByRestLength” that will perform the springs clustering process, using the gran-
ularity factor γ and following equations (4.11)-(4.13). In the sequel of the grouping
procedure it takes place solving the optimization problem of expression (5.7) to calculate
the spring coefficients. In the first iteration we assign a maximum value to factor γ lead-
ing to the smaller group size. So, we iteratively solving problem in expression (5.7) and
decreasing γ until you find the group setting with minimum error.

The expression (4.19) in section 4.4 is an upperbound for each spring i, j. On the
other hand, after to apply the grouping process in all springs, it is necessary to select
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Object Size(meter) (n×m× l) (p, q, r) Springs

Square membrane 2× 2 6× 6 (2, 2) 110

Circular membrane radius=1 6× 6 (2, 2) 110

Elliptical membrane major radius=1, minor radius=0.5 6× 6 (2, 2) 110

Elastic cube 2× 2× 2 6× 6× 6 (2, 2, 2) 1940

Elastic torus inner radius=0.5, external radius =1.25 9× 5× 5 (2, 2, 2) 2000

Coupled spheroid length=4, radius=0.5 9× 10× 3 (2, 2, 1) 2315

Table 5.1: The geometry data of elastic objects used in experiments. Geometry column
contains data abou size(meters), control mesh (n × m × l), NURBS polynomial order
(p, q, r), and number of springs.

a value to represent the group. We have defined that the upperbound for the group is
given by

kgb = max (Gα) , Gα =
{
kijb ∈

{
fα (ki,s) k

ij
b

}}
, (5.8)

where Gα is a set whose members are kijb following the grouping rule in expression (4.13),
that is, kijb ∈ Gα is the coefficient of the spring s that satisfies the relationship l0i,s ∈
[l0α(1− γ), l0α(1 + γ)].

Finally, with stiffness constants computed, The Algorithm 5.1 calculates nodal masses
by equation (3.12) and damping factor by using expression (4.18).

5.3 RESULTS

In order to validate the proposed of the NMSM parameterization, we conduct some ex-
periments using 2D and 3D elastic objects. Initially, we aim to test how close the NMSM
can behave of its continuum counterpart, the IGA model. Next, we verify the response
of our algorithm in very specific situations: response to various mesh resolutions, behav-
ior under variation of Poisson’s ratios, sensitivity to the heuristic of grouping springs,
and comparative results with other techniques of parametrization. Table 5.1 gathers the
elastic objects and their corresponding geometries which were used in each experiment.
The Figures 5.3 and 5.4 show the corresponding control points and physical meshes. The
experiment conducted are: I) Similarity analysis with IGA and NMSM; II) Responsive-
ness to Mesh Resolution; III) Responsiveness to Grouping Spring; and IV) Comparing to
Matrix Approach; and V) Damping and Dynamic Evolution.

The elastic objects used in our experiments have the Young’s modulus given by
E = 15kPa which is an usual value for soft body (LLOYD; SZéKELY; HARDERS,
2007; NATSUPAKPONG; ÇAVUSOGLU, 2010), the Poisson’s ratio of ν = 1/3, and mass
density ρ = 1.143kg/m3 unless otherwise stated. In all the experiments, we have the
following boundary conditions: control points colored as red darkness are fixed and a
traction force resulting into a deformation of around 10 percent is applied to the free con-
trol points colored as blue (see expression (4.17) in Appendix ?? for more details about
the computation of global deformation).

Experiment I) Similarity analysis with IGA and NMSM. In this experiment, we per-
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(a)

(b)

(c)

Figure 5.3: Control (on left) and physical (on right) meshes for 2D NURBS-based IGA
elastic objects. a) Square; b) Circle; c) Ellipse. Fixed control points are colored in red
darkness. Free control points are colored as blue
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(a)

(b)

(c)

Figure 5.4: Control (on left) and physical(on right) meshes for 3D NURBS-based IGA
elastic objects. a) Cube; b) Torus; c) Coupled Spheroid. Fixed control points are colored
in red darkness. Free control points are colored as blue.
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Object fext = (fx, fy, fz) Group Spring (m̄) Coefficients (k1 . . . km̄)

Square membrane (200,−200, 0) 2 (5360.352, 8624.863)

Circular membrane (600, 100, 0) 16 (347.737 . . . 23116.788)

Elliptical membrane (1600, 200, 0) 28 (276.385 . . . 47256.123)

Cube (80,−40, 40) 3 (624.417, . . . , 3825.382)

Torus (60,−30, 30) 4 (25.095, . . . , 52900.287)

Coupled Spheroid (100,−50, 50) 3 (583.968, . . . , 47793.992)

Table 5.2: Number of groups and spring coefficients obtained by Algorithm 5.1.

form tests with several elastic objects (2D and 3D cases) to verify the similarity
of deformation between NMSM and IGA models. The tested objects and their
geometries are indicated in Table 5.1 .

To compute NMSM parameters we have to solve the static equilibrium problem involving
the IGA and NMSM models in order to find the response of the optimization problem
in the expression (5.7). In this case, it is necessary to set the force vector in expression
(4.9) . We have defining it to ensure deformation around of 10 percent in order to avoid
degeneration of IGA elements. Table 5.2 shows the external force which is a traction
force applied to the free nodes for each object together with the groups of spring and
stiffness coefficients computed by Algorithm 5.1. One must note that we put the computed
stiffness coefficients into ascending order.

Our results are analyzed quantitatively by computing the percentage of root mean
square error %erms, and the percentage of maximum error %emax of Euclidean distance
between reference control points and NMSM nodes (equations (4.20)-(4.21)). In Table
5.3 we report the error %erms and %emax under applied force for the 2D and 3D cases,
respectively. For 2D case, we can observe an error increase in circular and elliptical
membrane while for 3D case the error increases in the torus and icoupled spheroid. An
initial explanation for this behavior would be that this increase of error is a consequence
of increase in the geometry complexity. However, other aspects need to be considered.
We will discuss in due course.

Object %erms %emax

Square membrane 1.14 2.79

Circular membrane 2.50 8.87

Elliptical membrane 2.44 6.67

Cube 1.73 7.44

Torus 14.28 31.37

Coupled Spheroid 5.37 22.01

Table 5.3: Quantitative results 2D/3D objects

Experiment II) Sensitivity to Mesh Resolution. To perform this experiment we choose
the square membrane and elastic cube due to the simplicity of geometry. Using
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Resolution %erms %emax

Square Membrane

3× 3 14.37 22.69
4× 4 2.35 5.25
6× 6 1.14 2.79
9× 9 0.50 1.41

Elastic Cube

3× 3× 3 14.03 27.27
4× 4× 4 2.94 6.25
6× 6× 6 1.73 7.44
9× 9× 9 1.70 4.60

Table 5.4: Sensitivity to mesh resolution mesh

the same setting of material and geometry previously shown, we modify the mesh
resolutions to test the error behavior.

So, we just have modified the control mesh resolution, according to Table 5.4. We run the
Algorithm 5.1 and compute the error %erms and %emax which are reported in Table 5.4.
From the NURBS viewpoint, the consequence of control mesh refinement is the splitting
of existing patches into new ones without changing the continuity of the representation.
This enhances the flexibility of the IGA model which leads us to expect that the error
decreases as the mesh resolution increases, as noticed in most of the cases in Table 5.4.

Experiment III) Sensitivity to Grouping Spring. The experiment I) indicated that
there is a relationship between complex geometries and the error rate. It is known
that the mesh topology, the stiffness coefficients and rest lengths have a paramount
role in the control the degrees of freedom of the system. On the other hand, a
complex geometry implies in the increasing of the degrees of freedom which in turn
may result in a heterogeneity of rest lengths with the corresponding increase of
spring coefficients. So, one notes a clear relationship between the complex geometry
and the parameters of the springs (rest length and stiffness coefficient). Therefore,
a mechanism to manage these parameters can be an important tool in designing of
the NMSM. Our heuristic to cluster the springs described in section 4.2 is this tool.
In that section, we define the factor γ to deal with the rest length heterogeneity by
controlling the number of springs groups. The current experiment is important to
verify how changing in this parameter affect the results of the Algorithm 5.1 and
can help in finding a tradeoff between geometry complexity and error rate.

To perform the test we consider that the object geometry must have some heterogeneity
in its rest length, so we choose the elastic membranes with circular and elliptical shapes,
and torus and coupled spheroid. With the default setting described above, we run the
Algorithm 5.1 a number of times, once for each distinct value of γ. So, we derive the
NMSM and compute the errors which are reported in Table 5.5.

An initial examination in Table 5.5 of the error rate for circular and elliptical mem-
branes shows an enhancement of the solution when the group size (the number of springs
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Object Running γ Group Size (m̄) %erms %emax

Circular membrane

I) 0.800 2 5.56 25.20

II) 0.200 6 5.14 19.44

III) 0.010 16 2.50 8.87

IV) 0.001 17 3.31 14.30

Elliptical membrane

I) 0.700 2 10.86 36.89

II) 0.100 9 5.47 23.17

III) 0.050 16 5.03 11.65

IV) 0.001 28 2.44 6.67

Torus

I) 0.700 2 22.95 51.27

II) 0.500 4 14.28 31.37

III) 0.200 8 34.90 63.51

IV) 0.100 16 43.80 75.30

Coupled Spheroid

I) 0.800 2 47.19 75.35

II) 0.600 3 5.37 22.01

III) 0.200 7 10.04 19.17

IV) 0.010 60 34.62 61.56

Table 5.5: Grouping spring for the 2D geometry experiments

groups) becomes higher, except for running IV. On the other hand, there is no apparent
relationship between group size and error for the runnings with torus and coupled spheroid
objects. In this sense, we must not forget that in the MSM, the mechanical properties
are consequences of the mesh topology, the stiffness coefficients and rest lengths, which
control the degrees of freedom of the system. Springs being grouped by their rest length
implies into a restriction that directly affects the mechanical behavior of system through
the stiffness coefficient because as shown in expression (5.8) it is assigned a single value
of stiffness to all the springs in the group. To escape these traps, our algorithm finds out
the group setting that has minimum error.

We made an illustration that helps to see more clearly the group with the lowest error
for the elliptical membrane and coupled spheroid objects. The Figures 5.5 and 5.6 and
picture the difference distribution between NURBS based IGA and NMSM displacements
rendered using colors that are scaled through the intensity of the difference uref −unmsm,
where uref and unmsm are the static equilibrium solution given by expressions (5.6) and
(4.9), respectively.

Experiment IV) Comparing to Matrix Approach. In the subsection 4.5 that is the re-
sults subsection of the acceleration based approach, we call ”Matrix Approach” the
methods present in (LLOYD; SZéKELY; HARDERS, 2007; NATSUPAKPONG;
ÇAVUSOGLU, 2010; OTAMENDI, 2011). which uses expression (3.17) to compute
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I) Group Size = 2 II) Group Size = 9

III) Group Size = 16 IV) Group Size = 28

Figure 5.5: Error representation for elliptical membrane. Error color scale is 0 (blue) to
1.143× 10−1 (red) meters

Object
NMSM Matrix Approach

%erms %emax %erms %emax

Square 1.14 2.79 47.57 68.82
Ellipse 4.49 12.35 39.00 80.74
Cube 1.73 7.44 93.25 190.79
Torus 14.28 31.37 337.87 706.02

Table 5.6: Comparative quantitative results

spring constants. One should not forget that the expression (3.17) measures the
similarity between the NURBS based IGA model and the linearized NMSM stiffness
matrices. For this comparison, we selected square and circular elastic membrane in
2D case, and cube and torus in 3D. Using the same setting of material and geom-
etry previously shown in Table 5.1, the stiffness coefficients are computed solving
the expression (3.17) and running the Algorithm 5.1. Table 5.6 reports the errors
%erms and %emax for the NMSM and the Matrix Approach. The error comparison
shows that the proposed technique performs better in all tests.

From Table 5.6 we can notice that the error for Matrix Approach is very high. Our
conjecture is that the high error rate is related to the fact of the Matrix Approach be
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I) Group Size = 2 II) Group Size = 3

III) Group Size = 7 IV) Group Size = 60

Figure 5.6: Error Representation for coupled spheroid. Error color scale is 0 (blue) to
7.026× 10−1 (red) meters



72 PARAMETERIZATION BASED ON IGA

based on linear interpolation functions as NMSM uses high-order polynomial.. Therefore,
we conducted a test on the square membrane and cube objects because only they can use
linear NURBS basis functions since their geometries has no curvature. In this case, the
square membrane control mesh is defined with 6 × 6 control points, cube control mesh
with 6×6×6 control points and we apply linear basis functions in expression (2.24) . The
percentage of root mean square error %erms, and the percentage of maximum error %emax
are shown in Table 5.7 indicating a superiority of our solution (Algorithm 5.1) against
the Matrix Approach. Also, by comparing results in Tables 5.6 and 5.7 it is evident that
our method is quite stable to the change in the polynomial order.

Object
NMSM Matrix Approach

%erms %emax %erms %emax

Square 1.19 2.55 9.86 17.73
Cube 2.34 11.33 18.63 28.65

Table 5.7: Comparative under linear basis functions

Experiment V) Damping and Dynamic Evolution. In this experiment, we have interest
in validating the derived NMSM in time evolution. Also, it is important to study
the α parameter effect in expression (4.18) which is used to magnify damping in-
fluence. To clarify α effect while validate the NMSM time evolution, experiments
were performed to analyze the influence of α on damping in the temporal evolution.
To achieve this purpose, we choose the derived NMSM from experiment I) which
have some heterogeneity in the spring rest length and minimum error. For 2D case
we selected the circular elastic membrane, and coupled spheroid was chosen for 3D
case. We kept the same parametrization shown in Table 5.1. So, we instantiate
a NMSM by setting up the model parameters with the results generated in the
derivation process. The spring coefficients and size of springs groups used were
reported in Table 5.2. To compute the masses mi and damping coefficients cij we
apply the expressions (3.12) and (4.18), respectively.

For circular elastic membrane, we kept time step constant of 4t = 1/240 and performed
simulations by using a numerical approach based on Leapfrog method for time integration
of the ordinary differential equations while for the coupled spheroid we used time step
constant of 4t = 1/120.

Figure 5.7(a) shows deformation perceptual in time for α = 200, 800, 1600, 3200 for
the circular membrane, while Figure 5.7(b) shows deformation perceptual in time for
α = 50, 100, 200, 800 for the coupled spheroid. Both objects were submitted to a small
perturbation (step force) during 1/30 initial seconds. We note that the behavior of
deformation acquires bumpy contours for all values except for α = 200. We also noticed
that α < 200 causes numerical instability in the simulation of the circular membrane. In
the simulation of coupled spheroid occurs numerical instability with α < 50 . We can see
in both results that the α parameter can reveal which is the damping setting that leads
to stable temporal evolution.
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Figure 5.7: Comparative deformation perceptual in time. a) Circular membrane with
4t = 1/240 and α = 200, 800, 1600, 3200. b) Coupled spheroid with 4t = 1/120 and
α = 50, 100, 200, 800 for
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To demonstrate physical realism provide by the derived NMSM model, we provide
two movie of 15 second containing the animation for the temporal integration of circular
membrane and coupled spheroid as supplementary material.

5.4 DISCUSSIONS

Our proposal have been tested under different computational setups in previous experi-
ments. The main advantage of our method that can be seen in all tests is the ability to
derive spring coefficients from NURBS-based IGA framework.

The proposed methodology outperforms the matrix approach in all the reported com-
putational experiments and achieves good results by using basis functions of high order
polynomials, which is improvement in relation to other methods in the literature. Once
our model is NURBS based, it inherits all apparatus to mesh and geometry manipulation
from CAD. As can be seen in the experiments, these features improve the quality of
derivation process, the accuracy of geometry and the modeling of the deformable objects.



Chapter

6
In this chapter the results and contributions of this thesis are discussed, and the perspectives of future

related topics of research are presented.

CONCLUSIONS AND PERSPECTIVES

This thesis presented a data-driven approach for obtaining the MSM parameters (mass,
spring stiffness coefficient and damping constants) from continuous models that had the
improvement of accuracy in the interactive mechanical simulations of deformable objects
as main motivation.

The main contribution of this thesis was the proposal of the two new methods to
design the MSM, that is, to define their inner parameters (mass, stiffness coefficient
and damping constant) and mesh topology. The first one, that we called acceleration
based approach, computes the MSM parameters from linear elastic FEM, that means, the
parameterization happens on scenario of small deformations. The second one, namely
IGA-based approach, determines parameters of the MSM from the NURBS-based IGA
that also follows the linear elasticity assumption.

Both approaches proposed are data-driven methods meaning that the unknowns are
calculated by solving an optimization problem where is accomplished a fitting of defor-
mation of the MSM to some reference data. For being data-driven, these methods have
a number of interesting features that influenced our decision to use them. For instance,
they are free of restrictions on physical parameters (there is no restriction on the values of
Poisson’s ratio and Young’s Modulus); and they are not restricted to a specific reference
model. In the context of data-driven methods, our contribution was to propose two new
objective functions, one for each optimization problem in each method proposed. The
new objective functions proposed are the cost function based on acceleration and the cost
function based on displacement.

The first one allowed carry out two others contributions that were independent from
static equilibrium strategy and the linearization of elastic force. However, it only demon-
strated efficiency with 2D objects and some 3D simple geometries, such as cube and plate.
It fails when applying for 3D object of complex geometry or with higher order elements.

The cost function based on displacement was applied with the IGA-based approach.
The results generated from the application of this cost function performs better than
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other approaches for all tests conducted in this thesis. Unlike the cost function based on
acceleration it showed good results even with complex geometries.

Up to our actual knowledge of the MSM literature, a proposal that combines IGA,
NURBS and MSM is new. Particularly, in this thesis was presented an proposal to
derive the MSM parameters by using isogeometric analysis. Besides, we also propose
a NURBS-based MSM wherein control points are treated like mass points connected
by massless springs and the parameterization is accomplished by using the NURBS-
based IGA as reference model. Here, we have improvements into two components of a
engine to perform the behavior simulation of deformable objects: geometric model and
dynamic model. Assuming that the geometric model of the MSM is now a NURBS
parameterization means make available for the MSM the great flexibility and precision to
represent different shapes including those of most difficult representation as curved ones.
Thereat, we carry out more one contribution that is an improvement into accuracy of
geometry description applicable to interactive mechanic simulations.

On the other hand, the dynamic model of the MSM is controlled by the model param-
eters that are mass, stiffness coefficients and damping constants that during the MSM
parameterization are assigned by using NURBS-based IGA as reference model. In the
NURBS based IGA model, the NURBS basis offer mathematical machinery to get high
and easily controlled continuity in the derivatives of basis functions. This fact affects the
smoothness of the computed solutions, and, consequently, the precision of the solution.
In other words, this high continuity means improving the derivation process and therefore
increase the accuracy of the dynamic model MSM.

The NURBS high continuity property makes simple the using of the FEM with higher
order elements. It is known that the MSM parameterization from a continuous model
with higher order elements has not been explored. Thus, our proposal to parametrize the
NMSM by using IGA is also an important contribution that represents a new application
of the higher order elements for the MSM parameterization.

We also propose an effective heuristic to deal with trade off between geometric com-
plexity and error rate in optimization problems involving spring parameters (stiffness
coefficient, rest length). Our heuristic to cluster the springs demonstrated be an im-
portant tool in managing the number variables during the optimization process thereby
reducing the high computational cost. Besides, it enabled the location of the best configu-
ration parameters which leads to minimum error state, especially in the parameterization
of objects with highly complex geometry.

To develop this thesis we face the need to test and validate the proposals in an
environment that could integrate IGA, FEM and MSM algorithms. So, by following
the GeoPDEs motivation (see (FALCO; REALI; VáZQUEZ, 2011) for more details) we
implement a software framework to serve as an entry point for the practical issues that
implementing an IGA code; to be used as a rapid prototyping and testing tool for new
IGA algorithms; to allow simple communication between IGA, FEM and MSM models.
Similarly to GeoPDEs, our implementation was carried out in MATLAB, but we apply
concepts and techniques of object-oriented programming that can increase its flexibility
and reduce the maintenance cost. For simplicity, we dubbed our framework as the Multi-
model Analysis Framework, abbreviated by MAF. The Multi-model Analysis Framework



6.1 FUTURE WORKS 77

is described in Appendix A.

6.1 FUTURE WORKS

The MSM has been an attractive alternative to the continuous models for interactive
mechanics simulations. In this context, we will describe the future directions of research
related to study presented in this thesis.

The 2D MSM models derived from the acceleration based approach demonstrated
a suitable accuracy when compared with the corresponding FEM reference models. In
particularly, it fails to parameterize the MSM by using higher order elements or complex
3D objects. A research direction within this topic would be to improve the methodology
for 3D cases by testing new hypotheses for selection of dominant term. We believe that
this point is the source of errors that avoids the convergence to a suitable solution.

The visual realism provided by our NMSM was tested in a few experiments. In all
cases we used the MAF framework that is implemented in the MATLAB environment.
A fundamental step for this research is to apply the NMSM into real environments of
interactive mechanic simulations. In the near future we must use the NMSM into a game
engine in order to carry out a further evaluation of how much is gained with the NURBS
representation in the MSM.

Our results outperform the matrix approach from the authors (NATSUPARKPONG,
2009; OTAMENDI, 2011). We demonstrated that the matrix approach improves the
results when using linear NURBS basis functions. Therefore, a possibility for future
research is investigate the matrix approach when considering higher order elements.

The tensor product structure of NURBS makes it harder to perform local mesh re-
finement. The development of local refinement strategies within IGA is a subject of
active research. Local refinement techniques include T-splines, T-meshes and hierar-
chical B-splines (BAZILEVS et al., 2010; DIMITRI et al., 2014). We plan to improve
our approach for NMSM parameterization by including local refinement techniques to
be considered during the parameterization process. Also, we intend to apply the local
refinement techniques, in the context of online remeshing (PALOC; FARACI; BELLO,
2006), aiming to improve visual realism during real time simulations.

Complex geometry of arbitrary shapes can only be represented by multiple NURBS
patches. So, in future we must add multiple NURBS patches in the IGA-based approach
since our proposals were evaluated only with single NURBS patches.

Finally, in this thesis we have already highlighted that the parameterization of MSM
was performed using linear continuous models as reference ones. Therefore, a very im-
portant future work is to parameterize the MSM from a continuous non-linear model.
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Appendix

A
To develop this doctoral work we face the need to test and validate our proposal in an environment

that integrates IGA, FEM and MSM algorithms. So, by following the GeoPDEs (see (FALCO; REALI;

VáZQUEZ, 2011) for more details) motivation we implement a framework to serve as an entry point for

the practical issues that implementing an IGA code; to be used as a rapid prototyping and testing tool for

new IGA algorithms; to allow simple communication between IGA, FEM and MSM models. Similarly

to GeoPDEs, our implementation was carried out in MATLAB, but we apply concepts and techniques

of object-oriented programming that can increase its flexibility and reduce the maintenance cost. For

simplicity, we dubbed our framework as the Multi-model Analysis Framework, abbreviated by MAF.

MULTI-MODEL ANALYSIS FRAMEWORK

There are several approaches to implement the finite element method by applying the
object-oriented paradigm. These approaches explore oriented-object features as efficiency,
flexibility, extensibility, reusability, modularity and portability to generate scalable im-
plementations that can be used into different classes of problems with a minimum effort.
Lot of these approaches implement a separation between the physical model and the
analysis process. (MACKERLE, 2004; HENG; MACKIE, 2009; MCKENNA; SCOTT;
FENVES, 2010; YAGHOOBI, 2012; HORáK; PATZáK; JIRáSEK, 2014; YUAN; FISH,
2015). This separation encapsulates the numerical objects and algorithms of the analysis
into an analysis container and the FEM components as elements, nodes, constraints into
a model container. We follow a similar reasoning, however, unlike the approaches FEM
which are concerned with a single model our architecture must fulfill requirements to
multiple models since we must deal with FEM, MSM, IGA and NMSM. Therefore, we
choose to distribute the analysis activities between the components of model.

The package diagram in Figure A.1 shows an overview of the components in our
arquitecture. In this diagram that basically uses the UML aggregation relationship, each
package is actually a set of classes responsible for a series of functionalities. It is noted
that the Model package is the great aggregator of the MAF. It gathers the functionalities
from the Mesh and Integrator packages to perform the analysis on the dynamic and static
scenario. The package Integrator implements numerical algorithms for time integration
while the Mesh package provides through an inheritance chain all components of models as
elements, nodes, constraints, springs, material properties, connectivity elements, degree
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ElementGeometry

ElementShapeFunction

ElementDriver

Mesh Model

Integrator

Figure A.1: Packages diagram in UML for components of the Multi-Model Analysis
Framework (MAF). One can see the UML aggregation relationship represented as a hollow
diamond shape on the containing package with a single line that connects it to the
contained package..

of freedom etc. The package Element contained in the package Mesh is fundamental for
the whole architecture. It defines the element geometry, shape functions and element
drivers. The element geometry relates to the number of nodes, edges and faces belonging
to the element. The shape functions is set of classes to provide data and values about
interpolation functions. The package Element Driver is responsible for implementing the
calculation of matrices stiffness, mass, damping and load vector at element level under
different schemes of analysis as plane stress, plane strain. Next, we detail each of these
packages.

The package Model contains six classes: DeformableModel, FEModel, IGAModel, Par-
ticleModel, MSModel and NMSModel. The UML class diagram in Figure A.2(a) shows
the association among these classes. We can see that the DeformableModel class is a
common ancestral to the other classes which through inheritance mechanism they imple-
ment the specificities of each model. The modelMesh attribute of DeformableModel class
is the gateway to the model characteristics. It is assigned internally during the instancing
process which depending on the model (FEM, IGA, MSM or NMSM) is created a par-
ticular mesh for that model. Furthermore, it also provides attributes and operations of
the element such as matrices computation (stiffness, mass and damping) and load vector
valuation which are used in global assembling performed by method AssemblyMatrix.
The implementation of this method by the MSModel class occurs only to the particular
case of the MSM linearized, where we apply Equation (3.10) of Chapter 2.

The package Model keeps closely connection with the package Mesh. For each model
there is a mesh whose attributes and operations are designed to address the requirements
of corresponding model. This means there is a one-to-one relationship between model
and mesh, ie the FEModel class has its corresponding mesh MeshFEM, IGAModel class



MULTI-MODEL ANALYSIS FRAMEWORK 89

has its corresponding mesh MeshIGA and so on. In Figure Figure A.2(b) is shown the
mesh classes and as can be seen the association between model and mesh is immediate.
The base class in package Mesh is the MeshRoot class. It contains the definition of geom-
etry (attributes nodesPos and nodesLink), boundary condition (attribute Boundaries),
element and operations responsible for configuring the mesh. Also part of this class the
attribute igaParam that is defined by classes MeshIGA and MeshNMSM to provide the
data structure of IGA apparatus which gathers NURBS parameterization and connectiv-
ity data structures of the IGA elements. Beyond the common characteristics, the class
MeshPring brings together the operations to management of springs that is the core to
the ParticleModel, MSModel and NMSModel models.

Many numerical integration methods are available for the approximate solution of
differential equations like those seen in Chapter 2 which describe the mechanical behavior
of deformable bodies (the readers interested can find more details about these methods
in references (BATHE, 1996; DUKKIPATI, 2009)). In general, numerical integration is
used to find the system state which contains positions and velocities of the deformable
object from the system of equations defining the model. We supply four these methods
in package Integrator. The classes CDMDisplacement and CDMParticle contain central
difference method for FEM and particles based models, respectively. The Newmark and
Leapfrog method are implemented in the homonym classes.

The package Element shown in Figure A.3 contains the hierarchy of classes used to
define the element of each model. The geometry of element consisting by the edges and
faces is defined on the ElementBase class. The instancing of the geometry data is carried
out by the classes in the package ElementGeometry as can be observed in Figure A.4. For
the FEM-based models, the assembly process at element level is implemented by methods
getStiffnessMatrix, getMassMatrix, getDampingMatrix and getForceVector. These meth-
ods keeps a close dependence on the packages ElementDriver and ShapeFunction shown
in Figure A.5 (a) and (b), respectively. Recalling the flowchart 2.3 seen in Chapter 2,
we can note that the assembly process is to calculate each integration point (quadrature
points) into element structures (matrices stiffness, mass, damping and load vector) and
assembled local element structures into global ones. The evaluation of integration point
is performed by methods getKe, getMe, getDe and getFe from the specialized classes
of the package ElementDriver in collaboration with the package ShapeFunction. These
computed points are assembled into local arrays which are returned by methods getStiff-
nessMatrix, getMassMatrix, getDampingMatrix and getForceVector.

To instantiate the MAF objects, we define the makSetting class (Figure A.6) that
centralizes the instantiation process for each model. It has the method createModel
which is executed to instantiate an object-model from the package Model by using the
parametrization kept in the data structure modelParam. The method createREFMSM
is responsible to instantiate a MSM model that is counterpart to model parametrized in
modelParam (model reference).

The instance of the model is created when we accomplish the following steps:

1. Parametrize the data structure for boundary condition;

2. Parametrize the data structure for model mesh;
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DeformableModel

+modelMesh: MeshRoot

+modelntegrator: IntegratorBase

+dynamicAnalysis(): stateTime

+staticAnalysis(): stateSystem

+AssemblyMatrix()

FEModel ParticleModel

+Particles: array

IGAModel MSModel NMSModel

(a)

MeshFEM

MeshRoot

+Element: ElementBase

+Boundaries: MeshBoundary

+nodesPos: array

+nodesLink: array

+igaParam: igaData

+setElement(e:ElementBase)

+setMeshParam(m:meshParam)

+Meshing()

MeshSpring

+springMan: SpringManager

+getSpring(): SpringBase

MeshMSMMeshIGA MeshNMSM

(b)

Newmark

IntegratorBase

+state: stateSystem

+initState()

+forwardState()

+runtime(): stateTime

LeapFrogCDMDisplacement CDMParticle

(c)

Figure A.2: The UML class diagram to the packages a) Model ; b) Mesh; c) Integra-
tor. All classes inherit general characteristics of a) DeformableModel, b) MeshRoot, c)
IntegratorBase base classes and they implement the specificities of each package.
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ElementBase

+Geometry: ElementGeometry

ElementFEM

+ShapeFcn: ShapeFunction

+Driver: ElementDriver

+YoungModulus: real

+PoissonRatio: real

+DampingFactor: real

+getStiffnessMatrix(): array

+getMassMatrix(): array

+getDampingMatrix(): array

+getForceVector(): vector

Q4ElementFEM

ElementMSM

Q4ElementMSM

ElementIGA

Q4ElementIGA B8ElementIGA

B8ElementFEM

B8ElementMSM

Figure A.3: The UML class diagram to the package Element. All classes inherit geometry
attributes from base class ElementBase. These attributes are actually created by the
classes ElementFEM, ElementMSM and ElementIGA observing the specificities of each
model. In classes at the final of hierarchy are defined the nodes number, edges, faces,
shape function, material properties.

ElementGeometry

+Edges: array

+Faces: array

GeometryQ4FEM

GeometryQ4MSM

GeometryQ4IGA

GeometryB8FEM

GeometryB8MSM

GeometryB8IGA

Figure A.4: The UML class diagram to the package ElementGeometry. This package just
sets the composition of edges and faces to each element of the model on a one-to-one
relationship.
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ElementDriver

+Element: ElementFEM

+getKe(): array

+getDe(): array

+getMe(): array

+getFe(): array

PlaneStress PlaneStressIGAIsotropicSolid IsotropicSolidIGA

(a)

ShapeFunction

+getShapeFunction(xi:array): array

+getFirstDerived(xi:array): array

shQ4

ShapeFunctionIGA

shQ4NurbsshB8 shB8Nurbs

(b)

Figure A.5: The UML class diagram to the packages a) ElementDriver and b) ShapeFunc-
tion. ElementDriver is an abstract class that provides operations to be implemented by
specialized classes in a given analysis scheme. The ShapeFunction abstract class provides
methods to evaluate specialized interpolation functions (Lagrange Polynomial, NURBS
basis functions).

makSetting

+modelParam

+msmParam

+createModel(): DeformableModel

+createREFMSM(): DeformableModel

+readFile(fileName:string)

+saveFile(fileName:string)

Figure A.6: The makSetting class with its attibutes and methods. The modelParam
attribute keeps data structure with the parametrization of model. The msmParam at-
tribute keeps the MSM parametrization related with modelParam.
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3. Parametrize the data structure for physical parameter of model;

4. Parametrize the data structure for model, and if applicable also assign MSM model
parameter;

5. Finally, instantiate the model with its MSM counterpart (if applicable).

We provide a MATLAB script by the Algorithm A.1 which shows the instantiation of the
FEModel class and its MSM counterpart.

Algorithm A.1 The MATLAB script to create an instance of model

bcdata = createBC ( ’ geometry ’ , ’ bottom ’ , [ 1 ; 1 ; 1 ] , 1 ) ;
meshparam = createMeshParam ( ’Q4FEM’ ,{ { ’ sz ’ , [ 2 2 0 ] } , . . .

{ ’ ne ’ , [ 4 4 0 ] } , . . .
{ ’ bc ’ , bcdata }} ) ;

physparam = createPhysParam ({{ ’ e l a s t i c i t y ’ , 14630} ,{ ’ po isson ’ , 1 / 3 } , . . .
{ ’ dens i ty ’ , 1144} ,{ ’ th i cknes s ’ , 0 . 1 } } ) ;

paramFEM = createModelParam ( ’ fem ’ , meshparam , physparam ) ;
paramMSM = defaultMSMParam ( ’Q4MSM’ , { ’ s t r e t ch ’ , ’ shear ’ } ) ;
c f g = setFEM(paramFEM, ’ SquareMembrane ’ ,paramMSM) ;
fem = c fg . createModel ( ) ;
msm = c fg . createREFMSM ( ) ;


