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Abstract

The automatic person re-identification (re-id) problem resides in matching an unknown person

image to a database of previously labeled images of people. Among several issues to cope with

this research field, person re-id has to deal with person appearance and environment variations.

As such, discriminative features to represent a person identity must be robust regardless those

variations. Comparison among two image features is commonly accomplished by distance

metrics. Although features and distance metrics can be handcrafted or trainable, the latter type

has demonstrated more potential to breakthroughs in achieving state-of-the-art performance

over public data sets. A recent paradigm that allows to work with trainable features is deep

learning, which aims at learning features directly from raw image data. Although deep learning

has recently achieved significant improvements in person re-identification, found on some few

recent works, there is still room for learning strategies, which can be exploited to increase the

current state-of-the-art performance.

In this work a novel deep learning strategy is proposed, called here as coarse-to-fine learn-

ing (CFL), as well as a novel type of feature, called convolutional covariance features (CCF),

for person re-identification. CFL is based on the human learning process. The core of CFL is

a framework conceived to perform a cascade network training, learning person image features

from generic-to-specific concepts about a person. Each network is comprised of a convolutional

neural network (CNN) and a deep belief network denoising autoenconder (DBN-DAE). The

CNN is responsible to learn local features, while the DBN-DAE learns global features, robust

to illumination changing, certain image deformations, horizontal mirroring and image blurring.

After extracting the convolutional features via CFL, those ones are then wrapped in covariance

matrices, composing the CCF. CCF and flat features were combined to improve the perfor-

mance of person re-identification in comparison with component features. The performance

of the proposed framework was assessed comparatively against 18 state-of-the-art methods by

using public data sets (VIPeR, i-LIDS, CUHK01 and CUHK03), cumulative matching charac-

teristic curves and top ranking references. After a thorough analysis, our proposed framework

demonstrated a superior performance.
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Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Chapter map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Person re-identification (re-id) consists in identifying a person across a database of images,

given a source image of that person. Due to the large variation of human appearance and pose,

low-resolution images, different environments and illumination change, person re-identification

systems have to deal with non-trivial tasks. A comprehensive review on person re-identification

can be found in [Bedagkar-Gala and Shah, 2014].

One of the main challenges of a person re-id system is to design suitable features to compose

image descriptors, which need to be invariant to person appearance variations. To deal with this

problem, researchers have proposed several methods to conceive discriminant person image

features. Person image features can be classified as handcrafted or trainable. Handcrafted fea-

tures are based on image gradients, colors, texture or any other image filter. The main difficult

to deal with handcrafted features is to find appropriated features to a specific problem. A kind

of handcrafted feature can be suitable to describe an object image, but can be inappropriate to

another one. Finding or designing suitable handcrafted features for person re-id is a non-trivial

task. Trainable features, in turn, are learned to describe a set of specific image objects. There-

fore, these kind of features are used to design adaptive descriptors for a specific domain of

problem. Although trainable features are promising to design robust and discriminative image

descriptors, strategies to learn these features still miss a thorough investigation.

Once person features are computed (manually or learned), they are used by a distance func-

tion to calculate the similarity among a pair of person images. Each unknown person image



4 Chapter 1. Introduction

against all target known people should provide the image pairs to be compared. The pair with

higher score of similarity is considered a pair containing two images of the same person. Sim-

ilarity metrics are commonly based on distance functions. As the features, a distance function

can be a pre-established or trainable. The advantage of trainable functions, is that they can have

learnable parameters, trained in a supervised way, in order to maximize and minimize the data

inter-class and intra-class variations, respectively. Although the strategy of combining multiple

distances and compute the similarity metric among these distances is important to improve the

person re-id prediction, a way to choose the best strategy should be further explored. Conven-

tional distance function learning does not take into account the learning of trainable features.

A joint way to learn features in multiple levels of abstraction and also learn the parameters

of a model (like a classifier or a distance function) is provided by the deep learning paradigm.

The core of a deep learning is to train the data samples, directly from its raw data, without the

need of handcrafted features. Deep learning can be performed by several kind of deep neural

networks and by several learning strategies. Deep networks have a large number of parame-

ters and therefore need to be trained with a large number of training samples. The amount of

available data in person re-id data sets is usually not enough to avoid the network overfitting.

Thus, some strategies should be provided to overcome this lack of data when the deep learning

paradigm is chosen for person re-id. Among the strategies, data set augmentation with gen-

erated images, drop out and transfer learning are some examples of techniques to control the

network overfitting. While deep learning has achieved significant performance in person re-id,

there is a range of deep learning strategies to be exploited in order to achieved even better person

re-id performance.

Novel strategies to learn features for person re-id are proposed in this work. Some afore-

mentioned open issues, which will be discussed throughout this chapter, were exploited by the

proposed learning strategies and a framework was conceived to implement them. The proposed

framework was conceived to learn person features in multiple steps, following the reasoning

of human learning process – from generic to specific concepts. Our proposed framework was

called coarse-to-fine learning (CFL).

Deep learning paradigm showed an appropriated resource used to implement our framework

by the following aspects: (i) features were learned from raw image data in multiple levels of

abstraction; (ii) some deep networks were necessary to implement the steps of the generic-

to-specific human learning process; and (iii) some intermediate deep layers were necessary to

extract novel person descriptors, based on the covariance descriptors proposed by Tuzel et al.

[2006].



1.1. Motivation 5

1.1 Motivation

The core of our work has been led by two reasons:

• At higher level of abstraction, by the intuitive way on how the human learning occurs,

from generic to specific concepts;

• At lower level of abstraction, by the high performance of the deep networks and high

discriminative power of the covariance descriptors.

The two aforementioned motivations have driven to the development of CFL to learn person

features by three deep networks, which mimic the human learning process (see Chapter 3). The

deep features, learned in CFL, are wrapped into a new adaptive covariance descriptor, called

convolutional covariance descriptor (CCF). The deep network topology is a proposed hybrid

network comprised of a set of convolutional neural networks (CNN) and a pre-trained DBN-

DAE, able to learn image local features (CNN) and noise-invariant global ones (DBN-DAE).

The components of our framework and the learning strategy were chosen to properly mimics the

generic to specific human learning process (see Chapter 4). Our proposed CFL was published in

[Franco and Oliveira, 2016a], and discussions of the proposed CCF is under revision in [Franco

and Oliveira, 2016b].

1.2 Goals

The goal of our proposed CFL is to improve the discrimination of person features for person

re-id by following a novel learning strategy in multiple steps, and it is implemented by a cascade

hybrid deep network training.

Specifically, the goals of our work are:

• Conception of a machine learning strategy to mimic the human learning process from

generic to specific concepts;

• Improvement of the discrimination of person features by the proposed CCF;

• Provide a new metric to measure the best configuration of the distances and function used

to compute a similarity function;

• Provide a new learning approach that can be updated to solve other computer vision prob-

lems.
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1.3 Key contributions

Our work brings three main contributions:

• A machine transfer learning approach motivated by the human skill of obtaining coarse-

to-fine knowledge;

• A novel way to wrap convolutional features in convariance matrices, and the integration

of those features with deep features;

• A new metric to measure the prediction performance that can be used to select the best

network configurations without the need to perform the person re-id matching.

In the second contribution, CCF are integrated with the flat features of the top layer of our

hybrid network. Both features can not be fused in a single array, since the covariance matrices

from CCF and the flat features lie on different spaces. Then the integration of those features

was accomplished via a proposed set of score distance functions, computed among CCF and

the flat features. A final similarity function provides the final score, given a set of CCF and flat

feature distances (see Section 4.3).

While the original covariance descriptor [Tuzel et al., 2006] extracts covariance matrices

over a set of image maps created by fixed image operations (intensity, color, gradient, filter

responses, etc), the CCF is achieved by a set of local covariance matrices over the feature maps

of the CNN inside the hybrid deep network [Franco and Oliveira, 2016a]. Since the feature maps

of the CNN layers are optimized by the training phase of the network, CCF wrap optimized

features, which are expected to be more robust than those original covariance descriptors found

in [Tuzel et al., 2006].

In the last contribution, a new proposed metric gives an indicative of the prediction perfor-

mance computed over a relative small amount of person image pairs. Although it is necessary

to perform the training and prediction of the network, it is not necessary to perform all pair

comparisons to obtain the real top rank performance.

1.4 Chapter map

The reminder of this thesis is organized as follows.

• Chapter 2 presents the background of person re-identification system and essential issues

to comprehend our proposed work and their relations.
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• Chapter 3 discusses the CFL framework and component parts of its architecture, as well

as, the framework of learning and prediction phases are presented. An experimental anal-

ysis is carried out to evaluate the performance of CFL, as well as, a comparison with 16

other state-of-the-art methods.

• Chapter 4 describes CCF as an extension of CFL approach, and details of CCF and the

flat features integration are shown in this chapter. An experimental analysis is performed

in order to evaluate the performance of CCF. A comparison with 18 other state-of-the-art

methods is accomplished as well.

• Chapter 5 presents the conclusion, discussion and future works.
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This chapter introduces some background in the field of person re-id. As the proposed

method for person re-id pervasively exploits deep learning, theory about that paradigm is also

presented and discussed. Also, some details about data sets used in the performance assessment

of person re-id methods are given, as well as, some performance measure techniques related

to person re-id evaluation are discussed. Finally, an analysis in what extension the works cited

throughout the chapter is related to our work is done.
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Figure 2.1: Multi-camera surveillance network illustration. An example of a person re-id system

that can be applied in the scenario. The system identifies people who walk by the entrance

cameras (2 and 6), and should be able to re-identify the same people labeled throughout the

halls. Image taken from Bedagkar-Gala and Shah [2014].

2.1 Automatic re-identification

One scenario of application in person re-id is depicted in Fig. 2.1. At the scene in the figure,

a multi-camera surveillance system identifies the people who walk by the cameras 2 or 6. By

considering all cameras in the network, the re-id system should be able to re-identify a person

who cross through the halls, and were initially labeled in the cameras located at the main en-

trances [Bedagkar-Gala and Shah, 2014]. Basically, an automatic person re-id system consists

in: Given a set of target person images and a source one; considering that the target images have

already been identified, the re-id system should be able to find the target image which is closer

to the source one in terms of image similarity. Figure 2.2 describes the steps for a conventional

person re-id system. Image features are used as unique person descriptors, being extracted on

each pair of source and target images in order to be matched via a similarity measure. Each

source person descriptor is compared to each target one with the goal of finding the highest

similarity pair.
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Figure 2.2: Pipeline of a conventional person re-id system. A source image is compared with

labeled target images presented in the database. The pair with highest similarity is chosen by

the re-id system.

2.1.1 Challenges

Although there are some reasons to explain the difficulty of person re-id, the main issues come

from the image variations found in the wild scenarios (camera view point, lighting change, dif-

ferent image poses, distance from the camera, different camera perspective, and so forth), and

person’s appearance across different cameras and environments. Person re-id systems usually

suffer from non-structured environments and non-rigid image objects. As such, the main chal-

lenge turns to find a person descriptor which represents the image person regardless its visual

variations.

Another person re-id challenge is the comparison among two person descriptors. Appear-

ance of the same person can have significant changes if he/she holds a bag, or dresses a jacket

whose fabric has different appearance across cameras. In that case, due to different camera

perspectives, the same person images can appear to be different, or different person images can

appear to be similar. This implies that within-class variation can be large, while inter-class vari-

ation can be relatively smaller. Figure 2.3 shows examples of images of the same people with

high visual variations, and different people with similar visual appearance.

2.1.2 Image person descriptors

Since one of the greatest person re-id challenge is the choice of the descriptor, one should spend

relatively time to design discriminative functions to represent an image person uniquely. There

are two kinds of discriminative functions which can be used as image descriptor for person re-

id: handcrafted or trainable [Bedagkar-Gala and Shah, 2014]. The former can still be classified

as appearance or soft-biometric descriptor. Appearance descriptors [Satta, 2013] are commonly

based on the colors and the texture of clothes [Bazzani et al., 2013], and person silhouette [Wang
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 2.3: Different pairs of people with similar appearance in (a) – (b), (c) – (d) and (e) – (f).

The same pairs of people with different appearance in (g) – (h), (i) – (j) and (l) – (m).

et al., 2007]; they can be generated by color [Cheng et al., 2011], [Gheissari et al., 2006], [Kuo

et al., 2013], gradient [Dalal and Triggs, 2005], [Bak et al., 2010], [Zheng et al., 2009] and

texture [Zheng et al., 2013], [Ma et al., 2012a] histograms, and shape-based features [Huynh

and Stanciulescu, 2015]. Soft-biometric features like skin, hair and eye colour are alternative

to distinguish different image people [Dantcheva et al., 2010]. While handcrafted descriptors

are obtained by applying fixed image operations, trainable descriptors are used to represent

dynamically the appearance of a person, or learning the weights of a linear combination of

features [Schwartz and Davis, 2009], [Gray and Tao, 2008].

Regardless the choice of the kind of descriptor, fusion of features still takes place on in-

tegrating complementary or opposite image features. This is done in order to achieving supe-

rior results in comparison with the component features, representing the final descriptor itself.

Descriptors based on fusion of features have demonstrated prediction improvement on person

re-id [Liu et al., 2012]. The problem of this approach is that descriptor dimension can be ex-

ceedingly high, depending on the number of features [Mangaia et al., 2014]. To cope with this

issue, Porikli and Kocak [2006] proposed the covariance matrices as image descriptors [Tuzel

et al., 2006], [Eiselein et al., 2014], [Hirzer et al., 2011], [Zeng et al., 2015] and [Dultra et al.,

2013]. Covariance descriptors demonstrated to be an appropriated way to encode the relation-

ship among a set of features in a low dimensional space, this achieving superior performance in
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many object detection tasks [Tuzel et al., 2006], Porikli and Kocak [2006], [Tabia et al., 2014],

[Romero et al., 2013], [Fehr et al., 2012], [Ma et al., 2012b].

2.1.3 Similarity measures

After having the person descriptor selected, the similarity between the pair of source and target

images should be obtained by a similarity function, e.g., a distance-based metric. Distance

metrics can be either used as a fixed distance function or a learned one. Yang [2006] states

the aim of learning a distance function is to find metrics which are small for data points within

the same classes, and large for data points of different ones. Some works that propose learned

distance metrics can be found in [Bedagkar-Gala and Shah, 2014]. [Weinberger et al., 2006],

[Hirzer et al., 2012], [Xiong et al., 2014], [Globerson and Roweis, 2005], [Yi et al., 2014a],

[Chen et al., 2015], [Paisitkriangkrai et al., 2015], [Li and Wang, 2013], [Liao et al., 2015], [Ma

et al., 2013] and [Martinel et al., 2015]. A supervised learned distance function is generally

given by

d(xi, xj) = (xi − xj)
TD(xi − xj) , (2.1)

where x1, x2,...,xn are the descriptors of the n training samples; d(xi, xj) is a distance metric

between two samples, and D is a symmetric positive, semi-definite matrix. This problem is

solved using a convex programming, according to

min
D

∑

(xi,xj)∈Pos

‖xi − xj‖
2
D

Subject to

D < 0,
∑

(xi,xj)∈Neg

‖xi − xj‖
2
D
> 1

(2.2)

where, Pos and Neg denote pairs that belong to the same person or a different one, respectively.

Deep learning is another learnable-based descriptor approach that aims at acquiring a dis-

tance metric and a person descriptor, at the same time. Deep learning will be discussed in

Section 2.2.

2.1.4 Performance measure

Person re-id is a ranking driven problem, since after computing a similarity measure between

pairs of people, a ranking must be formulated for the top 1 to be chosen. Performance evaluation



14 Chapter 2. Background

0 10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

Rank

M
a
tc

h
in

g
 h

a
te

 (
%

)

 

 

Figure 2.4: Examples of CMC curves (best viewed in color): red dashed – perfect curve, black

dashed – random curve, green and blue curves: results from hypothetical methods.

in rank n consists in computing the hit rate of correct matches among each source image and

n respective closer target ones. A correct matching is achieved when there is a target image

correspondent to the source one, among the n targets.

Cumulative matching characteristics curves (CMC) are one of the most used metric to eval-

uate identification performance. By plotting the hit rate against the rank, the goal of a CMC

graph is to provide an analysis of the ranking capability at an identification system. Figure 2.4

illustrates a perfect (red dashed line) and a random (black dashed line) examples of a CMC

graph. In the former case, the CMC yield to a continuous value equals to 1, indicating that in

any rank, a hypothetical proposed method always points to the correct match; in the latter case,

an identification system is not better than the chance (dashed line, first bisectrix). The curve

in green shows a better performance than that blue one, and it is closer to the perfect curve (in

red). CMC help in the visual comparison of different methods.

Two other quantitative metrics used to evaluate person re-id performance are: Area under

the CMC curve and top rank evaluation. The area under the CMC curve indicates the judgment

of the identification system over the CMC curve (by computing the integral under the curve),

and the top rank shows the top 1 performance of the system.

2.2 Deep learning

Deep learning is a novel machine learning paradigm conceived to learn concepts in a hierarchi-

cally nested way, where complex concepts are defined in relation to simpler one [I. Goodfellow
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and Courville, 2016]. One of the promises of deep learning is replacing handcrafted features

with efficient algorithms for feature learning and hierarchical extraction [Song and Lee, 2013].

The ability to learn powerful features becomes increasingly important as the amount of data and

range of machine learning applications continues to growing.

Figure 2.5 shows how a deep learning system can represent the concept of an image person

by combining simpler concepts in a deep learning model. Network layers were trained to learn-

ing concepts as follow: (i) Visible layer – represents the input image pixels, the less abstract

concept; (ii) first hidden layer – represents the edges of the input image, a more abstract concept

then the previous layer; (iii) second hidden layer – represents the corners of the input image;

(iv) third hidden layer – represents the object parts of the input image, and (v) the output layer –

represents the identity of an object image, a more abstract concept. All the concepts are learned

together and both classifier and features are optimized according to a specific problem domain.

A deep learning architecture is based on a multi-layer network with complex structures and

a high number of network parameters. Convolutional Neural Networks (CNN) [LeCun et al.,

1989], for example, are a kind of discriminative deep learning architecture, commonly used

in image and video recognition (see Section 2.2.1). Restricted Boltzmann Machines (RBM)

[Larochelle and Bengio, 2008] and Deep Belief Networks (DBN) [Hinton et al., 2006] are a

generative deep model architecture, designed to learn a probability distribution over a set of

inputs (see Section 2.2.3).

A deep network can be trained in supervised, unsupervised or semi-supervised ways. In this

later training approach, a deep network is previously pre-trained in an unsupervised way, and

then a supervised training to fine tune the network parameters is performed. An autoencoder

is a kind of deep network conceived to learn a compressed representation of its input and/or

to address the lack of sufficient data to learn [Hinton and Salakhutdinov, 2006] (see Section

2.2.4). An extension of an autoencoder, called denoising autoencoder (DAE), was introduced

to learn noisy invariant image representation [Vincent et al., 2008]. In a DAE, an autoenconder

is trained to reconstruct the input from its corrupted version (see Section 2.2.5).

Recently, deep learning has been adopted to solve several Computer Vision problems, such

as in: Zeng et al. [2013], a jointly cascade training of a set of classifiers was proposed in order

to perform a pedestrian detection; Masci et al. [2011], stacked Convolutional auto-encoders for

hierarchical feature extraction were conceived; Luo et al. [2012], a deep network was trained to

segment facial components; Ngiam et al. [2011], a multi-modal DBN was proposed to learn a

sharing representation of a set of videos and its associated audio information; Zhu et al. [2013],

a normalized representation of face images, learned by a CNN deep autoencoder, was created

with the goal of generating face features invariant to pose and illumination change; Vincent
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Figure 2.5: Concepts in multiple levels of abstraction, learned by a deep learning system. From

the bottom to the top, less abstract concepts to more abstract ones are learned by the respective

network layers: (i) Visible layers, representing the pixels of an image; (ii) first hidden layer,

representing the edges of the input image; (iii) second hidden layer, representing the corner of

the input image; (iv) third hidden layer, representing the object parts of the input image and (v)

the output layer, representing the identity of an object image, a more abstract concepts. Image

taken from I. Goodfellow and Courville [2016]

et al. [2010], a DAE was introduced to learn useful image representation; and Krizhevsky and

Hinton [2011], a deep autoencoder was used to retrieve context-based image. In the context

of person re-id, some deep network architectures have been introduced in [Yi et al., 2014a],

[Yi et al., 2014b], [Ahmed et al., 2015], [Li et al., 2014], [Ding et al., 2015] and [Franco and

Oliveira, 2016a], achieving state-of-the-art results on almost all evaluated data sets.

2.2.1 Convolutional Neural Networks

CNN are a kind of feed-forward, biologically inspired network, designed to emulate the behav-

ior of an animal visual cortex [Hubel and Wiesel, 1968]. CNN are comprised of several layers

which can be of three types:

• Convolutional: Consists in a set of feature maps, which are generated from a convo-
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Figure 2.6: Example of a max-pooling layer obtained from an input or feature map.

lutional operation over the input data or other feature map. Each convolutional layer

defines a data input representation in a certain level of abstraction. The convolutional

filters, called kernels, are rectangular grids of shared weights, which are learned during

the network training. Outputs S of each CNN layer are defined as

Sl
(i,j,k) =

m
∑

u=1

m
∑

t=1

V l−1
(i+u,j+u,k)W

l
k , (2.3)

V l
(i,j,k) = σ(Sl

(i,j,k)) , (2.4)

where l is the output layer, i and j are image region coordinates of a feature map k, m is

the size of squared region of the kernel, σ is a non-linear neuron activation function, and

W represents the weight matrix of each output neuron.

• Pooling: The main goal is to perform a downsampling along the spatial dimension of a

previous layer. The pooling operation is performed over non-overlapped regions, usually

of size 2×2. A pooling operation returns a downsampled version of each non-overlapped

region. One of the most commonly used pooling operation is the max function, which

leads the layer to be called max-pooling. The spatial dimension operation of a layer

reduces the number of network parameters, and, thus, tends to control network overfitting.

Max-pooling operations also provide a way of translation invariance. Figure 2.6 illustrates

a max-pooling layer, generated from an input or feature map.

• Fully-Connected: Fully-connected layers are the top layers of CNN, commonly used to

encode the highest representation abstraction of the input data. They have full connections
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Figure 2.7: A hypothetical convolutional neural network model comprised of two convolutional,

two max-pooling and two full-conected layers. This model was trained to recognize a person

image. Figure adapted from Oliveira [2010]

to all neurons activations in the previous layer, as usually seen in multi-layer perceptron

(MLP) networks.

Figure 2.7 illustrates a CNN model with two convolutional, two pooling and one fully-

connected layers.

The standard MLP gradient descent algorithm evaluates the cost and gradient over the full

training set. Due to the large amount of training data required, this algorithm is not suitable

in the CNN training. An alternative algorithm and more appropriated to train a CNN is the

stochastic gradient descent that uses only a single or few training examples.

2.2.2 Restricted Boltzmann Machines

RBM are undirected probabilistic graphical models proposed by Smolensky [1986], which are

able to learn a probability distribution over a set of inputs. RBM are comprised of one layer of

observable variables v and one hidden layer h (layer of latent variables). RBM are trained to

maximize the product of the probability of a training set T , given by

argmax
W,z,u

∏

v∈T

P (v) , (2.5)

where

P (v) =
1

Z

∑

h

e−E(v,h) , (2.6)

, Z is a normalizing constant to ensure the probability distribution sums to 1, W is a network

weight matrix, and u and z are bias vectors of the hidden and visible layers, respectively. The
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energy function E is defined as

E(v,h) = −uTv − zTh− vTWh . (2.7)

Conditional probabilities of P (h|v) and P (v|h) are modeled by a product of Bernoulli

distributions, according to

P (hi = 1|v) = σ(ui +Wiv) (2.8)

and

P (vj = 1|h) = σ(zj +WT
j h) , (2.9)

where σ(.) is a sigmoid function, and j and i are indexes of the visible and hidden layer units,

respectively.

2.2.3 Deep Belief Networks

DBN are comprised of a set of stacked RBMs. The visible layer of an RBM is the output

of the previous one, or it is the input layer of a DBN, which is trained in two steps: (i) An

unsupervised training and (ii) a supervised training. The first step is performed by a cascade

layer-wise training of each RBM, in n stages, where n is the number of RBM. At the first stage,

the input layer of the first RBM is the DBN data input; when the first RBM is trained, a second

RBM is stacked on the top of the first one – the output of the first RBM becomes the input layer

of the second one. In the second step, when the new RBM is already trained, the weights of the

first one is fine tuned. In the same way, latter stages follow the first and second ones. In the

second DBN training step, the weights of the overall DBN are fine-tuned in other domain of the

training problem.

During the first step, a DBN can learn how to probabilistically reconstruct its inputs. Then

layers act as feature detectors over the inputs. In the second step, the supervised training is

carried out to perform a classification. Figure 2.8 describes the steps of a DBN training in order

to teach a classify how to distinguish which image is a person from those ones that are not; the

left box depicts the first DBN training step, while the right box illustrates the second one.

2.2.4 Autoencoder

An autoencoder is a kind of neural network that is trained to reconstruct a copy of its input

in its output. It is designed to perform feature extraction, dimensionality reduction or data

compression. Internally, an autoencoder has a hidden layer h that encodes the input. The
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Figure 2.8: Training stages of a deep belief network. In the first stage (left box), a cascade

layer-wise unsupervised training of a set of RBM is performed. In the second stage (right box),

the deep belief network is fine tuned in a supervised way.

layer h should hold only the useful properties of the input. There are two kind of layers in an

autoencoder network topology: The encoder, which maps the network input to a compressed

representation of itself (represented by h), and the decoder, which reconstructs an approximated

version of the network input from h (see Fig. 2.9).

In the simplest form, the architecture of an autoencoder is a non-recurrent neural net which

is very similar to the MLP, comprised of an input layer, an output layer, and one or more

hidden layers, connecting input and output. The difference between autoencoders and MLPs

is that an autoencoder must own a symmetric structure. In other words, the decoder layers of

an autoenconder should be a mirrored version of the encoder ones, with their weight matrices

being the transpose of the weight matrix of the encoder layers. Considering the encoder and

decoder as a function r and g, respectively, the autoencoder should compute the matrix W,

corresponding to the weights of the network,

W = argmin
W

∥

∥x− g(r(x,W),WT )
∥

∥ , (2.10)

where x is the data input of the network.

In the simplest case, an autoencoder has only one hidden layer. In this case, it takes the
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Figure 2.9: The topology of an autoencoder: Wi is the weight matrix associated to the connec-

tions between the layer i and i + 1; ui and zi are the bias vectors of the layer i of the encoder

and decoder layers, respectively.

input x and maps it onto h, according to

h = σ(Wx+ z) , (2.11)

where h is usually referred to as code, z is the encoder bias and σ is an activation function.

In a trained autoencoder, h can be mapped onto the reconstruction x′ of the same size as x,

according to

x′ = σ(WTh+ u) , (2.12)

where u is the decoder bias.

Autoencoders are trained to minimize a loss function, L, defined as

L(x,x′) = ‖x− x′‖
2
=

∥

∥x− σ(WTσ(WTx+ z) + u)
∥

∥

2
(2.13)

Recently, some works have provided autoencoders to train generative models [Kingma and

Welling, 2013], [Hinton et al., 2006], [Zhu et al., 2013]. Figure 2.10 shows a hypothetical DBN

model to train an autoencoder.
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Figure 2.10: An example of a deep belief network autoencoder. After the first stage (upper box),

the DBN encoder layers are pre-trained. In the second stage (lower box), the DBN is fine-tuned.

The encoder top layer should denotes a compressed representation of a person image, after the

second stage.

2.2.5 Denoising Autoencoder

A DAE is a kind of autoencoder that maps a corrupted version of the data input back to the

original one. The main goal of the DAE is to create a similar representation of a data regardless

its variations, commonly induced by noise.

Given a corrupted version x̃ of x, a DAE should compute the weight matrix W in a similar

way to Eq. 2.10, according to

W = argmin
W

∥

∥x− g(r(x̃,W),WT )
∥

∥ , (2.14)

The difference between Eq. 2.14 and Eq. 2.10 is that, in the first, the g function has x̃ instead

of x, as input. In a conventional DAE, x̃ is a corrupted version of x. However, a DAE can be

conceived to work with any other relationship between x̃ and x. For example, x can represent
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an object image in a frontal view, while x̃ is an image of the same object in a different view.

A set of training samples comprised of x̃ examples can be used to train a DAE, having x as a

label in order to create a normalized representation of this object. The use of a DAE to solve

problems that are different from those solved by the conventional one can be found in [Vincent

et al., 2010], [Luo et al., 2012], [Ngiam et al., 2011], [Zhu et al., 2013] and [Krizhevsky and

Hinton, 2011].

2.3 Data sets

Performance of person re-id systems is assessed over public data sets. There are two ways of

evaluating a re-id system, those are via: still images or videos. Still images are used when it is

considered that the detection stage of a re-id system is quite perfect so that the proposed novel

method is evaluated in isolation over cropped person images. Video images are commonly used

to evaluate the whole re-id system by considering the detection or the identification stage in a

wild environment. The idea of video performance assessment is to demonstrate the maturity of

a whole system in a practical application.

Our proposed person re-id method was thoroughly evaluated over cropped person image

data sets, with the goal of acquiring a first performance experimental evaluation. This indicates

we are taking in advance that our person detector is simply perfect and isolating the method’s

performance. For that, four public and state-of-the-art data sets were used: VIPeR [Gray et al.,

2007], i-LIDS [iLI, 2007], CUHK01 [Li et al., 2013] and CUHK03 [Li et al., 2014]. VIPeR

data set is comprised of 632 pedestrian image pairs taken from two non-overlapping cameras. i-

LIDS data set contains 476 images of 119 pedestrians taken from two non-overlapping cameras.

CUHK01 contains 971 people, taken from two camera views in a campus environment, while

the CUHK03 is composed of 1360 people captured by six different cameras.

2.4 Relation to our work

Our work approaches the person re-id problem by using local and global trainable descriptors

learned in a novel deep learning framework, called CFL. The rationale of CFL framework is to

mimic the generic-to-specific human learning process, exploiting a transfer learning technique,

in the point of view of machine learning field (see Chap. 3). In the prediction stage of the

proposed framework, instead of matching a pair of source and target images, the input image

pairs are increased by an artificial noisy version of the original images. The final identification

score is given by the distances generated among all the combination of original and included
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noisy images. The last contribution of our work is the conception of an adaptive covariance

descriptor, called CCF, obtained by computing covariance matrices over the deep features (see

Chap. 4). Next, we present and contextualize the relation between our contributions and the

background discussed in this chapter.

The transfer learning technique is not novel and is used in some works: In [Masci et al.,

2011], [Luo et al., 2012], [Ngiam et al., 2011], [Vincent et al., 2010] and [Zhu et al., 2013], a

deep network is trained in two stages with a transfer learning among them. Transfer learning

in these cited works is performed only to avoid the network overfitting. In our proposed CFL

framework, a transfer learning strategy was conceived to simulate the human learning process

from generic to specific concepts in order to learn person descriptors in multiple steps. This

showed to be an efficient strategy, thus increasing the person re-id performance.

While in [Yi et al., 2014a] and [Yi et al., 2014b], a pre-estabilished score function was

used to predict the re-id, we proposed a novel metric to select a score function among a set of

candidate ones. This metric was also used to choose the best configuration of the input data in

the prediction phase. The core of the network used in the CFL framework is comprised of a

DBN, which borrows the parameters and topology from [Yi et al., 2014a], and also a CNN with

the same structure to the one proposed in [Luo et al., 2012].

CCF were motivated by the original covariance descriptors proposed in [Porikli and Kocak,

2006], and exploited in [Eiselein et al., 2014], [Hirzer et al., 2011], [Zeng et al., 2015] and

[Dultra et al., 2013] to solve the problem of person re-identification. In contrast to the original

descriptors, CCF are adaptive, because it is extracted directly from the intermediate layers of a

trained CNN. Since the CNN, in the way that was proposed, provide only the local features, a

new way to integrate the CCF and the global features found in the CFL framework is also done.
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CHAPTER 3

Coarse-to-fine learning framework
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3.1 Introduction

A framework to learn trainable and discriminative features for person re-id was proposed here.

This framework was conceived to acquire knowledge from generic-to-specific concepts, as fol-

lows: (i) recognition of global characteristics of a visual object, regardless their variations; (ii)

recognition of what a person is (generic concept about person, usually learned in childhood);

(iii) gender discrimination (male/female - specific concept about a person), and, finally, (iv)

comparison of each local and global features of the target person with a data base.
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Figure 3.1 describes the steps followed by our framework and examples of the system input

and correspondent system response in each step. From the first to the last step, the proposed

framework learns from a more generic concept to more specific ones. The aim of the first step

is to learn global features of a person image (entire image of a person), which are expected to

be robust to some image variations. The rationale in this step is that the image person is still

an image person regardless its visual variations, even without any knowledge about what

a person is. In this stage, there is a direct relationship between input and response, that is, both

of them are an image person, but the response should be a normalized image regardless the

variations of the input. It is noteworthy this concept can be applied to any other object image

after specific changes in the framework.

In CFL framework, global features are learned in the first step and tuned in the next ones.

Local features (body parts) of an image person start to be learned from the second step, and

tuned in the last two ones. During the second and third steps, features are optimized by the

learning of two concepts, respectively: “Is the input image a person or not?” and “if the image

is a person, which is the gender of that person?”. Global and local features are finally optimized

in the last step. Different images of the same person should have similar feature representations,

which should be as distinct as possible for images of different people.

A question arises from all this discussion: A machine learning framework, based on a

generic-to-specific concept, can achieve better performance than that conventional one? Con-

ventional machine learning here is comprehended by one that learns a knowledge, only consid-

ering a particular domain of a problem, without any other previous domain. Implementation of

the proposed framework and several experiments will give some evidences that the answer for

that question is ‘yes’.

3.2 CFL framework

CFL was implemented by a cascade network training, driven by a transfer learning technique,

and performed in four steps (depicted in Fig. 3.2). They are:

• Step 1: Pre-training of the person global features is performed by a proposed DBN-DAE

(see Section 3.2.1 for details). The goal of these global features are to be invariant to

some image variations (for simplicity, these variations are considered here as noises).

• Step 2: Once pre-trained, the DBN-DAE encode layers are integrated to a set of CNNs in

a proposed hybrid deep network (see Section 3.2.2 and Fig. 3.2a). CNN will learn local

features. Local features will be optimized and the global ones will be tuned in a binary
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Figure 3.1: Steps of CFL. Steps 1© and 2© are associated with learning by generalization, while

3© and 4© with learning by specialization. The problem is less complex and more generic in the

first two steps and, conversely, it is more complex and more specific in the last two steps.

classification fashion. Particularly, the network learns to classify which image is or is not

a person.

• Step 3: Global and local features will be tuned in the same way as in step 2, but in a

different domain of classification problem. Here, the hybrid network is trained to identify

two genders: male and female.
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• Step 4: A copy of two identical hybrid network, pre-trained in the previous step, will be

trained in order to optimize the person features for person re-identification. In this step,

there is a need to train two networks together, since the training is accomplished over a

pair of person images in order to measure the similarity between them. The two hybrid

networks are trained into a network topology called Siamese network (see Section 3.2.3).

Figure 3.2 depicts the outline of CFL. The ”Net” box depicted in Fig. 3.2b concerns a

hybrid deep network comprised of a CNN and a DBN-DAE, and it is illustrated in more detail

in Fig. 3.2a. In the hybrid architecture (see Section 3.2.2), while the CNN extract local features

from the person images, the pre-trained encode layers of a DBN-DAE network (see Section

3.2.1) select global features, which are expected to be invariant to certain types of noises, such

as brightness changing, horizontal mirroring, blurring and small image distortions. While a

conventional DAE aims at reconstructing an image from its corrupted version, our proposed

DAE attempts to reconstruct a person image from a noisy image version. For each original

image, a set of randomly brightness change, horizontal mirroring, blurring and distorted images

was generated. Each one of those types of noise is incorporated in the network training phase by

applying some noise generating functions in the images of the original data sets (see examples

illustrated in Fig. 3.3). That augmented data set also works to reduce the overfitting caused

by the large number of deep network parameters. Although all CNNs or all DBN-DAEs would

be possible in the ”Net” box, experiments demonstrated that a DBN-DAE along with a CNN

form the best configuration (see Section 3.3 for a framework experimental evaluation). After

having the DBN-DAE pre-trained (step 1), the hybrid network is now able to be trained in the

three further steps. The learning is transferred (see Section 3.2.4) from the person network (step

2) to the gender network (step 3), and then finally to the Siamese Network (step 4) in order to

perform the final person re-id (see Fig. 3.2b). The Siamese (Section 3.2.3) learns which pairs

of images belong to the same or different people.

3.2.1 Proposed DBN-DAE

The topology of our DBN-DAE is structured by four pre-trained Restricted Boltzmann Ma-

chines (RBM) layers. According to Fig. 3.4, v and hi, with i = 1 to 4, are the visible and

hidden units, respectively. v is the flat version of a noisy image IN .
∼
v is the output of the

network, while l is the flat version of the original image Io. The weights among each pair of

layers are represented by Wi vectors. zi and ui are the offset vectors for input and hidden units,

respectively. There are two steps to reach a fully trained DBN-DAE to fulfil the first CFL train-

ing step: (i) A stacked layer-wise training for each one of the four RBM, as shown in Fig. 3.4a,
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(a)

(b)

Figure 3.2: Outline of our proposed framework and CFL steps. (a) Proposed hybrid network

comprised of three CNNs (each one for each human body part – head, torso and legs) and a pre-

trained DBN-DAE. (b) The three steps of the overall hybrid network training. The ”Net” box

contains the hybrid network, illustrated in (a). The blue circles indicate the four CFL training

steps: 1© DBN-DAE training, described in more details in Fig. 3.4; 2© Person / not person

learning; 3© Person gender learning; and 4© Person re-id. The steps follow the order from more

generic to more specific learning about person.

and described in Section 2.2.3 (each RBM is trained according to the procedures discussed in

Section 2.2.2), and (ii) a DBN fine-tuning to minimize the cross-entropy error between
∼
v and l,

as shown in Fig. 3.4b.

The DBN-DAE is comprised of an encoder and decoder layers (see Figure 3.4b). The en-
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Figure 3.3: Noise generating functions applied on samples of VIPeR data set [Gray et al.,

2007]. From left to right: Original image, randomly brightness change, horizontal mirroring,

and blurring and image distortions.

coder is comprised of four stacked RBM, trained after the last cascade RBM training step (net-

work from the fourth step of the cascade RBM training in Fig. 3.4a). The decoder layers are a

mirrored version of the encoder ones (see Section 2.2.4). The weights of the decoder layers are

the transpose of the weights of the encoder ones. The number of DBN-DAE units for the input

and output layers are 6912 (flat version of the 48×48 re-sized image with the 3 RGB channels),

following the work in [Luo et al., 2012]. As in [Luo et al., 2012], the number of hidden units

are 4000 in h1, 2000 in h2, 1000 in h3 and 500 in h4.

The encoder layers of the pre-trained DBN-DAE is coupled to CNN to form the hybrid

network (see Fig. 3.2a). The top layer of the encoder corresponds to the global features of the

person image that will be tuning after the step 2 of the CFL training.

3.2.2 Hybrid network

The hybrid network has four sub-nets: One for each fixed image region (head, torso and legs)

and a full-body sub-net (see Fig. 3.2a). Each fixed image regions were extracted from the entire

image in a square of 48×48 pixels wide. Before dividing each person body-part image, each

fixed image region was overlapped one another (see Fig. 3.5), to guarantee that the body-parts

image must be square in the input of the CNNs. Each one of the three body-part sub-nets is

a CNN with two convolutional layers (C1 and C3), two max-pooling layers (S2 and S4), and
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(a) Steps of the DBN-DAE training

(b) DBN-DAE fine-tuning with the flat noisy image layer

Figure 3.4: DBN-DAE topology and training steps. In (a), a cascade of layer-wise RBM training

is performed in four steps. In the first step, the input layer of the first RBM is the flat version

of a person image; when the first RBM is trained, a second RBM is stacked on the top of the

first one; the output of the first RBM becomes the input layer of the second one. In the second

step, while the new RBM is trained, the weights of the first one is fine-tuning. In the same way,

the third and fourth steps follow the first and second ones. In (b), a fully symmetric DBN-DAE

with all pre-trained RBM is trained to minimize a cross-entropy error between the output of the

network and the flat original image, having a noise image as input.
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Figure 3.5: Person image body parts. The size of each part is 48×48 pixels wide. Each one of

the parts overlaps the other in approximately 10%.

one full-connected layer (F5). This latter one has 500 units shared with the three body-part

sub-nets. CNN topology and network parameters for these three top networks follow the work

in Yi et al. [2014a]. The full-body sub-net is comprised of the pre-trained DBN-DAE, which

provides a 500-dimensional feature vector in its output. At the end, the hybrid network output

is given by the F5 layer concatenated with the output of the pre-trained DBN-DAE, forming a

1000-dimensional flat features.

3.2.3 Siamese Network

Proposed by [Yi et al., 2014a], the goal of a Siamese network is to learn a similarity function

between a pair of input data. Within a Siamese topology, the outputs of the two networks are

usually connected by a connection and a cost functions. The connection function evaluates the

relationship between the two network outputs, while the cost function converts this relationship

into a cost. A sample in the supervised training phase of the Siamese is composed of a pair of
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images and a label, y. In our Siamese Network, the two networks are connected by a contrastive

connection function, which ultimately measures the similarity between the two network outputs

and the cost, at the same time. The contrastive function, L, is defined as

L(X1(φ), X2(φ), y) =(1− y)
1

2
D2+

y
1

2
(max(0,m−D))2 ,

(3.1)

where D = ‖X1(φ) − X2(φ)‖2, and X1(φ) and X2(φ) denote the output of the Nets (step 4

of Fig. 3.2b), m represents a constant (in our case, equal to 1), and φ represents the network

parameters. The Siamese is trained to find the values of φ that minimize L. The contrastive

function is not used in the prediction phase and the features of the two networks are evaluated

by a distance function. The smaller the distance, the higher the similarity between the two

people in the input of the Siamese. In [Yi et al., 2014a], two original images and their mirrored

version from each pair of people, to be compared, generate four score distances and the final

score was computed by the mean among the distances. Further we investigate which image

combinations and which final score function improve the performance prediction (see Section

3.2.5 for more detail).

3.2.4 Learning strategy

Before the Siamese Network training step, the CFL takes place by means of a cascade of transfer

learning (person→ gender→ identification). The goal of the transfer learning is to initialize the

parameters of a network by using those pre-trained parameters of the previous ones. Particularly

in steps 2 and 3 of Fig. 3.2b, as the problem domain resides in a binary classification, a binary

layer in the output of the networks was included. In a current step, the learning rate in the

training process is decreased by 10 times regarding to the previous step. This is so since the

network of a higher step is tuning the parameters already learned in the previous one.

The network training in the three steps was performed using a stochastic gradient descent

with mini-batch size equals to 100, and 30,000 iterations. The learning rate of the DBN-DAE

was set to 0.01 and 0.00001, during the DBN-DAE training and CFL, respectively. The learn-

ing rate of the CNN was set to 0.01 in the step 1, 0.001 in the step 2 and 0.0001 in the step

3. The best network training parameters were chosen after a performance evaluation by using

a variation of the holdout cross-validation method found in [Kohavi, 1995]. While the original

method in [Kohavi, 1995] selects one pair of training/testing samples for performance evalua-

tion, we have chosen four pairs. For each training sample, the CFL was trained with a set of

CNN and DBN-DAE learning rate configurations, and the configuration that achieved the best
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Table 3.1: Outcomes of the test to find the best function f (see Eq. 3.2) to compute the similarity

score function, over VIPeR and iLIDS data sets. The test was accomplished over ten subsets by

computing the value of y from each one of them, as well as, each one of the candidate functions.

Testing subset
VIPeR data set

max min mean

1 0.5062 0.5550 0.5278

2 0.5105 0.5445 0.5193

3 0.5088 0.5567 0.5264

4 0.5172 0.5598 0.5308

5 0.5205 0.5605 0.5255

6 0.5048 0.5478 0.5332

7 0.5155 0.5554 0.5342

8 0.5168 0.5594 0.5448

9 0.5064 0.5499 0.5292

10 0.4998 0.5632 0.5341

Average 0.5106 0.5552 0.5305

Testing subset
i-LIDS data set

max min mean

1 0.5176 0.5377 0.5274

2 0.5092 0.5340 0.5222

3 0.5222 0.5402 0.5341

4 0.5150 0.5425 0.5273

5 0.5108 0.5331 0.5236

6 0.5043 0.5442 0.5302

7 0.5200 0.5398 0.5324

8 0.5115 0.5382 0.5227

9 0.5145 0.5401 0.5331

10 0.5202 0.5422 0.5312

Average 0.5043 0.5392 0.5284

performance prediction was chosen as the network training parameters.

The same noisy functions (used to generate the artificial noisy images in the DBN-DAE

training) were also used in the other steps of the CFL training, due to the large number of

network parameters. This was done to increase the number of samples, in order to reduce the

probability of the network overfitting. From each one of the original image were generated 15

randomly noisy ones, of which: Eight with different intensity of brightness; four with different

image distortions; one mirrored; one blurred; and one mirrored and blurred, counting a total of

16 images per person. Hence, the size of training samples of the network from step 2 to step

3 (in Fig. 3.2b) was increased by 16 times the samples of the original data sets. Since a pair

of images is the input of a Siamese network, the total amount of pairs could be equals to the
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Figure 3.6: The structure of the Siamese network in the identification phase. The similarity

between two people is computed by finding the maximum value among 16 euclidean distances,

generated by the distances among the flat features of each source image and target ones (original

and noisy versions).

number of combinations arising from the matching of each image against all the others. Then

the size of training samples for this network could be equal to the size of the training samples of

the original data set raised to square. By considering the noisy images, the total of samples for

the Siamese network training can be further increased by 256 times. We can conclude that even

a data set with a small number of examples, the number of produced training samples can be

high, due to the addition of the artificial noisy images, as well as, the structure of the Siamese

network. It was used then 20% of the total number of image pairs, which were randomly

chosen in order to reduce the time of the Siamese network training without the loss of network

generalization capability, and to fit in the computer memory. The drop-out method in [Srivastava

et al., 2014] was also used in the learning phase to prevent network overfitting. In each training

stage, this method consists in either to ”drop out” the incoming and outgoing connections of a

network node with 1 − p probability, or to keep a network node with p probability, so that a

reduced network is achieved. Only the reduced network is trained on the data in that stage. The

removed connections are then reinserted into the network with their original weights.

3.2.5 Person re-identification: Distance space prediction

The aim of the person re-identification prediction is to find the more similar target person image,

given a source one. This is achieved by computing a similarity score function among the flat

features (the top layers of the hybrid network) of the source and target images. The person

in the target image that obtains the highest score (it could be the lowest, depending on the

score function) is considered the one who best matches the person in the source image. In

our work, we have used the Euclidean distance as the base function to compute the similarity
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Table 3.2: The same test as in Table 3.1, but over CUHK01 and CUHK03 data sets.

Testing subset
CUHK01 data set

max min mean

1 0.4765 0.5340 0.5111

2 0.4788 0.5321 0.5061

3 0.4892 0.5462 0.5233

4 0.4755 0.5298 0.5211

5 0.4663 0.5341 0.5198

6 0.4728 0.5401 0.5156

7 0.4872 0.5332 0.5201

8 0.4801 0.5341 0.5143

9 0.4912 0.5299 0.5200

10 0.4771 0.5279 0.5203

Mean 0.4803 0.5341 0.5172

Testing subset
CUHK03 data set

max min mean

1 0.4811 0.5231 0.5344

2 0.4946 0.5132 0.5256

3 0.4822 0.5233 0.5323

4 0.4805 0.5213 0.5399

5 0.4901 0.5245 0.5401

6 0.4888 0.5302 0.5345

7 0.4803 0.5322 0.5297

8 0.4922 0.5345 0.5356

9 0.4935 0.5298 0.5345

10 0.4899 0.5235 0.5399

Mean 0.4873 0.5256 0.5346

score between the flat features of the source and target images, from each pair of people to be

compared. As in [Yi et al., 2014a], the prediction phase is performed by the Siamese network.

Although it is common to use only the original images to compute the prediction, Yi et al.

[2014a] found a significant improvement in prediction performance when the data augmentation

trick [Cireşan et al., 2011] is used over the testing set.Two original images and their mirrored

versions were used, for each pair of people to be compared, producing four score distances. The

average value among these distances was used as the final similarity score function. Although

Yi et al. [2014a] have achieved better performance using this strategy, they did not perform

any analysis to verify the possibility of other images and final similarity score function con-

figurations, which might further improve the prediction performance. Here, we propose to use

a so called distance space analysis, in order to check the prediction performance of a set of

configurations. Distance space prediction represents the distance space related with the best
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(a) (b)

(c) (d)

Figure 3.7: Distance graphical analysis over VIPeR data set. The blue and red points correspond

to the distances between pairs of the same and different people, respectively. (a) 16 distances

of each pair of people were projected into the first three principal components. (b), (c) and

(d) graphical results after applying max, min and mean functions over 16 distances. Distance

values are normalized.

configurations, selected by the proposed analysis. The person re-identification prediction is

accomplished in that space.

The proposed analysis gave us a hint of which similarity function, and target and source

image configurations should be used to achieve the best prediction performance. Furthermore,

it was also useful to validate the performance of the hybrid network topology and the CFL

approach, as it will be shown in Section 3.3. The distance space analysis is based on a straight-

forward metric, which evaluates the ratio between the pair distances of the same people and the

pair distances of different ones. By calculating y, given by

y =

t1
∑

n=1

f(sn)

t2
∑

n=1

f(dn)

, (3.2)

it is possible to evaluate the best prediction parameters in the distance space.

The basic idea of this metric is to provide an indicative of high prediction performance when

the distances among the same pair of people is low, and the distances among different ones is
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Table 3.3: Prediction performance analysis of 25 source and target image configurations, over

VIPeR data set. The minimum average value of y indicates that the prediction of the pair of

target and source people, comprised of original, mirroring, blurring, and blurring and mirroring

images (see Fig. 3.6), achieves the best performance.

Source and target image configurations Average of y
Original 0.6544

Original + Brightness 0.6205

Original + Mirroring 0.6168

Original + Blurring 0.6250

Original + Blurring and mirroring 0.5944

Original + Distortion 0.5905

Original + Brightness + Mirroring 0.5748

Original + Brightness + Blurring 0.5855

Original + Brightness + Blurring and Mirroring 0.5698

Original + Brightness + Distortion 0.5724

Original + Mirroring + Blurring 0.5802

Original + Mirroring + Blurring and Mirroring 0.5665

Original + Mirroring + Distortion 0.5700

Original + Blurring + Blurring and Mirroring 0.5772

Original + Blurring + Distortion 0.5696

Original + Blurring and Mirroring + Distortion 0.5805

Original + Brightness + Mirroring + Blurring 0.5423

Original + Brightness + Mirroring + Blurring and Mirroring 0.5356

Original + Brightness + Mirroring + Distortion 0.5307

Original + Brightness + Blurring + Blurring and Mirroring 0.5286

Original + Brightness + Blurring + Distortion 0.5360

Original + Brightness + Blurring and Mirroring + Distortion 0.5200

Original + Mirroring + Blurring + Blurring and Mirroring 0.5106

Original + Mirroring + Blurring and Mirroring + Distortion 0.5189

Original + Blurring + Blurring and Mirroring + Distortion 0.5201

high. In Eq. 3.2, sn and dn are k-dimensional vectors comprised of the k Euclidean distances

of the n-th person pair and s{1..t1} and d{1..t2} contain the distances of t1 and t2 pairs of the

same and different people, respectively. It is easy to note the lower the value of y, the higher

the prediction performance. Hence it is necessary to select a f that minimizes y.

Three candidate f functions were chosen to compute the similarity score function: max,

min and mean. The test to choose the suitable f was conducted over VIPeR, iLIDS, CUHK01

and CUHK03 data sets. All individuals in these data sets were randomly divided into two

subsets: Training and testing sets, containing half of the available individuals in each subset,

with no overlapping regarding person identities. Ten pairs of the aforementioned subsets were
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selected, and the CFL learning and prediction were performed.

For each combination of testing subset, data set and candidate function (max, min and

mean), the distance space metric was computed. Since 10 testing subset were selected, 10

values of y were obtained, for each candidate function and data set. Each distance space metric

was computed over 100 selected pairs of the same and different people, during the prediction

phase. The average obtained among the 10 values of y was used as a reference to select the

appropriated f (see Tables 3.1 and 3.2). The max function was one that achieved the minimum

reference value among the candidate functions, as we can see in Tables 3.1 and 3.2, and it was

the selected f to compute the similarity score function.

The same distance space analysis was performed to chose the best configuration for the

source and target images. The minimum average of y was achieved for the configuration showed

in Fig. 3.6 (the original, mirroring, blurring, and mirroring and blurring source and target image

Table 3.4: The same analysis showed in Table 3.3, over iLIDS data set.

Source and target image configurations Average of y
Original 0.6584

Original + Brightness 0.6305

Original + Mirroring 0.6218

Original + Blurring 0.6210

Original + Blurring and mirroring 0.5934

Original + Distortion 0.6012

Original + Brightness + Mirroring 0.5841

Original + Brightness + Blurring 0.5857

Original + Brightness + Blurring and Mirroring 0.5708

Original + Brightness + Distortion 0.5726

Original + Mirroring + Blurring 0.5822

Original + Mirroring + Blurring and Mirroring 0.5681

Original + Mirroring + Distortion 0.5708

Original + Blurring + Blurring and Mirroring 0.5805

Original + Blurring + Distortion 0.5732

Original + Blurring and Mirroring + Distortion 0.5816

Original + Brightness + Mirroring + Blurring 0.5495

Original + Brightness + Mirroring + Blurring and Mirroring 0.5406

Original + Brightness + Mirroring + Distortion 0.5322

Original + Brightness + Blurring + Blurring and Mirroring 0.5386

Original + Brightness + Blurring + Distortion 0.5401

Original + Brightness + Blurring and Mirroring + Distortion 0.5225

Original + Mirroring + Blurring + Blurring and Mirroring 0.5043

Original + Mirroring + Blurring and Mirroring + Distortion 0.5199

Original + Blurring + Blurring and Mirroring + Distortion 0.5208
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Table 3.5: The same analysis showed in Table 3.3, over CUHK01 data set.

Source and target image configurations Average of y
Original 0.6364

Original + Brightness 0.6184

Original + Mirroring 0.6047

Original + Blurring 0.6111

Original + Blurring and mirroring 0.5895

Original + Distortion 0.5875

Original + Brightness + Mirroring 0.5684

Original + Brightness + Blurring 0.5901

Original + Brightness + Blurring and Mirroring 0.5756

Original + Brightness + Distortion 0.5648

Original + Mirroring + Blurring 0.5758

Original + Mirroring + Blurring and Mirroring 0.5594

Original + Mirroring + Distortion 0.5584

Original + Blurring + Blurring and Mirroring 0.5643

Original + Blurring + Distortion 0.5495

Original + Blurring and Mirroring + Distortion 0.5694

Original + Brightness + Mirroring + Blurring 0.5304

Original + Brightness + Mirroring + Blurring and Mirroring 0.5184

Original + Brightness + Mirroring + Distortion 0.5034

Original + Brightness + Blurring + Blurring and Mirroring 0.5064

Original + Brightness + Blurring + Distortion 0.5153

Original + Brightness + Blurring and Mirroring + Distortion 0.4986

Original + Mirroring + Blurring + Blurring and Mirroring 0.4876

Original + Mirroring + Blurring and Mirroring + Distortion 0.4992

Original + Blurring + Blurring and Mirroring + Distortion 0.4978

configuration), as shown in Tables 3.3, 3.4, 3.5 and 3.6. The selected target and source image

configuration generated 16 distances from the matches of each one of the source image with all

the target ones (see Fig. 3.6). Although the tests to choose the appropriate f , and the target and

the source configuration are separated here, they were jointly performed.

Figures 3.7, 3.8, 3.9 and 3.10 show graphic analyses of the distances of the person pairs,

arising from the first selected testing subset over VIPeR, iLIDS, CUHK01 and CUHK03 data

sets, respectively. In Figures 3.7a, 3.8a, 3.9a and 3.10a, the 16 distances among the pairs were

projected into the three principal components by computing the principal component analysis

(PCA) in order to visualize the distributions of the distances. Figures 3.7b, 3.7c and 3.7d over

VIPeR, Figures 3.8b, 3.8c and 3.8d over iLIDs, Figures 3.9b, 3.9c and 3.9d over CUHK01 and

Figures 3.10b, 3.10c and 3.10d over CUHK03, show 1-dimensional projection of the distances

by performing the max, min and mean candidate functions over the original 16-dimensional
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Table 3.6: The same analysis showed in Table 3.3, over CUHK03 data set.

Source and target image configurations Average of y
Original 0.6312

Original + Brightness 0.6132

Original + Mirroring 0.6134

Original + Blurring 0.6075

Original + Blurring and mirroring 0.5822

Original + Distortion 0.5798

Original + Brightness + Mirroring 0.5567

Original + Brightness + Blurring 0.5835

Original + Brightness + Blurring and Mirroring 0.5721

Original + Brightness + Distortion 0.5611

Original + Mirroring + Blurring 0.5634

Original + Mirroring + Blurring and Mirroring 0.5511

Original + Mirroring + Distortion 0.5545

Original + Blurring + Blurring and Mirroring 0.5587

Original + Blurring + Distortion 0.5385

Original + Blurring and Mirroring + Distortion 0.5526

Original + Brightness + Mirroring + Blurring 0.5310

Original + Brightness + Mirroring + Blurring and Mirroring 0.5056

Original + Brightness + Mirroring + Distortion 0.5011

Original + Brightness + Blurring + Blurring and Mirroring 0.5004

Original + Brightness + Blurring + Distortion 0.5101

Original + Brightness + Blurring and Mirroring + Distortion 0.4932

Original + Mirroring + Blurring + Blurring and Mirroring 0.4811

Original + Mirroring + Blurring and Mirroring + Distortion 0.4945

Original + Blurring + Blurring and Mirroring + Distortion 0.5001

distances, respectively. In these figures, blue and red points represent the distances between

pairs of the same and different people, respectively. In Figures 3.7b, 3.8b, 3.9b and 3.10b, it is

worthy noting two characteristics of the max function that can reduce the probability of false

positives and false negative: (i) Overlapping region between red and blue points is smaller than

the intersection region from the other 1-dimensional functions; and (ii) red points distribution

in the regions of high distance values is more evident then those found in the other functions.

3.3 Experimental Analysis

The performance of the framework was evaluated by considering the hybrid network topol-

ogy, CFL configuration training and the comparative evaluation with 16 other state of the arts

methods. All the tests were performed over VIPeR, i-LIDS, CUHK01 and CUHK03 data sets.
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(a) (b)

(c) (d)

Figure 3.8: The same analysis as in Figure 3.7, applied in the iLIDS testing set.

(a) (b)

(c) (d)

Figure 3.9: The same analysis made in Figure 3.7, applied in the CUHK01 testing set.
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(a) (b)

(c) (d)

Figure 3.10: The same analysis as in Figure 3.7, applied in the CUHK03 data set testing set.

3.3.1 Methodology

Here we have followed the same testing protocol of the compared works. Except on the

CUHK03 data set, and for the comparative evaluation with the method in [Chen et al., 2015]

over i-LIDs data set, training and testing sets were selected in same way as in Section 3.2.5

with ten new randomly selected subsets. Chen et al. [Chen et al., 2015] divided the training and

testing set into three groups over i-LIDs data set: (i) 89/39 training/testing people; (ii) 69/50

training/testing people; and (iii) 39/80 training/testing people. In CUHK03, the individuals in

the training/testing sets were split to 1260/100, as it was made in [Li et al., 2014]. As in Section

3.2.5, the tests were repeated 10 times, and the final results were the average values among all

those tests.

3.3.2 Selection of the hybrid network topology and training approach

The first step in the performance assessment of the proposed method is to define the best hybrid

architecture, which is lately used inside the CFL framework. Three types of hybrid network

were experimentally evaluated, considering a general structure depicted in Fig. 3.2a, but varying

the type of network inside: (i) all CNNs, (ii) all DBN-DAEs and (iii) CNN and DBN-DAE (see

Fig. 3.11). The second step is to assess the performance of the overall network depicted in
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(a) (b)

Figure 3.11: Two topology configurations of the hybrid network which differ from the proposed

topology: (a) All the hybrid network comprised of CNN; (b) All the hybrid network comprised

of pre-trained DBN-DAE

Fig. 3.2b by varying its architecture, according to: (i) person and gender transfer learning

(all CFL); (ii) fine-to-coarse learning (FCL) – training gender before person; (iii) only person

transfer learning (Person CFL); (iv) only gender transfer learning (Gender CFL); and, (v) with

only the Siamese deep network (without CFL). For simplicity, we are considering, here forth

the ”without CFL” term as being the CFL training without perform the step 1, 2 and 3 of the

proposed CFL in Figure 3.2b. Figure 3.12 shows that the use of the hybrid network with CNN

and DBN-DAE with full CFL training increases the hit rate, in the top rank of our model, by

11, 13, 21 and 21 percentage points, respectively, over VIPeR, i-LIDS, CUHK01 and CUHK03,

in comparison with the single CNN Siamese deep network without CFL. The use of the hybrid

topology, instead of the network with only CNNs, increases the top rank performance of our

model by at least 7 percentage points over the all data sets. The network pre-trained by full CFL

increases the hit rate of our model, in the top rank performance, by at least 4 percentage points,

in comparison with the network without CFL.

The graphic analysis of the pair distances, accomplished in Section 3.2.5, was also consid-

ered. Figures 3.13, 3.14, 3.15 and 3.16 show the distribution of the distances, projected on the
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Figure 3.12: Comparative evaluation of different network topology and configurations: (i) CNN

and DBN-DAE, (ii) all the networks comprised of DBN-DAEs, and (iii) all the networks com-

prised of CNNs. This comparative evaluation was done in the four data sets: VIPeR, i-LIDS,

CUHK01 and CUHK03. Black, yellow, blue, red and green bars depict the network perfor-

mance: With full CFL, FCL, with only knowledge about person, with only knowledge about

gender and without CFL, respectively (see the legend in the top right of the figure).
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(a) Hybrid network comprised of CNN and DBN-

DAE, trained with full CFL

(b) Hybrid network comprised of CNN and DBN-

DAE, trained without CFL

(c) All the hybrid network comprised of CNN,

trained with full CFL

(d) All the hybrid network comprised of CNN,

trained without CFL

Figure 3.13: Distance distributions over VIPeR data set, projected into the first three principal

components, of four network topology and training configurations.

(a) Hybrid network comprised of CNN and DBN-

DAE, trained with full CFL

(b) Hybrid network comprised of CNN and DBN-

DAE, trained without CFL

(c) All the hybrid network comprised of CNN,

trained with full CFL

(d) All the hybrid network comprised of CNN,

trained without CFL

Figure 3.14: The same plot showed in Fig. 3.13 over iLIDS data set
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(a) Hybrid network comprised of CNN and DBN-

DAE, trained with full CFL

(b) Hybrid network comprised of CNN and DBN-

DAE, trained without CFL

(c) All the hybrid network comprised of CNN,

trained with full CFL

(d) All the hybrid network comprised of CNN,

trained without CFL

Figure 3.15: The same plot showed in Fig. 3.13, over CUHK01 data set.

(a) Hybrid network comprised of CNN and DBN-

DAE, trained with full CFL

(b) Hybrid network comprised of CNN and DBN-

DAE, trained without CFL

(c) All the hybrid network comprised of CNN,

trained with full CFL

(d) All the hybrid network comprised of CNN,

trained without CFL

Figure 3.16: The same plot showed in Fig. 3.13 over CUHK03 data set

three first principal components, considering four network topology and training configurations:

(i) Hybrid network comprised of CNN and DBN-DAE, trained with full CFL (our best config-
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(a) Results on VIPeR dataset

(b) Results on i-LIDS dataset

Figure 3.17: Cumulative curves of our CFL against other methods over VIPeR and i-LIDS

datasets

uration); (ii) Hybrid network comprised of CNN and DBN-DAE trained without CFL (only the

siamese network training); (iii) All the hybrid network comprised of CNN, trained with full

CFL; and (iv) all the hybrid network comprised of CNN, trained without CFL. As in the Sec-

tion 3.2.5, we choose the first selected testing subset to conduct this analysis. It is noteworthy

that the distance between the center of mass of the red and blue point cloud is the greatest in

our best topology and training configuration. This latter observation gives a hint about why

our best framework configuration achieve the best performance. Table 3.7 and 3.8 show the

average value among ten values of y, computed from each selected testing set, for each network

topology and training configurations. Each one of the ten values was computed with the max

function. The minimum average values, presented in Table 3.7 and 3.8, were achieved with our

best network configuration.

Table 3.9 shows the number of the Siamese training iterations just after reaching a mean

value, e, of a loss function, in five training configurations with our best hybrid network topology:

(i) Full CFL training; (ii) FCL training; (iii) Only person network training before Siamese; (iv)

Only gender network training before Siamese; and (v) Only siamese network training (without

CFL). The number of iterations was the lowest one when the network was trained with full CFL.
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Table 3.7: Hybrid network topology and training configuration performance measured by the

mean value among ten values of y. Each one of the ten value was computed by the max function

over ten selected training subsets, on VIPeR and iLIDS data sets.

VIPeR data set

Hybrid network topology and training configuration Average of y
CNN + DBN DAE with full CFL 0.5126

CNN + DBN DAE with FCL 0.5409

CNN + DBN DAE with only person CFL 0.5348

CNN + DBN DAE with only gender CFL 0.5392

CNN + DBN DAE without CFL 0.5482

All hybrid network comprised of DBN DAE with full CFL 0.7194

All hybrid network comprised of DBN DAE with FCL 0.7248

All hybrid network comprised of DBN DAE with only person CFL 0.7215

All hybrid network comprised of DBN DAE with only gender CFL 0.7267

All hybrid network comprised of DBN DAE without CFL 0.7344

All hybrid network comprised of CNN with full CFL 0.5894

All hybrid network comprised of CNN with FCL 0.6245

All hybrid network comprised of CNN with only person CFL 0.5921

All hybrid network comprised of CNN with only gender CFL 0.6247

All hybrid network comprised of CNN without CFL 0.6401

iLIDS data set

Hybrid network topology and training configuration Average of y
CNN + DBN DAE with full CFL 0.5024

CNN + DBN DAE with FCL 0.5205

CNN + DBN DAE with only person CFL 0.5182

CNN + DBN DAE with only gender CFL 0.5195

CNN + DBN DAE without CFL 0.5310

All hybrid network comprised of DBN DAE with full CFL 0.6314

All hybrid network comprised of DBN DAE with FCL 0.6515

All hybrid network comprised of DBN DAE with only person CFL 0.6443

All hybrid network comprised of DBN DAE with only gender CFL 0.6478

All hybrid network comprised of DBN DAE without CFL 0.6673

All hybrid network comprised of CNN with full CFL 0.5100

All hybrid network comprised of CNN with FCL 0.5422

All hybrid network comprised of CNN with only person CFL 0.5312

All hybrid network comprised of CNN with only gender CFL 0.5343

All hybrid network comprised of CNN without CFL 0.5495

3.3.3 Comparative performance evaluation

After choosing the best overall architecture (illustrated in Fig. 3.2b), the performance of our

proposed framework was compared with 16 state-of-the-art methods: Improved Deep Met-
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Table 3.8: The same performance measure as in Table 3.7, over CUHK01 and CUHK03 data

sets.

CUHK01 data set

Hybrid network topology and training configuration Average of y
CNN + DBN DAE with full CFL 0.5013

CNN + DBN DAE with FCL 0.5399

CNN + DBN DAE with only person CFL 0.5288

CNN + DBN DAE with only gender CFL 0.5297

CNN + DBN DAE without CFL 0.5482

All hybrid network comprised of DBN DAE with full CFL 0.6992

All hybrid network comprised of DBN DAE with FCL 0.7164

All hybrid network comprised of DBN DAE with only person CFL 0.7199

All hybrid network comprised of DBN DAE with only gender CFL 0.7145

All hybrid network comprised of DBN DAE without CFL 0.7246

All hybrid network comprised of CNN with full CFL 0.5786

All hybrid network comprised of CNN with FCL 0.6137

All hybrid network comprised of CNN with only person CFL 0.5893

All hybrid network comprised of CNN with only gender CFL 0.6134

All hybrid network comprised of CNN without CFL 0.6422

CUHK03 data set

Hybrid network topology and training configuration Average of y
CNN + DBN DAE with full CFL 0.5003

CNN + DBN DAE with FCL 0.5197

CNN + DBN DAE with only person CFL 0.5135

CNN + DBN DAE with only gender CFL 0.5178

CNN + DBN DAE without CFL 0.5299

All hybrid network comprised of DBN DAE with full CFL 0.6213

All hybrid network comprised of DBN DAE with FCL 0.6463

All hybrid network comprised of DBN DAE with only person CFL 0.6421

All hybrid network comprised of DBN DAE with only gender CFL 0.6456

All hybrid network comprised of DBN DAE without CFL 0.6587

All hybrid network comprised of CNN with full CFL 0.5122

All hybrid network comprised of CNN with FCL 0.5356

All hybrid network comprised of CNN with only person CFL 0.5223

All hybrid network comprised of CNN with only gender CFL 0.5343

All hybrid network comprised of CNN without CFL 0.5464

ric Learning (DML) [Yi et al., 2014a], Semantic Color Names and Rankboost (SCNR) [Kuo

et al., 2013], Symmetric-driven accumulation of local features (SDALF) [Bazzani et al., 2013],

Domain Transfer support vector Ranking (DTR) [Ma et al., 2013], Improved Deep Learning

Architecture (IDLA) [Ahmed et al., 2015], Locally Aligned Feature Transformation (LAFT)
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Table 3.9: Number of training iterations in the Siamese network, just after reaching a mean

value, e, of the loss function (e = 10−3)

VIPeR data set

Training configuration Number of iterations

Full CFL training 7520

FCL training 12030

Only person network training before siamese 13522

Only gender network training before siamese 14050

Only siamese network training (without CFL) 18423

i-LIDS data set

Training configuration Number of iterations

Full CFL training 8232

FCL training 12234

Only person network training before siamese 13722

Only gender network training before siamese 15225

Only siamese network training (without CFL) 21423

CUHK01 data set

Training configuration Number of iterations

Full CFL training 7124

FCL training 13243

Only person network training before siamese 14343

Only gender network training before siamese 14877

Only siamese network training (without CFL) 19356

CUHK03 data set

Training configuration Number of iterations

Full CFL training 8542

FCL training 13454

Only person network training before siamese 13723

Only gender network training before siamese 15562

Only siamese network training (without CFL) 20023

[Li and Wang, 2013], Relaxed Pairwise Learned Metric (RPLM) [Hirzer et al., 2012], Local

Maximal Occurrence Representation and Metric Learning (LOMO+XQDA) [Liao et al., 2015],

Kernel-based Metric Learning (KFLDA) [Xiong et al., 2014], Deep Feature Learning with Rel-

ative Distance Comparison (DFLRDC) [Ding et al., 2015], Large Margin Nearest Neighbor

(LMNN) [Weinberger et al., 2006], Metric Learning by Collapsing Classes (MCC) [Globerson

and Roweis, 2005], Filter Paring Neural Network (FPNN) [Li et al., 2014], Relevance metric

learning by exploiting listwise similarities (RMLLC) [Chen et al., 2015], Learning to rank with

metric ensembles (CMC) [Paisitkriangkrai et al., 2015] and Kernelized saliency-based through

multiple metric learning (KEPLER) [Martinel et al., 2015].
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Table 3.10: Comparative analysis of our CFL on VIPeR data set. Each value corresponds to a

hit rate score of a method in a specific rank (*rank 14 instead of 15, for IDLA).

❛
❛

❛
❛
❛
❛
❛
❛
❛
❛

Method

Rank
1 5 10 15* 20 25 30 50

Our 0.4494 0.7500 0.8576 0.9082 0.9399 0.9589 0.9715 0.9968

CMC 0.4590 0.7750 0.8890 - 0.9580 - - 0.9950

improved DML 0.3440 0.6215 0.7589 0.8256 0.8722 0.8965 0.9228 0.9652

SCNR 0.2392 0.4557 0.5623 0.6266 0.6873 0.7278 0.7880 0.8671

SDALF 0.1987 0.3889 0.4937 0.5759 0.6573 0.7089 - -

DTR 0.1345 - 0.5158 - 0.7468 - - 0.9272

IDLA 0.3481 0.6424 0.7627 0.8038 - - - -

LAFT 0.2960 - 0.6931 - - 0.8870 - 0.9680

RPML 0.2700 - 0.6900 - 0.8300 - - 0.9500

LOMO+XQDA 0.4000 - 0.8051 - - 0.9108 - -

KLFDA 0.3233 0.6578 0.7972 0.8699 0.9095 0.9346 - -

KEPLER 0.4241 - 0.8237 - 0.9070 - - 0.9706

RMLLC 0.3127 0.6212 0.7531 - 0.8671 - - -

Table 3.11: Comparative analysis of our CFL on i-LIDS data set. Each value corresponds to a

hit rate score of a method in a specific rank.

❛
❛
❛
❛
❛
❛
❛

❛
❛
❛

Method

Rank
1 5 10 15 20 25 30

Our 0.5333 0.7000 0.7833 0.8333 0.8832 0.9333 0.9500

CMC 0.5034 - - - - - -

DFLRDC 0.5210 0.6820 0.7800 0.8360 0.8880 - 0.9500

LMNN 0.2800 0.5380 0.6610 0.7550 0.8230 - 0.9100

MCC 0.3130 0.5930 0.7560 0.8400 0.8830 - 0.9500

KLFDA 0.3802 0.6512 0.7738 0.8440 0.8919 0.9267 -

SDALF 0.2880 0.4778 0.5696 0.6424 0.6804 0.7405 -

Table 3.12: Comparative analysis of our CFL on CUHK01 and CUHK03 data sets.

❛
❛
❛
❛
❛

❛
❛

❛
❛
❛

Method

Data set
CUHK01 CUHK03

❛
❛
❛
❛
❛
❛

❛
❛

❛
❛

Method

Data set
CUHK01 CUHK03

Our 0.6351 0.6230 IDLA 0.4753 0.5474

CMC 0.5340 0.6210 FPNN 0.2787 0.2065

SDALF 0.1033 - LOMO+XQDA 0.6321 0.5230

DTR 0.0804 - LMNN 0.1598 -
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Table 3.13: Comparative analysis between our CFL and RMLLC method Chen et al. [2015] on

i-LIDs in multiple training/testing data samples.

Methods
Number of training/testing people: 89/30

Rank=1 Rank=5 Rank=10 Rank=20

Our 0.5667 0.8700 0.9333 0.9633

RMLLC 0.5653 0.8448 0.9316 0.9873

Methods
Number of training/testing people: 69/50

Rank=1 Rank=5 Rank=10 Rank=20

Our 0.4660 0.7440 0.8420 0.9200

RMLLC 0.4653 0.7301 0.8457 0.9345

Methods
Number of training/testing people: 39/80

Rank=1 Rank=5 Rank=10 Rank=20

Our 0.3525 0.5862 0.7263 0.8513

RMLLC 0.3513 0.5969 0.7257 0.8523

In Figure 3.17, it is noteworthy that our CFL approach has demonstrated superior perfor-

mance on i-LIDS and it was competitive on VIPeR, against all compared methods. Tables 3.10

and 3.11 summarize the discrete values of the cumulative curves of our CFL and other methods

on VIPeR and i-LIDs, respectively. On VIPeR, our method achieved the second best perfor-

mance in the ranks equals to or below 30 (CMC method achieved the best performance). On

i-LIDs, our method was superior at almost all ranks, except in the ranks 15 an 20, where our

method showed a slightly lower performance than KLDFA. The best performance in the top

rank was achieved by our method on CUHK01 and CUHK03 data sets (see Table 3.12).

Table 3.13 shows a different protocol on i-LIDs, followed by the RMLLC method Chen

et al. [2015]. When compared to ours, we obtained superior performance at least in top rank.

3.4 Closure

In this chapter, a framework to learn discriminative and trainable features for the problem of

person re-identification was proposed. From the philosophical point-of-view, the framework

tries to mimic the human learning process. The basic idea was to learn features from generic

to specific concepts. From the technical point-of-view, the topology of the framework was

comprised of three CNN and a DBN-DAE. The local features were learned by the CNN and the

global ones were learned by the DBN-DAE, during four framework learning steps: 1 - DBN-

DAE training, to leaning global features; 2 - Person classification; 3 - Gender classification; and

4 - Person re-identification. From one step to the next one, the learning was transferred by the

machine transfer learning technique. This machine learning approach was called CFL.
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The experimental analysis shows the best performance of our CFL training approach and

network topology, in comparison with other topology and training configurations. Also, com-

parison of our framework with 16 other state-of-art methods shows that our proposed ap-

proach was competitive over ViPER, obtaining the best performance over i-LIDS, CUHK01

and CUHK03 data sets.
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4.1 Introduction

According to Tuzel et al. [2006], the joint representation of several different features through

histograms is exponential with the number of features. Instead of a joint distribution of the

features, Tuzel et al. [2006] proposed a new way to integrate features in a reduced dimensional

space by using covariance matrices. Covariance descriptors are derived from a set of image

statistics, computed inside image regions, after applying a set of filters. In [Tuzel et al., 2006],

nine filters were applied in a input image, generating nine image maps, as illustrated in Fig. 4.1.

After carefully observing Fig. 4.1, it is possible to find a close similarity between the image

maps and the feature maps – this latter one presented in the intermediate layers of a CNN.

Although with similar structures, the way of extracting each type of map is different. While

image maps are computed from previously designed convolutional filters, feature maps of a
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CNN are achieved in a trainable way (see Section 2.2.1). This characterizes the feature maps

as adaptive to the domain of the problem. Fixed filters, as computed in the image maps in Fig.

4.1, can be suitable for a particular problem, while not efficient for the others.

Considering the adaptive nature of the feature maps of a CNN, we propose to use the co-

variance descriptors over the intermediate CNN layers. The hypothesis is that by considering

adaptive maps, it is possible to increase the discriminative power of covariance descriptors. We

called those descriptors by convolutional covariance features (CCF). The proposed CCF, their

integration with CFL features and their performance analysis will be presented in the remainder

of this chapter.

4.2 Convolutional covariance features

The idea of the covariance descriptors is not only to reduce the image dimension, but also to

provide a descriptor robust to lighting change and nonrigid motion. A d×d region covariance

descriptor, CR, in a image map region, R, is extracted as

CR =
1

n− 1

n
∑

k=1

(zk − µ)(zk − µ)T , (4.1)

where {zk}k=1..n is the d-dimensional feature points, and µ is the d-dimensional vector, pro-

viding the means of each feature map region. The kth z and its jth element is a point into the

region R of the jth image feature, given by

{Fj(x, y)}j=1..d = φ(I, x, y) , (4.2)

where φ can be any mapping function, such as intensity, color, gradient and filter responses of

nth derivatives of the image pixels (see Fig. 4.1). Nine mapping functions were used in [Tuzel

et al., 2006], defined as

F(x,y) =
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(4.3)

where R, G and B are RGB color values, I denotes color intensity, and x and y are pixel

coordinates. Figure 4.1 shows the visual representation of F.

While the number of image maps proposed in [Tuzel et al., 2006] is nine, the number of
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Figure 4.1: Original covariance descriptor extraction, as described in [Tuzel et al., 2006]. Each

image represents an image map.

feature maps is 64, located in the intermediate CNN layers of the hybrid network (see Fig. 4.2).

A feature map in an intermediate CNN layer is similar to an image map in F. Figure 4.3 depicts

the scheme of extraction of the CCF, which is comprised of a set of local covariance matrices

computed over R regions of a feature map, according to Eq. 4.1. The size of a covariance matrix

in the CCF is 64×64, since there are 64 feature maps in each intermediate layer. Examples of R

regions are depicted by the green boxes in the left upper and right down corners of the zoomed

area in Fig. 4.3.

A total of twelve CCF are computed on the three CNN sub-net of the hybrid network:

Head, Torso and Legs, over each CNN layer – C1, S2, C3 and S4 (see Fig. 4.2 for a complete

description of the CNN layer). Each local covariance matrix, CR, is extracted in an 8×8 region;

In turn, each region is overlapped to its neighbors by 50% of the region size in horizontal and

vertical directions. A total of 121 CR on C1, 25 on S2 and C3, and 4 on S4 layers, counting a

total of 175 local covariance matrix for each CNN body part subnet. Algorithm 1 describes how

the CCF are extracted step-by-step, starting with the hybrid network CFL training approach.
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Figure 4.2: Outline of our proposed CCF. Twelve CCF (green boxes) are extracted from each

CNN layer, after CFL training.

Figure 4.3: CCF extraction. The zoomed region depicts how the CCF are extracted. The CCF

are comprised of a set of covariance matrices, each of them extracted in a region R (3D green

rectangle) over the feature maps of a convolutional layer.

4.3 Integration of CCF and flat features

Since CCF are only extracted from the three body part subnets of the hybrid network, CCF do

not take into account the global features from the top encoder layer of the DBN-DAE, and the
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Algorithm 1 Extracting the CCF

1: procedure CFL

2: Train the DBN-DAE (see Section 3.2.1)

3: Form the hybrid network NET with three human body CNN sub-nets and the encode

layer of the DBN-DAE, according to Fig. 4.2

4: Train NET with the person network (see Step 1 in Fig. 3.2b)

5: Train NET with the gender network (see Step 2 in Fig. 3.2b)

6: Create the Siamese Network (SN ) with two identical NET s (see Fig. 3.2b)

7: Train the Siamese Network (SN ) (see Step 3 in Fig. 3.2b)

8: return SN
9: end procedure

10: procedure CCFEXTRATION(SN )

11: CCFset1← {} ⊲ Store all the CCF extracted from the first NET of SN
12: CCFset2← {} ⊲ Store all the CCF extracted from the second NET of SN
13: for each NET ∈ SN do

14: for each CNN sub-net S ∈ NET do

15: for each CNN layer c ∈ S do

16: M ← A set of 64 feature maps of c
17: B ← A set of 8×8 overlapped regions R extracted from M
18: CCF← {} ⊲ Current CCF (A set of local covariance matrices)

19: for each region R ∈ B do

20: Compute CR into the region R by Equation 4.1

21: Include CR in the CCF

22: end for

23: Include CCF into CCFset1 for the first NET or CCFset2 for the second one

24: end for

25: end for

26: end for

27: return CCFset1, CCFset2

28: end procedure

local features from the top layer of CNN subnets. That is because the DBN-DAE is comprised of

full-connected layers, and there is no way to extract covariance matrices from them. Therefore

a way of integration of CCF and the flat features is necessary to be conceived in order to keep

the features not covered by the CCF. This integration can not be done in a vector space, since

CCF lie in a Riemann space, while the flat features are in an Euclidean space. Then, we propose

a method to integrate the CCF and the flat features, which follows the steps (depicted in Fig.

4.4): Four pairs of source and target images (each image in the pair contains the original data

set image and three noised ones) were used to compute the distances of the CCF and the flat

features among the two people in the pair to be evaluated. A total of 16 image pairs, arising

from the combination of the source images and the target one, produces 16 final CCF and 16



62 Chapter 4. Wrapping CFL features into covariance matrices

Figure 4.4: Integration of the CCF and flat features. Four source and target images are used

to evaluate the similarity between two people. CCF and flat features of the 16 image pairs

are extracted by the Siamese Network. For each of those 16 pairs, one final CCF and one

Euclidean distance is computed. A final CCF distance is the mean of k covariance distances

computed between two covariance matrices from the CCF pairs. The final similarity score is

the maximum value among those 32 distances.

Euclidean distances. The final 16 CCF are achieved by computing the mean of the k covariance

distances of each pair of initial CCF distance, according to Fig. 4.4. Euclidean distances are

computed among each pair of flat features (source and target images). As in CFL framework, the

final similarity score is the maximum value among the 16 final CCF and 16 euclidean distances

(according demonstration in the last chapter).

The function proposed in [Förstner and Moonen, 2003] was used to compute the distance,



4.4. Experimental analysis 63

ρ(.), between two covariance matrices of a pair of CCF, defined as

ρ(C1,C2) =

√

√

√

√

n
∑

i=1

ln2 λi(C1,C2) , (4.4)

where C1 and C2 denotes two covariance matrices, {λi(C1,C2)}i=1..n are the generalized

eigenvalues of C1 and C2 computed by

λiC1xi −C2xi = 0 i = 1..d , (4.5)

where xi 6= 0 are the generalized eigenvectors.

The Algorithm 2 describes in details how our proposed feature integration was carried out.

4.4 Experimental analysis

Although the analysis in the previous chapter has found the best hybrid network topology and

CFL training configuration, the best configuration can be changed by the addition of the CCF.

Therefore, the experiments performed in the previous chapter are replicated here, taking into

account the CCF. As in the last chapter, a similar comparative analysis with other state-of-the-

art methods was also done here, adding two new methods found in [Zeng et al., 2015] and

[Hirzer et al., 2011]. Both of them use covariance descriptors to solve the problem of person

re-identification. The addition of these two new methods was useful to present the improvement

of the CCF in comparison with covariance descriptors based methods.

4.4.1 Selection of the hybrid network topology, CFL and CCF

As in Section 3.3.2, two steps in the performance assessment of the proposed CFL were fol-

lowed: (i) Analysis of the hybrid network architecture, and (ii) Analysis of the CFL approach.

While including the proposed CCF, three more performance assessments were added on the pre-

vious combinations: (i) Using only flat features (the same configuration of CFL performance

evaluation), (ii) using only CCF, and (iii) using the integration of the flat and CCF features.

As in Fig. 3.12, the best result is found by considering the intersection between the columns

in each plot of each data set and the rows containing the type of deep architecture inside the

hybrid network (see Fig. 4.5). Bars into the plots correspond to the performance of the type of

transfer learning approach, considering: (i) CFL, (ii) FCL, (iii) only person, (iv) only gender

and (v) only Siamese network, exactly as in the previous analysis accomplished.
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Figure 4.5: Comparative evaluation of different network topology and feature configurations.

Plots on the top show results using only CCF, while plots on the bottom shows integration of flat

features and CCF. All results are over VIPeR, i-LIDS, CUHK01 and CUHK03 data sets. Black,

yellow, blue, red and green bars depict the network performance: With full CFL, FCL, with

only knowledge about person, with only knowledge about gender and with only the Siamese

network (without transfer learning), respectively.
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Algorithm 2 Computing the similarity score between two people

1: procedure COMPUTESIMILARITY(Is,It,SN ) ⊲ Is and It are the 3D image source and

target, respectively, and SN is a trained Siamese Network.

2: Create a set of image source Isset containing Is and three noised version of Is (see Fig.

4.4)

3: Create a set of image targt Itset containing It and three noised version of It (see Fig.

4.4)

4: FCDset ← {} ⊲ The set of final CCF distances

5: EDset ← {} ⊲ The set of Euclidean distances

6: for each image is ∈ Isset do

7: for each image it ∈ Itset do

8: Perform the feedforward algorithm in the SN with the Is and It inputs

9: [CCFset1, CCFset2]← CCFExtration(SN ) (see Algorithm 1)

10: RD ← {} ⊲ The set of local covariance distances

11: for each CCF1 ∈ CCFset1 and CCF2 ∈ CCFset2 do

12: for each covariance matrix CR1
∈ CCF1 and CR1

∈ CCF2 do

13: Compute the distance ρ between CR1
and CR1

by Equation 4.4

14: Include ρ into RD
15: end for

16: end for

17: FCD ← mean(RD)

18: Include FCD into FCDset

19: Compute the Euclidean distance ED between the flat features of the SN
20: Include ED into EDset

21: end for

22: end for

23: FS ← max(EDset,FCDset) ⊲ Final similarity score (see Fig. 4.4)

24: return FS
25: end procedure

The highest performance is achieved when CNN and DBN-DAE are used as the topology

of the hybrid deep network inside a full CFL strategy, and considering the integration

of the CCF and the flat features (black bars for these configurations contain the greatest re-

sults of top 1 rank). Results of the hybrid network shows that the network composed by CNN

and DBN-DAE with full CFL improves the performance of the method, at least, in 6, 8, 14

and 14 percentage points on VIPeR, i-LIDs, CUHK01 and CUHK03 data sets, respectively,

in comparison with the network with only CNN (type of deep network used in all other deep

learning-based methods). It is also noteworthy that the full architecture achieved, at least, a

performance improvement of 6, 4, 8 and 8 percentage points in comparison with the Siamese

without transfer learning strategy, on VIPeR, i-LIDS, CUHK01 and CUHK03 data sets, re-
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Table 4.1: Analysis of the CCF and flat features integration.

Features

VIPeR dataset

Rank=1 Rank=5 Rank=10 Rank=15 Rank=20 Rank=25 Rank=30

Flat 0.4494 0.7500 0.8576 0.9082 0.9399 0.9589 0.9715

Covariance 0.4526 0.7660 0.8640 0.9210 0.9687 0.9781 0.9843

Both 0.4718 0.7884 0.8708 0.9338 0.9559 0.9813 0.9947

Features

i-LIDS dataset

Rank=1 Rank=5 Rank=10 Rank=15 Rank=20 Rank=25 Rank=30

Flat 0.5333 0.7000 0.7833 0.8333 0.8832 0.9333 0.9500

Covariance 0.5417 0.7000 0.8085 0.8333 0.9000 0.9417 0.9752

Both 0.5585 0.7168 0.8085 0.8771 0.9255 0.9285 0.9752

Features

CUHK01 dataset

Rank=1 Rank=5 Rank=10 Rank=15 Rank=20 Rank=25 Rank=30

Flat 0.6351 0.7785 0.8797 0.9241 0.9557 0.9778 0.9905

Covariance 0.6365 0.7742 0.8733 0.9275 0.9577 0.9751 0.9943

Both 0.6385 0.7800 0.8895 0.9371 0.9633 0.9800 0.9975

Features

CUHK03 dataset

Rank=1 Rank=5 Rank=10 Rank=15 Rank=20 Rank=25 Rank=30

Flat 0.6230 0.7675 0.8733 0.9198 0.9495 0.9705 0.9899

Covariance 0.6294 0.7785 0.8798 0.9133 0.9445 0.9788 0.9922

Both 0.6394 0.7833 0.8845 0.9377 0.9605 0.9833 0.9965

spectively. Table 4.1 shows that by using the integration of the CCF and the flat features, the

performance gain reaches more than 2 percentage points, in the experiments over VIPeR and

i-LIDS, and more than 1 percentage point over CUHK01 and CUHK03 data sets, in comparison

with the use of only flat features. Also in Table 4.1, results show that the best performance of

the proposed feature integration was obtained until at least top 15 over all the evaluated data

sets.

4.4.2 Comparative evaluation

Here, we followed the same comparative evaluation from Section 3.3.3, including two new

methods, based on covariance descriptors: Hybrid Spatiogram and Covariance Descriptor

(HSCD) [Zeng et al., 2015]; and Descriptive and Discriminative Classification (DDC) [Hirzer

et al., 2011].

In Figure 4.6, it is noteworthy that our complete approach (CFL with CCF integration) has

consistently demonstrated superior performance on VIPeR and i-LIDS data sets, against all

compared methods. On VIPeR, our method obtained the best performance at all ranks, except

in rank 10 and 20, against all compared methods (see Table 4.2). On i-LIDs, our method was
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(a) Results on VIPeR dataset

(b) Results on i-LIDS dataset

Figure 4.6: Cumulative curves of the methods over VIPeR and i-LIDS datasets

Table 4.2: Comparative analysis on VIPeR data set. Each value corresponds to a hit rate score

of a method in a specific rank (rank 14 instead of 15, for IDLA).

❛
❛
❛
❛
❛
❛
❛
❛
❛
❛

Method

Rank
1 5 10 15* 20 25 30 50

Our 0.4718 0.7884 0.8708 0.9338 0.9559 0.9813 0.9947 1

CMC 0.4590 0.7750 0.8890 - 0.9580 - - 0.9950

improved DML 0.3440 0.6215 0.7589 0.8256 0.8722 0.8965 0.9228 0.9652

SCNR 0.2392 0.4557 0.5623 0.6266 0.6873 0.7278 0.7880 0.8671

SDALF 0.1987 0.3889 0.4937 0.5759 0.6573 0.7089 - -

DTR 0.1345 - 0.5158 - 0.7468 - - 0.9272

IDLA 0.3481 0.6424 0.7627 0.8038 - - - -

LAFT 0.2960 - 0.6931 - - 0.8870 - 0.9680

RPML 0.2700 - 0.6900 - 0.8300 - - 0.9500

LOMO+XQDA 0.4000 - 0.8051 - - 0.9108 - -

KLFDA 0.3233 0.6578 0.7972 0.8699 0.9095 0.9346 - -

KEPLER 0.4241 - 0.8237 - 0.9070 - - 0.9706

RMLLC 0.3127 0.6212 0.7531 - 0.8671 - - -

DDC 0.1900 - 0.5200 - - 0.6900 - 0.8000

HSCD 0.3120 - 0.8650 - - - - -
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Table 4.3: Comparative analysis over i-LIDS data set. Each value corresponds to a hit rate score

of a method in a specific rank.

❛
❛
❛
❛
❛
❛
❛
❛
❛
❛

Method

Rank
1 5 10 15 20 25 30

our 0.5585 0.7168 0.8085 0.8771 0.9255 0.9585 0.9752

CMC [Paisitkriangkrai et al., 2015] 0.5034 - - - - - -

DFLRDC 0.5210 0.6820 0.7800 0.8360 0.8880 - 0.9500

LMNN 0.2800 0.5380 0.6610 0.7550 0.8230 - 0.9100

MCC 0.3130 0.5930 0.7560 0.8400 0.8830 - 0.9500

KLFDA 0.3802 0.6512 0.7738 0.8440 0.8919 0.9267 -

SDALF 0.2880 0.4778 0.5696 0.6424 0.6804 0.7405 -

HSCD 0.3900 - 0.6600 - - - -

Table 4.4: Top rank comparative analysis on CUHK01 and CUHK03 data set.

❛
❛
❛
❛
❛
❛
❛
❛
❛
❛

Method

Data set
CUHK01 CUHK03

Our 0.6385 0.6394

CMC 0.5340 0.6210

SDALF 0.1033 -

DTR 0.0804 -

IDLA 0.4753 0.5474

FPNN 0.2787 0.2065

LOMO+XQDA 0.6321 0.5230

LMNN 0.1598 -

Table 4.5: Comparative analysis between our method and RMLLC method over i-LIDs data set

in multiples training/testing data samples.

Methods
Number of training/testing persons: 89/30

Rank=1 Rank=5 Rank=10 Rank=20

Our 0.5775 0.8892 0.9484 0.9788

RMLLC 0.5653 0.8448 0.9316 0.9873

Methods
Number of training/testing persons: 69/50

Rank=1 Rank=5 Rank=10 Rank=20

Our 0.4799 0.7622 0.8575 0.9384

RMLLC 0.4653 0.7301 0.8457 0.9345

Methods
Number of training/testing persons: 39/80

Rank=1 Rank=5 Rank=10 Rank=20

Our 0.3674 0.5945 0.7362 0.8677

RMLLC 0.3513 0.5969 0.7257 0.8523
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superior at all ranks (see Table 4.3), as well as, on CUHK01 and CUHK03 data sets (see Table

4.4). Even when comparing our method with covariance-based methods in Tables 4.2 and 4.3,

our method showed the best performance against methods found in Zeng et al. [2015] and Hirzer

et al. [2011].

When the RMLLC method is compared to ours, we obtained superior performance at all

ranks, except in rank 20, when considering a training/testing rate of 89/30, where our method

looses by less than 1 percentage point (see Table 4.5).

4.5 Closure

This chapter showed that the features of CNN intermediate layers can also be useful for the data

representation. Noting the similarities among the structure of a CNN intermediate layers and the

image maps of the covariance descriptors, we proposed an adaptive covariance descriptor, called

CCF. CCF were extracted from the CNN intermediate layers of the proposed hybrid network in

order to improve the prediction performance of the person re-identification. Since CCF do not

take into account the person global features from the top of the DBN-DAE and the local features

from the top of the CNN layer, an integration of the CCF and the flat features was proposed.

CCF and their integration with the flat features, learned during the CFL training, have improved

the performance of our framework in all compared data sets. This new way to extract the

covariance descriptors achieved the best performance in comparison with the state-of-the-arts

methods that use conventional covariance descriptors for person re-identification. The reason

for the highest performance with CCF seems to be due to their adaptive characteristics, since

CCF are extracted from the trained convolutional layers of the CNN.





Part III

Closure





CHAPTER 5

Discussion and Conclusion

In this work, a novel coarse-to-fine deep learning approach has been proposed to learn discrim-

inative features for person re-identification. CFL deep-based framework relies on acquiring the

necessary knowledge to identify a person by transferring the learning achieved in each step of

the network training. CCF and its integration with deep features have also been proposed. The

integration relies on a novel way of applying the covariance descriptors over the convolutional

layers of a deep hybrid network, as well as assembling flat features (in vector space) with CCF

(in Riemann space). In this earlier stage of the method conception, the idea was to implement,

to evaluate and to raise all the necessary information about the characteristics of the proposed

method in isolation. Real-time implementation, as well as the evaluation of the method in video,

were not covered.

Although a quite superior top 1 performance over 18 other state-of-the-art methods, it is

noteworthy that the application of the method in real scenarios can take time with other issues

being faced. Also, without measuring processing time or evaluating complexity of the algo-

rithms involved in the CFL framework, it is observable that some issues must be dealt, such

as: the way that the covariances are computed, indexing and retrieving the target image data

sets (which lately can increase exponentially during a real-time application), time-consuption

during the prediction phase due to the distance space measurement and parallelism in process-

ing the convolutional deep features. All these issues were open in our work, but can be further

investigated in future researches.

The training stage of CFL framework was carried out on a multi-core graphical processing

unit (GPU) using CAFFE framework [Jia et al., 2014]. However computer memory was a

bottleneck, limiting the number of training samples. This limitation definitely did not lead the

performance of CFL to all its potential. This situation can be overcame by exploiting multiple

parallel machines or clusters.

The complete accomplishment of a person re-id system demands a previous detection meth-

ods. In our work, detection was considered perfect by using cropped images for performance

assessment. Howeve,r in real applications, it will be necessary to include a previous detection

stage that ultimately uses context-aware or semantic information to deal with the wilderness of

situations in real environments. Some works that exploit semantic or context-aware information
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by scene element detection in order to help object recognition can be found in [Tavanai et al.,

2014], [Goferman et al., 2012], [Vu et al., 2015]. Long time person re-id was not also tackled

in our work. This means that we should cope with clothes and other changes of the people in

the scenario. This can be subject to another study in the future.

Even not considering what was not exploited in our work, there are some points that have

place to be improved in CFL. First, CCF can be incorporated into the CNN training by al-

lowing the covariance learning inside network training with Riemannian loss function. This

might result in weights optimized taking into consideration the covariance matrices. In other

word, network parameters are learnt along with the covariance matrices, and not before, as

currently done. CFL parameters were chosen by relying in other works. However, by evaluat-

ing parameter space, one can find an optimal parameter configuration, increasing identification

performance.

Finally, although our work has achieved the best result in top 1 rank against other 18 state-

of-the-art works, there are open issues that can be exploited in the method itself or in a real-time

application of the proposed method. Also, one can investigate a way to adapt the proposed CFL

for other Computer Vision related problems.
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