
Universidade Federal da Bahia

Universidade Estadual de Feira de Santana

DISSERTAÇÃO DE MESTRADO

Understanding Architectural Bad Smells

in Software Product Lines

Hugo Sica de Andrade

Mestrado Multiinstitucional em Ciência da Computação

MMCC

Salvador – BA

2014

Federal University of Bahia

Mathematics Institute - Computer Science Department
Master’s Degree in Computer Science

Hugo Sica de Andrade

“Understanding Architectural Bad Smells
in Software Product Lines”

A M.Sc. Dissertation presented to the Mathematics Institute

- Computer Science Department of Federal University of

Bahia in partial fulfillment of the requirements for the degree

of Master of Science in Computer Science.

Advisor: Eduardo Santana de Almeida

SALVADOR, AUGUST/2014

 Sistema de Bibliotecas da UFBA

 Andrade, Hugo Sica de.
 “Understanding architectural bad smells in software product lines” / Hugo Sica de Andrade. -
 2014.
 163 f.: il.

 Inclui apêndices.
 Advisor: Eduardo Santana de Almeida.

 Dissertação (mestrado) - Universidade Federal da Bahia, Instituto de Matemática, Salvador,
 2014.

 1. Software. 2. Software - Produto. 3. Software - Arquitetura. 4. Engenharia de software.
 5. Computação. I. Almeida, Eduardo Santana de. II. Universidade Federal da Bahia. Instituto de
 Matemática. III. Título.

 CDD - 005.1
 CDU - 004.4

I dedicate this dissertation to my family and girlfriend, who

kindly provided me with patience and knowledge to help me

achieve my goals.

Acknowledgements

First and foremost I would like to thank God for providing me with the patience and the
knowledge required to accomplish my goals so far.

Thank you very much to my parents Hélio and Gina, and my sister Débora for being
such a great motivation and the reason why I am who I am.

Special thanks to my girlfriend Mariana who has trusted, loved and supported me in
every tough decision that I have made since the moment we have met. I am with you, ris!

Furthermore, I would like to thank professors Eduardo Almeida and Ivica Crnkovic
for clarifying things and helping me resolve many of the issues I have encountered while
working on my master degree.

Thanks to all my colleagues, in special my bachelor’s advisor Luanna Lobato, for
having me initiated in academia and for supporting me while I pursue more and more
achievements in this field.

Last but not least, I would like to thank my friends from many different countries,
colleagues at UFBA and MDH (Sweden), and all members of RiSE (Reuse in Soft-
ware Engineering) research group for sharing their knowledge over discussions and
presentations, thus contributing to enrich this work.

iv

Resumo

O paradigma de Linhas de Produto de Software (LPS) tem provado ser um meio efetivo
para se obter reuso de grande escala em diferentes domínios. A abordagem tira proveito
de aspectos comuns entre diferentes produtos, enquanto também considera propriedades
específicas dos mesmos. A arquitetura tem um papel importante na engenharia de LPS,
provendo meios para melhor entender e manter o ambiente de derivação de produtos. No
entanto, é difícil evoluir tal arquitetura, pois nem sempre é claro onde e como refatorar.

A arquitetura de uma LPS contém um modelo que irá resultar na arquitetura de
produtos, e muitas vezes inclui soluções que indicam um design (arquitetural) inadequado.
Uma forma de avaliar tais decisões de design é através da identificação de bad smells de
arquitetura, ou seja, propriedades que prejudicam a qualidade do software, mas não são
necessariamente errôneas ou representam falhas.

Nesse sentido, o objetivo desta dissertação é obter um melhor entendimento de bad

smells de arquitetura em LPSs. Primeiramente, o estado-da-arte atual em Arquiteturas de
Linhas de Produto de software (ALP) é investigado através de um estudo de mapeamento
sistemático. Este apresenta uma visão geral da área através de análise e categorização de
evidências. O estudo idenfitica gaps, tendências, e provê direções futuras para pesquisa.

Ademais, esta dissertação trata do fenômeno de bad smells de arquitetura no contexto
de LPSs através de dois estudos exploratórios em domínios diferentes. O primeiro estudo
exploratório conduz uma investigação sobre as implicações de propriedades estruturais
em uma LPS no domínio de editores de texto, enquanto o segundo estudo foca em uma
LPS no domínio mobile. Antes da busca pelos smells em ambos os estudos, informações
relevantes para a arquitetura foram recuperadas do código fonte para que as arquiteturas
fossem definidas.

Palavras-chave: Linhas de Produto de Software, Arquitetura de Software, Estudo de
Mapeamento, Bad Smells de Arquitetura

v

Abstract

The Software Product Line (SPL) paradigm has proven to be an effective way to achieve
large scale reuse in different domains. It takes advantage of common aspects between
different products, while also considering product specific features. The architecture
plays an important role in SPL engineering, by providing means to better understand
and maintain the product-derivation environment. However, it is difficult to evolve such
architecture because it is not always clear where and how to refactor.

The architecture of a SPL comprises a model that will result in product architectures,
and may include solutions leading to bad (architectural) design. One way to assess
such design decisions is through the identification of architectural bad smells, which are
properties that prejudice the overall software quality, but are not necessarily faulty or
errant.

In this sense, the goal of this dissertation is to obtain a better understanding of
architectural bad smells in SPLs. First, the current state of the art of software Product
Line Architectures (PLAs) is investigated through a systematic mapping study. It provides
an overview of the field through the analysis, and categorization of evidence. The study
identifies gaps, trends and provides future directions for research.

Furthermore, this dissertation addresses the phenomenon of architectural bad smells
in the context of SPLs through two exploratory studies in different domains. The first
exploratory case study provides an investigation on the implications of such structural
properties in a text editor domain SPL, while the second study aims at a SPL in the mobile
domain. Prior to the search for smells in both studies, architecturally relevant information
was recovered from the source code in order to define their architectures.

Keywords: Software Product Lines, Software Architecture, Mapping Study, Architec-
tural Bad Smells

vi

Table of Contents

List of Figures xi

List of Tables xiii

List of Acronyms xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Related Work . 3

1.3.1 Literature Reviews . 3
1.3.2 Architecture Evaluation . 4

1.4 Out of Scope . 6
1.5 Statement of the Contributions . 6
1.6 Research Design . 7
1.7 Dissertation Structure . 8

2 An Overview on Software Product Lines, Software Architecture and Archi-
tectural Bad Smells 10
2.1 Software Product Lines . 10

2.1.1 Benefits of SPL Engineering 11
2.1.2 SPL Engineering Essential Activities 12

2.2 Software Architecture . 15
2.2.1 The Architecture of a Software Product Line 16
2.2.2 Terminologies . 17

2.3 Architectural Bad Smells . 17
2.3.1 Definition . 18
2.3.2 Representative Smells . 19

Connector Envy . 20
Scattered Parasitic Functionality 22
Ambiguous Interfaces . 23
Extraneous Adjacent Connector 24

2.4 Chapter Summary . 25

vii

3 A Systematic Mapping Study on Software Product Lines Architecture 26
3.1 Motivation . 26
3.2 Review Method . 27
3.3 Review Process . 28
3.4 Planning . 29

3.4.1 Research Questions . 30
3.4.2 Viewpoints . 31
3.4.3 Search Strategy . 31

3.5 Conducting . 33
3.5.1 Screening of Papers . 34
3.5.2 Classification Scheme . 35
3.5.3 Data Extraction . 37

3.6 Outcomes . 38
3.6.1 An Overview of the PLA field 38
3.6.2 Findings . 40

RQ1 - Are architectural patterns (or styles) used in SPL? 43
RQ2 - How is variability handled in the architecture level of SPLs? 47
RQ3 - How are the SPL architectures documented? 52
RQ4 - How are the SPL architectures evaluated? 56

3.7 Discussion . 59
3.7.1 Main Findings . 60

Patterns . 60
Variability . 61
Documentation . 62
Evaluation . 62

3.8 Threats to Validity . 63
3.9 Chapter Summary . 63

4 Architectural Bad Smells in Software Product Lines: An Exploratory Study 65
4.1 Study Setup . 65
4.2 Notepad SPL . 66

4.2.1 Feature Model . 67
4.2.2 Variability Management . 69
4.2.3 Product Map . 69

4.3 Architecture Recovery . 70
4.3.1 Recovery Process . 72

viii

4.3.2 Automated Analysis . 72
4.3.3 Manual Analysis . 74
4.3.4 Merging Product Architectures 75

4.4 Identifying Architectural Bad Smells 76
4.4.1 Connector Envy . 77
4.4.2 Scattered Parasitic Functionality 78
4.4.3 Ambiguous Interfaces . 78
4.4.4 Extraneous Adjacent Connector 79
4.4.5 Feature Concentration . 80

4.5 Threats to Validity . 81
4.6 Chapter Summary . 81

5 A Replicated Study on Architectural Bad Smells in Software Product Lines 83
5.1 Study Setup . 83
5.2 RescueMe SPL . 84

5.2.1 Feature Model . 86
5.2.2 Variability Management . 86
5.2.3 Product Map . 88

5.3 Architecture Recovery . 89
5.3.1 Recovery Process . 91
5.3.2 Automated Analysis . 91
5.3.3 Manual Analysis . 95
5.3.4 Merging Product Architectures 96

5.4 Identifying Architectural Bad Smells 98
5.4.1 Connector Envy . 98
5.4.2 Scattered Parasitic Functionality 99
5.4.3 Ambiguous Interfaces . 100
5.4.4 Extraneous Adjacent Connector 101
5.4.5 Feature Concentration . 101

5.5 Comparative Analysis . 102
5.5.1 Features . 102
5.5.2 Domain . 104
5.5.3 Lines of code and complexity 105
5.5.4 Variability technique . 105
5.5.5 Patterns . 105

5.6 Main Findings . 106

ix

5.7 Threats to Validity . 107
5.8 Chapter Summary . 108

6 Conclusions 109
6.1 Published Work . 110
6.2 Future Work . 110
6.3 Concluding Remarks . 111

References 112

Appendix 131

A Mapping Study 132
A.1 List of Journals Manually Searched 132
A.2 List of Conferences Manually Searched 133
A.3 Data Extraction Report . 134
A.4 Primary Studies Mapped According to Aspects in PLA 135

B Exploratory Study 140
B.1 Notepad SPL Architecture Specification 140

C Replicated Study 144
C.1 RescueMe SPL Architecture Specification 144

C.1.1 Model . 144
C.1.2 View . 145
C.1.3 Controller . 146
C.1.4 3rd Party . 149

x

List of Figures

1.1 Workflow of the Research conducted in this work. 8

2.1 SPL Activities (Clements and Northrop, 2001). 13
2.2 Core asset development (Clements and Northrop, 2001). 13
2.3 Product development (Clements and Northrop, 2001). 14
2.4 SPL Engineering Framework proposed by Pohl et al. (2005). 15
2.5 Connector Envy smell depicted involving communication and facilitation

services (a) and conversion service (b) (Garcia et al., 2009). 21
2.6 Scattered Parasitic Functionality smell occurring across three components

(Garcia et al., 2009). 22
2.7 An Ambiguous Interface implemented using a single public method with

a generic type as a parameter (Garcia et al., 2009). 23
2.8 The Extraneous Adjacent Connector smell is shown. The connector

SoftwareEventBus is accompanied by a direct method invocation between
ComponentA and ComponentB (Garcia et al., 2009). 24

3.1 Review process proposed by da Mota Silveira Neto et al. (2011). 28
3.2 Covered topics in PLA research. 29
3.3 Screening of papers. 36
3.4 Distribution of studies in publication years. 40
3.5 Overview of the area through a bubble plot. 41
3.6 Number of studies addressing research topics. 42
3.7 Artifacts affected by variability. 51
3.8 Architectural views addressed in the studies. 56
3.9 Evaluation methods addressed. 58

4.1 Feature Model for the Notepad SPL. 68
4.2 Architecture Recovery Process adapted from (Taylor et al., 2009). . . . 73
4.3 Decomposition View of Notepad SPL. 73
4.4 Dependency View of Notepad SPL. 74
4.5 Notepad SPL Component Model. 76

5.1 Screenshot of the RescueMe app main screen. 85
5.2 Feature Model for the RescueMe SPL. 87
5.3 Deployment View for the RescueMe SPL. 89

xi

5.4 Modules View for the RescueMe SPL. 90
5.5 Internal Dependencies Classes of RescueMe SPL. 92
5.6 Cluster Call Graph of RescueMe SPL. 93
5.7 Hierarchy Internal Dependencies of RescueMe SPL. 94
5.8 RescueMe SPL Component Model. 96

xii

List of Tables

3.1 Search String . 33
3.2 Research Type Facet . 38
3.3 Top 11 contributing publication sources 39
3.4 Patterns in PLAs . 44
3.5 How PLAs are documented in different studies 54

4.1 Notepad SPL Product Map. 71
4.2 Notepad SPL Variability Points. 75

5.1 RescueMe SPL Product Map . 88
5.2 RescueMe SPL Variability Points . 96
5.3 Comparative table considering the two objects of study. 103

A.1 Data extraction report . 134
A.2 Primary Studies addressing Patterns 136
A.3 Primary Studies addressing Variability 137
A.4 Primary Studies addressing Documentation 138
A.5 Primary Studies addressing Evaluation 139

xiii

List of Acronyms

API Application Process Management

FM Feature Model

IDE Integrated Development Environment

MS Mapping Study

MVC Model-View-Controller

PLA Product Line Architecture

PM Product Map

RiSE Reuse in Software Engineering group

SOA Service-Oriented Architecture

SPL Software Product Line

XML Extensible Markup Language

xiv

1
Introduction

1.1 Motivation

Due to the critical dependence of society on software, increasing responsibility is at-
tributed to the software engineering community. The effects of the failure of a system
may spread beyond the system itself, because of the integration between systems that
earlier were stand-alone. The result is a significant amount of scientific research that aims
to either gather evidence or propose new ways to successfully plan and maintain those
environments.

One way to handle the needs from these previous remarks while achieving faster
development processes is through software reuse. According to Krueger (1992), software
reuse consists in the process of creating software systems from existing software, rather
than building them from scratch. In this sense, a number of approaches appeared in the
software engineering scenario. One of such relevant approaches is Software Product
Lines (SPLs) – an approach for exploiting variability, taking advantage of the common
aspects of different software systems. Software product lines aim to attend to challenges
through a set of core assets developed for reuse in the products that constitute the product
line with up-front analysis, design, implementation, and so on (Clements and Northrop,
2001).

Since the development of an SPL involves the (often complex) implementation of
different structures, processes, interfaces and activities, it is relevant for product line
practitioners to pay sufficient attention to its architecture. The reuse of software artifacts
is a key element in SPL practice, thus it is important to build a favorable environment that
supports such practice, as well as a solid architecture related to it. The implementation of
core assets – along with their uses – should obey a set of organization rules in order to
successfully achieve faster time-to-market and efficient management goals.

1

1.2. PROBLEM STATEMENT

According to Bosch (2000), the core element in successful SPLs is the software Prod-
uct Line Architecture (PLA), which should maximize the benefits of the commonalities
between the products in the family while providing sufficient variability for each family
member.

Further, it is important to properly design and evaluate the PLA aiming at its adequate
and consistent evolution. PLAs have a longer life span and should support a range of
products, being responsible for their quality attributes (Etxeberria and Mendieta, 2005).
The interactions of product quality attributes requirements may lead to architectural
conflicts (Olumofin and Misic, 2007) and consequently interfere in the assessment of
PLAs. In addition, organizational issues may affect the evaluation of PLAs, due to their
larger scope and commonly high number of stakeholders involved.

In this sense, the aim of this dissertation is twofold. First, we review the current
state-of-the-art of PLAs. Then, we discuss one way to evaluate PLAs with respect to
lifecycle properties: attributes related to maintainability (e.g. understandability and
testability).

1.2 Problem Statement

Despite the fact that the number of publications discussing PLA-related issues have
grown significantly in the latest years (more details in Chapter 3), none aimed at gathering
evidence for synthesizing knowledge in PLA research. For this purpose, we conducted
a systematic mapping study, which aims at providing an overview of the research field
through classifications.

From the systematic review, we found that it is valuable to further investigate proper
means to achieve higher quality of PLAs. Thus, we aimed at discussing one way to
improve the quality of PLAs through the identification of architectural bad smells (Lippert
and Roock, 2006). The term refers to architectural decisions that negatively impact
system lifecycle properties, such as understandability, testability, and extensibility. It was
originally proposed for the assessment of single systems, thus, our goal is to characterize
architectural bad smells in the context of PLAs. Two case studies focusing on lifecycle
properties in the architecture were performed using two SPL research projects in different
domains.

In summary, the goals of this dissertation can be stated as follows:

This work investigates (i) current literature within the topic of PLAs; and

(ii) the problem of architectural bad smells in software product lines, which

2

1.3. RELATED WORK

is approached through two empirical studies. Evidence gathered in these

studies are presented to provide a better understanding of the phenomenon -

initially proposed to single systems - in the context of software product line

engineering.

In order to achieve the afore mentioned goals, we performed two empirical studies
from which the results were compared and discussed through a comparative analysis.
First, a systematic review was undertaken to map out the available literature evidence in
the field of PLA. Then, we performed two case studies considering research projects in
different contexts: one in the text editor and the other in the mobile domain.

1.3 Related Work

The literature on SPL and architecture provides a large number of studies, regarding both
general and specific issues. Amongst them, we have identified literature reviews that
aimed at either broader scopes (domain design approaches) or different aspects in SPL
engineering (e.g. Requirements). Further, a number of papers discussed means to assess
PLAs and/or single systems architectures. The following studies were considered related
for having similar ideas to this work. They are presented in two categories: literature
reviews, and architecture evaluation.

1.3.1 Literature Reviews

Filho et al. (2008) performed a systematic review on domain design approaches. They
studied methods to domain design that have been developed for or that can be applied
to SPL, laying emphasis on activities, guidelines, views, and good practices adopted
by the approaches. Moreover, Murugesupillai et al. (2011) undertook a preliminary
study of approaches that aim at bridging SPL and Service-Oriented Architectures (SOAs).
They provided a brief overview of recent studies, classification of approaches and type
of research available in the area. Through a systematic mapping of the studies, they
reasoned that the majority (61%) of the studies contributed with methodologies, and
the main motivation factor for utilizing the SPL-SOA approach was to properly manage
variability. For structuring the field of measures and quality attributes for SPLs, two
studies (Montagud and Abrahão, 2009; Montagud et al., 2012) identified the current
lack of proper means for measuring several quality attributes, as well as the wide use of
inadequade methods for validating the existing measures.

3

1.3. RELATED WORK

In the context of single systems, de Oliveira et al. (2010) performed a systematic
review focused on reference models and reference architectures based on the service-
oriented approach. The authors presented an overview about the application of such
models, highlighting their uses and reporting that there is not a consensus about how
to represent such architectures. In addition, systematic reviews were undertaken in the
field of software Architecture Reconstruction (Ducasse and Pollet, 2009) and Evolution
(Breivold et al., 2012). Both studies revealed that the activity of evolving architectures
has been widely discussed in the last years.

Existing approaches highlight the importance of utilizing different viewpoints and
the need of economic and technical planning. However, to the best of our knowledge,
no work has been conducted in the PLA field aiming at summarizing current knowledge
through a systematic mapping study. This work attempts to fill this gap, while contributing
to structure the field in addition to other systematic literature reviews focused on SPL
disciplines: Scoping (Moraes et al., 2009), Requirements (Alves et al., 2010), and Testing
(Engström and Runeson, 2011; da Mota Silveira Neto et al., 2011).

1.3.2 Architecture Evaluation

The issues involving both architectural refactoring and assessment techniques have been
extensively discussed over the last years. In the context of single systems, methods
(e.g., ATAM (Kazman et al., 2000)) aim at assessing the consequences of architectural
decisions in terms of quality attributes requirements. The practice of evaluation often use
metrics that provide means for measurements and calculations regarding the potential
risk within a complex architecture, as the conformances to business drivers are also taken
into consideration.

In this work, we are guided by the method presented by Garcia et al. (2009). The
authors discuss the identification of four representative architectural smells, i.e., design
attributes that negatively impact the system’s maintainability. Instead of focusing on
refactoring implementation artifacts, the work addresses design decisions that are not
necessarily faulty or errant, but still present a negative impact in software quality. The
introduced smells were proposed based on the experience of two large industrial systems
and case studies in the literature. We selected this work to serve as a guidance to this
dissertation because it proposes an interesting approach to evaluate architectures. The
proposed evaluation method considers identifying smells in the architecture of single
systems. Thus, with the present work, we intended to apply this approach in the context
of PLAs.

4

1.3. RELATED WORK

A recent paper (Oliveira Junior et al., 2013) reported on a novel method to system-
atically evaluate UML-based PLAs: the SystEM-PLA. For the evaluation, it considers
metrics obtained directly from UML models to perform both qualitative and quantitative
analysis. With the approach, architects are able to also perform a trade-off analysis to
prioritize quality attributes. The ATAM (and its extensions) principles serve as guidelines
to the initial phases of the method for identifying and defining business drivers. Despite
the fact that this method also considers the class and components models of the PLA to
be evaluated, there are a number of differences when compared to the smells approach.
The main difference is related to the goals and the requirements to perform the evaluation.
Since it is based in ATAM, it takes into consideration the specification of scenarios, thus
requiring considerable knowledge on the business to which the PLA is implemented.
On the other hand, the approach used in the present work considers the identification of
smells, which in turn does not require a deep understanding of the business drivers to be
undertaken.

To the best of our knowledge, no studies have been undertaken from the viewpoint
of architectural smells in SPLs. However, several studies discussed approaches that
are as well used for dealing with evaluation of PLAs. For instance, the scenario-based
assessment methods SBAR (Scenario-Based Architecture Re-engineering) (Del Rosso,
2006) and SAAM (Software Architecture Analysis Method) (Kazman et al., 1994; Lutz
and Gannod, 2003; Olumofin and Misic, 2007; Silva de Oliveira and Rosa, 2010b)
which takes into consideration the description of a software design in three perspectives:
functionality, which refers to the features of the systems; structure, which contains a
collection of components and interfaces; and allocation, which makes explicit the way
the features are implemented.

The aforementioned evaluation methods are not specifically interested in architectural
smells. Instead, they discuss software anti-patterns (Brown et al., 1998), which take into
consideration general concerns related to project management and process difficulties
rather than design problems. Despite the range of work discussing the impact of code

smells (Fowler, 1999) in software architecture (Arcoverde et al., 2012; Macia et al.,
2012a,b), we argue that they differentiate from architecture smells in the abstraction
level. While architecture smells are related to design problems, code smells are obtained
through an evaluation of source code. That is, different stakeholders are able to assess
the orchestration of features and products infrastructure as soon as in the design level,
instead of having the code artifact as the starting point.

5

1.4. OUT OF SCOPE

1.4 Out of Scope

The following topics are not considered in the scope of this dissertation:

• Other disciplines of the SPL process. In this dissertation, we focus on the archi-
tecture stage of development. Although the decisions made in other disciplines can
represent direct influence in the architectural design of an SPL, we decided to only
consider issues related to its structure and organization of components/modules/-
subsystems (smaller parts);

• Single systems. Our investigation is guided by the properties contained in SPL
projects, that is, software environments where variability is present, and there is a
clear management of common and variable assets. We limit our review to PLAs
and only consider SPLs in the case studies;

• Architectural Erosion/Drift. In this work, we do not discuss conformance viola-
tions (e.g., architectural drift Rosik et al. (2011) and erosion van Gurp and Bosch
(2002)). Further, in the case studies, we do not consider the "intented" architecture,
but always the implemented architecture which has been recovered from the project
assets;

• Novel methods to resolve architectural bad smells. This work is concerned with
the identification of smells. In addition, we discuss the kinds of impacts that
such phenomena would bring to the quality of PLAs. We have not proposed new
solutions to the smells.

1.5 Statement of the Contributions

As a result of the work presented in this dissertation, the following contributions can be
highlighted:

• An overview of the literature regarding SPL architectures. We conducted a
systematic mapping study presenting the current state-of-the-art regarding the PLA
topic, aiming at obtaining a broad overview of the area.

• Architectural especification and modeling of two different SPLs. We recovered
the architecture of two different SPLs through both manual and automated analysis
of architecturally relevant information, obtained from the avaliable artifacts.

6

1.6. RESEARCH DESIGN

• A characterization of the architectural bad smells phenomenon in the context
of PLAs. An exploratory case study was conducted in order to understand the
effects of architectural bad smells to the lifecycle of SPL projects. We also proposed
a new smell, specifically observed in PLAs.

• A replication of the exploratory study in a different domain. We replicated the
exploratory study using a different SPL and compared results in order to draw
conclusions.

• A comparative analysis of the obtained results. We discuss the outcomes of the
empirical studies and contribute with knowledge regarding architectural bad smells
in SPLs.

In addition to the contribution mentioned, a paper presenting part of the findings of
this dissertation has been accepted for publication:

• Andrade, H. S., Almeida, E. S., and Crnkovic, I. Architectural Bad Smells in
Software Product Lines: An Exploratory Study. In 3rd International Workshop on

Variability in Software Architecture (VARSA), Sydney, Australia. Proceedings of
the 11th Working IEEE/IFIP Conference on Software Architecture (WICSA 2014).
New York: ACM Press, 2014.

Also, we are currently submitting papers to report the remaining results.

1.6 Research Design

The first step of our work was to strengthen our knowledge regarding software product
lines and software architecture. We carried out an informal literature review, which aided
us in having an overview of the research field, considering the terminologies, common
practices and general guidelines. Next, we performed the systematic mapping study
to structure the existing knowledge, while also contributing to the field with a report.
Such systematic review allowed us to categorize the available evidence on current PLA
practices and also identify gaps and trends in research.

With the review, we identified a gap that no previous work had been conducted with
respect to architectural bad smells in software product lines. Thus, we performed an
exploratory study to characterize the problem in the context of PLAs, since those smells
were initially proposed to single systems. Then, we conducted a replicated study in the

7

1.7. DISSERTATION STRUCTURE

Figure 1.1 Workflow of the Research conducted in this work.

same conditions, but using an SPL in a different domain. With the replicated study, we
aimed at investigating whether the occurrence (or effects) of different smells could be
related to the domain in which the SPL was implemented. Finally, we discussed the
differences and similarities of the results obtained from the two case studies through a
comparative analysis. The workflow of the conducted research is shown in Figure 1.1.

1.7 Dissertation Structure

The remainder of this dissertation is organized as follows:

• Chapter 2 presents a brief overview on the background of this work: fundamentals
of software product lines, software architecture, and architectural bad smells;

• Chapter 3 provides details on the planning and conduction phases, as well as the
oucomes of the literature review performed;

• Chapter 4 discusses the exploratory study used to characterize the architectural
bad smells phenomenon in the context of SPLs;

• Chapter 5 presents the replicated study using a SPL in a different domain, as well
as the comparative analysis;

• Chapter 6 provides a set of conclusions based on this work, discussing the limita-
tions and directions for future work.

• Appendix A presents the list of journals and conferences manually searched in the
mapping study. It also shows the data extraction report, and the lists of primary
studies addressing different aspects in PLA;

8

1.7. DISSERTATION STRUCTURE

• Appendix B provides the architecture specification of Notepad SPL: used in the
exploratory study;

• Appendix C presents the architecture specification of RescueMe SPL in the MVC
pattern: used in the replicated study;

9

2
An Overview on Software Product Lines,
Software Architecture and Architectural

Bad Smells

This chapter presents fundamental information for the understanding of three topics that
are relevant to this work: software product lines, software architecture, and architectural
bad smells. Section 2.1 discusses the motivation, benefits, and essential activities of
SPL engineering. Section 2.2 presents the definitions, characteristics and terminologies
of software architectures. Section 2.3 presents the definition, examples and impacts on
quality attributes of architectural bad smells. Finally, Section 2.4 presents a summary of
this chapter.

2.1 Software Product Lines

It is always desirable that software is developed with minimum time-to-market and maxi-
mum quality. Nowadays, all different kinds of business are highly dependent on software
systems, thus the importance of delivering high quality software is inherent. Such systems
are then required to excel with respect to both functional and non-functional requirements.
On the other hand, a lower time-to-market is essential to keep business companies com-
petitive. The different products to be developed are expected to be delivered as soon as
possible without losing quality with respect to functionalities, maintainability, trustability,
and so on.

In order to address the aforementioned concerns, one relevant approach appeared
in the software engineering scenario. Software Product Line Engineering is a software
development approach that focuses in reuse, combining concepts of platforms and mass

10

2.1. SOFTWARE PRODUCT LINES

customization (Pohl et al., 2005). The use of Software Product Lines (SPLs) aims to
optimize the software development process, describing product families and exploring
their variability and commonalities. In other words, the approach takes advantage of
the common and variable aspects present in a range of products to be developed to
systematically achieve large-scale reuse.

The initial costs for implementing an SPL are higher due to the time and investments
required for design and implementation of core assets, as well as mechanisms that
enable variability. In a reactive SPL approach, each product has its components analyzed
in order to determine which features must be part of the domain of the product line
(commonalities) and which features are singular on the application (variability). As more
products are implemented over time, it becomes more valuable for one to utilize the SPL
approach due to the ease of developing new applications from domain assets, and also
because the maintenance effort costs are drastically reduced.

One of the most widely accepted and complete definitions of SPL is given by Clements
and Northrop (2001) as "a set of software-intensive systems that share a common, man-

aged set of features satisfying the specific needs of a particular market segment or mission

and that are developed from a common set of core assets in a prescribed way".

2.1.1 Benefits of SPL Engineering

Several benefits can be achieved from developing software using the SPL approach. For
example, it allows companies to reduce costs through the development of core assets
that will be reused across several products. Although the initial costs of developing an
SPL are higher when compared to single systems development, because of the devel-
opment platform, the costs are soon reduced. It is estimated that from the third system
developed, the cost of developing each new product is considerably lower than if it were
produced in the classical individual manner (all new requirements, all new scope, all new
implementation, and so on) (Pohl et al., 2005).

Further, the quality of the products derived are increased due to the several testing
phases through which the core asset are submitted. The core assets and their functionali-
ties are reviewed and tested in many products and under several circumstances.

Some other benefits of SPL engineering can be achieved, such as the ones described
in the following topics (Clements and McGregor, 2012):

• SPL engineering fuels innovation. Since the products are developed in a pre-
scribed way, companies no longer have to work long hours to meet the next

11

2.1. SOFTWARE PRODUCT LINES

product’s delivery deadlines. Engineers then have time to think about new fea-
tures their customers would find valuable, as well as to innovate inside their own
organization;

• SPL engineering increases agility. The products to be developed from the SPL
are planned ahead and built from the core assets. The scope is explicitly defined
using market predictions and technology forecasts, thus giving the product line
built-in agility across the development of all products;

• SPL engineering supports strategic product planning and portfolio optimiza-
tion. It is suggested that market share and profitability increase with broader
product lines (Kekre and Srinivasan, 1990). This approach allows the company
to carefully select product opportunities based on market considerations and the
scope of their production capability;

• SPL engineering supports mass customization and a customer-centric strat-
egy. In SPL engineering, mass customization is supported commonality/variability
analysis, the effective reuse of assets, and variation mechanisms that support con-
figuration at assorted times in the product life cycle;

• SPL engineering invigorates and empowers the workforce. In organizations
that employ SPL engineering, developers who are entitled to general-purpose
solutions and developers who work on products-specific requirements are both
highly valued and useful.

2.1.2 SPL Engineering Essential Activities

When implementing an SPL, software platforms are used. Software platforms are software
subsystem sets and interfaces that form a common structure from which a number of
derived products can be developed and efficiently produced (Meyer and Lehnerd, 1997).
The platform consists in the assets developed based on the product family, which are
going to be reused for developing other products.

Clements and Northrop (2001) proposed a set of activities to create a software product
line. The approach considers two stages of development: domain engineering and
application engineering, which are realized through a set of three essential activities, as
shown in Figure 2.1.

The figure illustrates three rotating circles, each of them representing one essential
activity. The circles are linked together and in perpetual motion, showing that these three

12

2.1. SOFTWARE PRODUCT LINES

Figure 2.1 SPL Activities (Clements and Northrop, 2001).

activities are essential, inextricably linked, can occur in any order, and are highly iterative
(Clements and Northrop, 2001).

The core asset development activity establishes a production capability for prod-
ucts. This is where business rules and some solution design decisions are taken into
consideration, such as: product and production constraints, architectural styles, design
patterns, application frameworks, production strategy and legacy systems. As a result
from this process, the core assets are produced, and the SPL scope is defined. The outputs
are entitled to provide means for development and details of the products that will be
developed in the next phase. The core asset development activity is depicted in Figure 2.2.

Figure 2.2 Core asset development (Clements and Northrop, 2001).

Next, the product development activity is responsible for building the products in a

13

2.1. SOFTWARE PRODUCT LINES

SPL. The artifacts produced in the previous phase are considered to build the products
according to the requirements specification for individual products. These requirements
represent a variation of the generic product description contained in the SPL scope. The
outputs of this phase are the products. The product development activity is depicted in
Figure 2.3.

Figure 2.3 Product development (Clements and Northrop, 2001).

In the meantime, the management activity is responsible for performing the adminis-
tration of both technical and organizational issues. The technical management ensures
the definition of the processes for the SPL, the engagement of the groups in the required
activities, and the progress tracking. The organizational management is entitled to opti-
mize the organizational structure and ensure that the organizational units receive the right
resources in sufficient amounts.

Another approach to perform SPL engineering is proposed by Pohl et al. (2005). It
also takes into account domain engineering and product engineering phases, as depicted
in Figure 2.4.

The framework defines the activities in developing applications using SPL, explicitly
describing the processes in domain engineering and application engineering. During
the domain engineering phase, the SPL properties, management solutions, applications
commonalities and variation points are defined. This is when the scope of the SPL is
defined, and the commonalities and variability of all products are explored. In the domain
engineering phase, the core assets are developed: that is, pieces of software that will be
reused among a number of products throughout the realization of the SPL. Gathering
reusable software components (assets) is the main goal of this stage.

14

2.2. SOFTWARE ARCHITECTURE

Figure 2.4 SPL Engineering Framework proposed by Pohl et al. (2005).

On the other hand, in the application engineering phase, the applications are developed
and customized. The assets defined are implemented, and the particular functionality
of the applications are incorporated into the assets to form the final product, aiming to
satisfy the needs of a customer. By the end of the domain and application engineering
phases, the artifacts related to requirements, architecture, components and tests should be
produced.

2.2 Software Architecture

Architecture has emerged as a crucial part of software development. Through the architec-
ture, the business rules are expressed, and the requirements are projected to be satisfied.
If we consider software development as a process consisting of two stages - the problem
space and the solution space - the architectural design of the system would be the first
step in the solution space. In this stage, the structures of the system are defined through
an abstract description. It does not consider details of implementation or algorithms, but
rather addresses the interactions and the behavior of components.

One well-known definition to the term architecture is that it refers to the structure
of a system, consisting of software elements, externally visible properties, and the

15

2.2. SOFTWARE ARCHITECTURE

relationships among elements (Bass et al., 2003a). Another explanation of the concept
is provided by the Software Engineering Institute (SEI), in which the architecture of a
software program is defined as “a depiction of the system that aids in the understanding
of how the system will behave”. Even further, the software architecture of a system can
also be stated as “the set of principal design decisions made during its development and
any subsequent evolution”, being the stakeholders responsible for determining which
aspects are considered ‘principal’ (Taylor et al., 2009).

In fact, a widely accepted consensus on the definition of software architecture does
not seem to exist (Kruchten et al., 2006). In fact, several other definitions can be found in
literature. Thus, researchers and practitioners agree that an explicit and clear definition of
what architecture is, to the context in which the term is used, is essential to maintain the
consistency of its semantics.

In this work, we maintain the definition given by Taylor et al. (2009), who stated
that “software architecture is the set of principal design decisions governing a system”.
The stakeholders determine which aspects are deemed to be principal. These decisions
usually include how the system is organized into subsystems and components, how
functionality is allocated to components, and how components interact with each other
and their execution environment.

2.2.1 The Architecture of a Software Product Line

The aforementioned diversity of concepts is extended to the definition of PLA, thus the
key concepts are required to be explicitly stated in order to define the scope of a study.
According to Gomaa (2004), “a product line architecture is an architecture for a family of
products, which describes the kernel, optional, and variable components in the SPL, and
their interconnections”. Moreover, the PLA can also be defined as the “core architecture
that captures the high level design for the products of the SPL, including the variation
points and variants documented in the variability model (or feature model)” (Pohl et al.,
2005).

The architecture is a fundamental element in SPL engineering, because it is a key
artifact for structuring and managing the SPL. One difference between the design of
an architecture for a SPL and an architecture for an individual product is that the first
requires product-specific features to be considered (Bosch, 2000). The PLA should
handle the diversity of contexts, which may be present in different products, in terms of
underlying hardware, communication to external products, and user interface. Common
issues that SPL architects need to address is the decision whether product-specific aspects

16

2.3. ARCHITECTURAL BAD SMELLS

of products contexts must be addressed by the SPL architecture, or whether these aspects
can be added modularly to a product architecture.

We consider the PLA to be a key aspect in SPL engineering, through which the
complexity of a variability-based environment can be managed. It is used as a platform
to a range of products, being responsible for describing the common and variable aspects
between them. In this sense, the design decisions in a PLA are expected to support
different sets of requirements (i.e., features) for products to be instantiated. During the
Domain Engineering phase, the common parts of the PLA are defined. The architecture
of an individual product is composed during Application Engineering, by combining the
common parts of the architecture with the variable aspects that must be present in that
specific product.

2.2.2 Terminologies

Different terminologies referring to architecture in SPL have been used, such as domain

architecture, platform architecture and configuration architecture. In many studies,
such terminologies carry similar meanings, and describe the processes and artifacts
aforementioned in this section. For these cases, we standardized the term product line
architecture (PLA).

Moreover, several recent discussions address the definitions of PLAs and reference

architectures. While a reference architecture covers the knowledge in a broader domain,
a PLA is more specialized and focuses on a specific set of software systems in a narrower
domain (Nakagawa et al., 2011; Angelov et al., 2012; Galster et al., 2013). Nevertheless,
there seems to be a misconception in publications around the differences regarding these
concepts. Since we performed a literature review that aims at helping in the understanding
of the field, studies using both terminologies were considered because they are many
times used interchangeably.

2.3 Architectural Bad Smells

Not rarely, software systems are subject to changes. As lower time-to-market is one of
the most important aspects in today’s competitive business, a lot of effort is put into
optimizing the development processes to meet new requirements. Instead of building new
software from scratch, the practice of evolving and adapting existing systems is common.
In the context of SPLs, for example, it is not uncommon that the development platform is
maintained and upgraded for several years. In this sense, the evolution and adaptation

17

2.3. ARCHITECTURAL BAD SMELLS

of software systems are required to be carefully managed and executed. The refactoring
should be consistent to attend to new requirements without representing a negative impact
to other qualities previously achieved.

One very popular way to determine how to refactor systems is through the identifica-
tion of code bad smells (Fowler, 1999). The term refers to implementation structures that
negatively affect system lifecycle properties. In other words, the concept of code smells
is often used to indicate properties that are not necessarily faulty or errant, but present
negative effect in a system’s maintainability. For example, in an object-oriented system
one entity can be designated as God Class if it assumes too much responsibility when
compared to the remaining classes. This implementation decision can make it difficult
to maintain and evolve such class, due to its increased relationship level with the other
entities. Other examples of code smells can be mentioned, such as Feature Envy, which
means a case where one method is too interested in other classes, and Code Clones, which
represents duplicated code.

Nevertheless, those smells are restricted to implementation level constructs, such as
methods, classes, statements and parameters. When poor structuring of architecture-level
constructs (i.e., components, connectors and interfaces) causes a reduction in the system
maintainability, these properties are called architectural bad smells.

2.3.1 Definition

The term architectural bad smell was originally used by Lippert and Roock (2006), for
describing an indication of an underlying problem that occurs at a higher level of a
system’s abstraction than a code smell. Architectural smells are structural attributes that
mainly affect lifecycle properties - such as understandability, testability and reusability -
but can also affect quality properties, such as performance and reliability.

In other words, architectural smells can be defined as combinations of architectural
constructs that induce reductions in system maintainability. These smells are identified
in consideration to architecture-level abstractions, such as components, connectors and
styles, rather than implementation constructs.

According to the discussion in (Garcia et al., 2009), such a phenomenon may be
caused by:

• applying a design solution in an inappropriate context;

• mixing combinations of design abstractions that have undesirable emergent behav-
iors; or

18

2.3. ARCHITECTURAL BAD SMELLS

• applying design abstractions at the wrong level of granularity.

The occurrence of smells in a design may represent a justification in different con-
cerns. However, we argue that the trade-offs should be assessed to also allow means to
adequately maintain the system at architecture level. Software architects should evaluate
whether actions to change the identified properties will result in the actual benefits when
accounting the change impact as a whole. In the context of SPLs, the importance of
properly evaluating such impact is increased, due to the key role of the PLAs and the
often widespread effect of changes in design.

Architectural smells are remedied by changing the structure and the behaviors of the
internal system elements without changing the external behavior of the system. That is,
products within the scope of the SPL should not be affected in terms of functionality by
architectural changes. Further, the PLA is still required to support the derivation of those
products.

In this work, we do not address the issues related to differences between the intended
and implemented architectures. Since the intended architecture is often outdated and/or
poorly specified, we focus the analysis on the actual architecture. The disadvantage of
such decision is that a recovery process is required prior to the identification of smells.
On the other hand, the implemented architecture always exists, and represents actual
constructs with respect to the system organization.

Further, we consider human organizations and processes to be orthogonal to the
definition and impact of a specific architectural smell. In other words, the identification
and correction of architectural smells are not dependant on an understanding of the history
of the analyzed system. An independent analyst should be able to indicate possible smells
without knowing details about the development organization, management or processes.

2.3.2 Representative Smells

This section describes the four architectural smells proposed in literature in the context
of single systems. Prior to the identification of smells, the architecture is assumed to
be defined in terms of Components, Connectors, Interfaces and Configurations. Those
aspects are considered because they are widely accepted and can effectively inform the
structure of a system through their definition.

The concepts used to scope each of these aspects defined by Taylor et al. (2009) and
described as follows:

• Component: An architectural entity that (1) encapsulates a subset of the system’s

19

2.3. ARCHITECTURAL BAD SMELLS

functionality and/or data, (2) restricts access to that subset via an explicitly defined
interface, and (3) has explicitly defined dependencies on its required execution
context. A component can be as simple as a single operation or as complex as an
entire system, depending on the architecture, the perspective taken by the designers,
and the needs of the given system. The key aspect of any component is that it can
be "seen" by its users, whether human or software, from the outside only, and only
via the interface it has chosen to make public. Otherwise, it appears as a "black
box".

• Connector: An architectural element tasked with effecting and regulating interac-
tions among components. The simplest and most widely used type of connector
is procedure call. Procedure calls are directly implemented in programming lan-
guages, where they typically enable synchronous exchange of data and control
between pairs of components: The invoking component (the caller) passes the
thread of control, as well as data in the form of invocation parameters, to the
invoked component (the callee); after it completes the requested operation, the
callee returns the control, as well as any results of the operation, to the caller.

• Interface: The point at which components and connectors interact with the outside
world – in general, other components and connectors.

Next, we present the definition of the representative smells proposed in (Garcia et al.,
2009). In order to properly illustrate the smells, we show graphical examples of each
of them considering UML specifications, as well as what type of impact the smells may
cause to the overall system’s maintainability. The diagrams shown in this section can be
used to guide future inspections in different projects.

Connector Envy

Basically, components with Connector Envy cover too much functionality with regard
to connections. Instead of having the interaction facilities delegated to a connector,
the components encompass, to a great extent, one or more of the following types of
interaction services:

• Communication: concerns the transfer of data between architectural elements.
“Data” in this context is described as messages, computational results, etc;

20

2.3. ARCHITECTURAL BAD SMELLS

• Coordination: concerns the transfer of control between architectural elements.
“Control” in this context is described as, for example, the passing of a thread
execution;

• Conversion: concerns with the translation of differing interaction services be-
tween architectural elements. “Services” in this context means data formats, types,
protocols, etc;

• Facilitation: concerns the mediation, optimization, and streamlining of interaction.
For example: load balancing, monitoring and fault tolerance.

Figure 2.5 Connector Envy smell depicted involving communication and facilitation services (a)
and conversion service (b) (Garcia et al., 2009).

Figure 2.5 (a) shows an occurrence of Connector Envy smell, where ComponentA

implements communication and facilitation services. ComponentA imports a communi-
cation library, which implies that it manages the low-level networking facilities used to
implement remote communication.

Figure 2.5 (b) shows another Connector Envy smell, where ComponentB performs
a conversion as part of its processing. The interface of ComponentB called process is
implemented by the PublicInterface class of ComponentB. PublicInterface implements
its process method by calling a conversion method that transforms a parameter of type
Type into a ConcernType.

The quality attributes affected with the occurrence of this smell are:

• Reusability: dependencies are created between interaction services and application-
specific services, making it difficult to reuse either type of service without including
the other;

• Understandability: disparate concerns are commingled - the component carries
functionality and connection responsibilities;

• Testability: application functionality and interaction functionality cannot be sepa-
rately tested.

21

2.3. ARCHITECTURAL BAD SMELLS

The occurrence of Connector Envy smell may be acceptable when performance is
of higher priority than maintainability. Creating two separate entities for functionality
and interaction may demand an extra level of indirection. However, the maintainability
implications related to this smell can cause a cumulative effect, as multiple incompatible
connector types are placed within multiple components that are used in the same system.

Scattered Parasitic Functionality

This smell is characterized by a system where multiple components are responsible for
realizing the same high-level concern. Also, some of those components are responsible
for orthogonal concerns. When this smell occurs, a single concern is established across
multiple components, and at least one component addresses multiple orthogonal concerns.
The Scattered Parasitic Functionality smell may be caused by crosscutting concerns that
are not addressed properly.

Figure 2.6 Scattered Parasitic Functionality smell occurring across three components (Garcia
et al., 2009).

Figure 2.6 shows an occurrence of Scattered Parasitic Functionality smell, where a
concern is shared across three different components. The example also shows that each
component contains its own concerns.

The quality attributes affected with the occurrence of this smell are:

• Modifiability: when a functionality related to a concern needs to be modified,
several different components may be updated;

• Understandability: components affected with a scattered concern also contain
their own orthogonal concerns;

• Testability: tracking and properly testing all functions related to a concern may be
difficult depending on the complexity of the system;

• Reusability: reusing a component with a scattered concern requires all other
related components to also be used.

22

2.3. ARCHITECTURAL BAD SMELLS

The occurrence of Scattered Parasitic Functionality smell may be acceptable when,
for example, the shared concern needs to be provided by multiple off-the-shelf (OTS)
components whose internals are not available for modification.

Ambiguous Interfaces

Ambiguous Interfaces offer only a single, general entry-point into a component. This
smell appears in systems where componentes use general types, such as strings or inte-
gers to perform dynamic dispatch. Another scenario is in event-based publish-subscribe
systems, in which interactions are not explicitly modeled and multiple components ex-
change event messages via a shared event bus. Ambiguous Interfaces differ from function
pointers and polymorphism in reducing static analyzability, because they are realized at
the architectural level. Thus, they can occur independently of the implementation-level
constructs.

Figure 2.7 An Ambiguous Interface implemented using a single public method with a generic
type as a parameter (Garcia et al., 2009).

Figure 2.7 shows an occurrence of Ambiguous Interface smell, where two aspects are
relevant. First, the interface offers only one public service or method, even though its
component offers and processes multiple services. The component accepts all invocation
requests through this single entry-point and internally dispatches to other services or
methods. Second, since the interface only offers one entry-point, the accepted type is
consequently overly general. In other words, the component claims to handle more types
of parameters than it will actually process, by accepting the parameter P of generic type
GeneralType.

The quality attributes affected with the occurrence of this smell are:

• Analyzability: an Ambiguous Interface does not reveal which services a compo-
nent is offering. Thus, in order for its services to be used, the related component’s
implementation must be inspected;

23

2.3. ARCHITECTURAL BAD SMELLS

• Understandability: it is not clear exactly what type of message is being passed
through the interface. For instance, in event-based systems, the components in-
volved become dependable, and the services invoked may not be recoverable if the
interface only contains one entry point to multiple services.

Extraneous Adjacent Connector

This smell occurs when two connectors of different types are used to link a pair of
components. In the context in which this smell is proposed, only two types of connectors
are considered: procedure call and event connectors, although this smell applies to other
connector types as well.

Figure 2.8 The Extraneous Adjacent Connector smell is shown. The connector SoftwareEventBus
is accompanied by a direct method invocation between ComponentA and ComponentB (Garcia
et al., 2009).

Figure 2.8 shows an occurrence of Extraneous Adjacent Connector smell, where an
event-based communication model is established through an event bus. The events are
transmitted asynchronously and possibly anonymously. The passing of events is managed
by the bus, while procedure calls transfer data and control through the direct invocation
of a service interface provided by a component. In the figure, ClassB in ComponentB

communicates with ComponentA using a direct method call.
The occurrence of Extraneous Adjacent Connector is peculiar because along with the

decision of deploying different connectors, different quality attributes may affect each
other. For example, procedure calls have a positive affect on understandability, since
direct method invocations make the transfer of control explicit and, as a result, control
dependencies became easily traceable. On the other hand, event connectors increase
reusability and adaptability because senders and receivers of events are usually unaware
of each other and, therefore, can more easily be replaced or updated. However, having
two architectural elements that communicate over different connector types in parallel
represents the danger that the beneficial effects of each individual connector may cancel

24

2.4. CHAPTER SUMMARY

each other out.
The quality attributes affected with the occurrence of this smell are:

• Adaptability: in this condition, senders and receivers of events are unaware of
each other. However, if there is a procedure call, the involved components may be
difficult to adapt;

• Understandability: using an additional event-based connector reduces under-
standability because it is unclear whether and under what circumstances additional
communication occurs between the two components;

• Reusability: having two different links between components, thus having a strong
dependency on each other, make them difficult to be reused in different contexts.

The occurrence of Extraneous Adjacent Connector smell may be acceptable when,
for example, a standalone desktop application uses both connector types to handle user
input via a GUI. In such case, event connectors are not used for adaptability benefits, but
to enable asynchronous handling of GUI events from the user.

2.4 Chapter Summary

In this chapter, we presented an overview concerning the main topics of this work:
Software Product Lines, Software Architecture and Architectural Bad Smells. We de-
scribed the benefits achieved when using the SPL approach, such as lower time-to-market
and higher quality of products. We discussed the approaches and activities that can be
performed to realize SPL.

Further, we presented definitions to the term software architecture, and explained the
differences between the architecture of single systems and the architecture of an SPL.

Then, we presented the definition of architectural bad smells, described the represen-
tative smells, and presented their impact to the architecture’s lifecycle properties.

Next chapter presents a mapping study that was performed to investigate SPL and
architecture concerns. The goal of the review was to understand the current knowledge in
the field of PLA, identifying gaps and trends, and providing guidance for future research.

25

3
A Systematic Mapping Study on Software

Product Lines Architecture

As mentioned in the last chapter, software architecture represents a key aspect in SPL
engineering. Through the PLA, the business processes are modeled and the solution is
projected to satisfy the requirements of every product to be derived. The goal of the
mapping study presented in this chapter is to categorize the current knowledge in the field
of PLAs to identify gaps, trends, and contribute to future research.

This chapter is organized as follows: Section 3.1 presents the reasons why this
mapping study is performed. Section 3.2 presents the review method and how it differs
from classic systematic literature reviews. Section 3.3 describes the process followed
to perform this review. Section 3.4 presents information related to the planning of the
review, including the topics covered, research questions, search strategy, the search
string and the studies selection criteria that was adopted. Section 3.5 describes the
conduction process, including the data sources, conduction workflow, screening of papers,
classification scheme, and details on the data extraction phase. Section 3.6 presents an
overview of the included studies, as well as the findings of the review: the distribution of
studies according to the aforementioned topics of interest, and the answers to the research
questions. Section 3.7 presents a discussion regarding the findings related to those topics.
Section 3.8 presents the threats to the validity of this review. Finally, Section 3.9 presents
a summary of this chapter.

3.1 Motivation

Many studies reported solutions regarding different aspects of design and using different
methods, but none aimed at gathering relevant information for synthesizing knowledge

26

3.2. REVIEW METHOD

in PLA research. In this sense, the purpose of the work reported in this chapter is to
select and review the current literature publications in a systematic way, providing a
categorization of the existing studies discussing the following architecture aspects of
SPLs: patterns, variability management, documentation and evaluation. We chose these
topics due to both a previous informal research and by discussing with research experts
in the field. By presenting an up-to-date state of research, we help both practitioners in
understanding the phenomenon and researchers in identifying gaps, trends and current
challenges in this field.

3.2 Review Method

Given the broadness of the research area and the intention to provide an overview of the
publications related to PLA, we aimed at systematically reviewing the literature through
a method that resulted in broad coverage, instead of a narrow focused analysis. Our
purpose with this work is to contribute by indicating the quantity of evidence in the field,
identifying research trends and gaps, and categorizing studies.

In this sense, we performed a Systematic Mapping Study (MS) based on the guidelines
proposed by Petersen et al. (2008). This type of literature review aims at systematically
and objectively examining the extent and range of research activity of an area. A MS
summarizes and categorizes information extracted from studies retrieved from different
sources based on a set of inclusion and exclusion criteria.

Mapping Studies do not usually answer specific questions, as they are more concerned
with the classification of studies and identification of research gaps (Budgen et al., 2008;
Kitchenham and Charters, 2007). They differ from Systematic Reviews in their broadness
and depth. Instead of rigorously searching, analyzing and assessing studies, we gather
relevant information in order to draw conclusions regarding the current state-of-the-art
of PLA research. In many cases, a MS is performed prior to executing a full Systematic
Review for identifying the value of such effort.

In summary, Mapping Studies:

• ask multiple (and often broad) research questions;

• are more concerned with a broad focus instead of a narrow focus;

• are likely to return a very large number of studies;

27

3.3. REVIEW PROCESS

• are unlikely to include in depth analysis techniques such as meta-analysis and
narrative synthesis; and

• aim at influencing the future direction of primary research.

It is important to notice that identifying gaps in literature through a MS will not
necessarily identify gaps in study reviews, since the focus of a MS is not to consider and
evaluate the quality of the studies. Our goal is to summarize evidence obtained from
acknowledged sources regardless of study design.

In this work, we considered some concepts of Systematic Reviews, such as the
protocol definition, for a better planning and formalization of the process.

3.3 Review Process

da Mota Silveira Neto et al. (2011) proposed an adaptation of the workflow reported in
(Petersen et al., 2008) by including the definition of a protocol. Even though the existence
of a protocol is not mandatory, we decided to include this artifact because through its
establishment, researchers are able to document the research directives, strategies and
annotate decisions for calibrating the mapping study process. The protocol contains
detailed control information on the search terms, search strategy, expectations and criteria
for selecting studies.

The review process, from planning to reporting, was carried out in 11 months by
3 researchers in software engineering: one master student, one PhD student, and one
professor with expertise in SPL and architecture. All participants had experience in
SPL projects in both industry and academia. Figure 3.1 presents the performed steps for
running the review.

Figure 3.1 Review process proposed by da Mota Silveira Neto et al. (2011).

28

3.4. PLANNING

3.4 Planning

As previously stated, the focus of this work is to summarize evidence and research issues
in PLA. In other words, we would like to obtain an understanding of the area through the
main question: “How is architecture dealt with in SPL?”.

Prior to defining the research protocol, we performed an informal literature review
in order to better understand the terminology, main practices and challenges of the area.
Based on the review, we proposed a set of subareas that were then validated through
meetings with experts, who provided their opinion and contributed to improve the scope
of this study. The subareas are described separately in Figure 3.2, although several studies
address more than one topic simultaneously.

Figure 3.2 Covered topics in PLA research.

Any practice towards structuring and formalizing architecture design in SPL must
consider variability since the notion of variable (and common) aspects of products plays
a fundamental role throughout every SPL discipline. For instance, the choice of using a
design pattern should also consider that SPLs are variability-based environments, which
means that certain characteristics of a pattern could be harmed or beneficed by the need
to orchestrate different features to be composed and derive products. Also, the practices
to evaluate a PLA, for example, should take into consideration that different features
and different compositions are supported by this architecture. Such scenarios make
explicit the difference between the architecture of a single system and a PLA by a key
aspect: variability, i.e., the requirement to implement different products from the same
architecture.

29

3.4. PLANNING

3.4.1 Research Questions

Four research questions were derived as an attempt to cover the following topics of
interest within PLA: Patterns, Variability (handling), Documentation, and Evaluation.
These topics were selected after an informal review, several meetings with experts both
from industry and academia, and also as an attempt to cover the gaps discussed in
the related work section. We then define the overall goal of the study, according to
the Goal-Question-Metric (GQM) template, (Zhang et al., 2011) as: “Analyzing and
characterizing the current situation of Product Line Architecture patterns, variability
handling, documentation, and evaluation with respect to SPLs architectural information
from the perspective of researchers and practitioners as the basis for gathering relevant
evidence to make research work more efficient and effective”.

The following questions and their rationale were structured following the steps
suggested by Easterbrook et al. (2008). They take into consideration an exploratory
fashion that allows us to obtain rich qualitative data. By asking existence and descriptive-
comparative questions, we provide the reader with a clear understanding of the phenom-
ena, as well as more precise definitions of theoretical terms.

Q1. Are architectural patterns (styles) used in SPL? With this question we
intend to find out whether common architectural solutions are used in SPL. For instance,
we investigate if patterns commonly used in single system development - such as pipes
and filters - are also part of the architecture definition of SPLs (van der Linden et al.,
2007). Moreover, we aim at discussing the implications of applying particular patterns in
quality attributes.

Q2. How is variability handled in the architecture level of SPLs? It is known
that variability is a key aspect in software product line engineering (Pohl et al., 2005).
Through this question, we intend to understand how variability is present in the archi-
tecture design level. We investigate how variability is represented, i.e., how variable
requirements are considered. Also, we are interested in the concepts used, and the artifacts
involved when representing variability, since defining proper aspects of variability are of
high importance in SPL engineering.

Q3. How are the SPL architectures documented? Based on (Pohl et al., 2005),
there are different ways to document the architecture of a product line. First, it is necessary
to decide what information to document, and then build an architecture through guidelines,

30

3.4. PLANNING

so others can successfully implement, use and maintain systems from it (Clements et al.,
2010). With this question, we aim to find out whether PLAs are documented at all. In
addition, we are interested in the techniques used for representing different aspects of
architecture, for example, views and architectural knowledge. This questions differs
from the previous one in purpose. While RQ2 focuses on architectural artifacts and how
they specifically express variability, this questions focuses on different views, ADLs and
frameworks used to document PLAs as a whole.

Q4. How are the SPL architectures evaluated? Through this question we intend
to identify the strategies to evaluate the design of a PLA. In addition, we question
whether metrics or tools are used, or all validation procedures are based on expertise and
subjectivity. The goal is to investigate how to measure systems properties based on an
abstract specification, in this case, an architectural design (Bosch, 2000).

3.4.2 Viewpoints

The search string reflects the construction of the research questions, which were structured
from three viewpoints:

• Population: published scientific literature about architecture of software product
lines or architecture-related software product family approaches;

• Intervention: approaches or issues about methods, values, principles or practices
involving architectures of software product lines or software product families.

• Outcomes: results involving particular architectural models and methods for
designing software product line architectures.

3.4.3 Search Strategy

The search strategy used to construct the search terms follows the approaches presented
by Easterbrook et al. (2008) and Kitchenham and Charters (2007) because they are
systematized in essence. The defined steps were used to derive the search string from the
questions and their viewpoints, as well as through the opinion of experts and information
in relevant papers.

31

3.4. PLANNING

Search String: From the identified topics of research, we structured the search
string by also considering for each term the synonyms frequently used by the community.
The idea was to obtain targeted studies through matching the combination of software
product lines (or synonyms), architecture (or synonyms) and at least one of the keywords
that represent the subtopics of interest within PLA.

After a number of discussions towards an agreement, we ran a set of pilot searches in
the digital libraries. In order to calibrate the search string, we established a “quasi-gold”
standard (QGS), as proposed in (Zhang et al., 2011). The results from the manual search
were defined as a QGS by crosschecking the results obtained from the automatic search.
If the QGS were not found by the automatic search, we included more terms into the
search string and re-executed the automatic search.

The search process was validated with experts in both the mapping process and the
field of PLA. The search string is presented in Table 3.1. Its terms were linked using
Boolean OR and AND operators.

Selection Criteria: In order to identify the relevant primary studies of architecture
and software product line engineering approaches, the following inclusion/exclusion
criteria were defined.

• Inclusion criteria: Studies that explore issues related to patterns, variability,
documentation, and/or evaluation in PLA were considered. In addition, we consider
unique studies, i.e., when a study has been published in more than one venue, the
most complete version was used. We consider full papers published in conferences,
journals and workshops published up to (and including) 2013, all written in English.

• Exclusion criteria: Studies that do not address architecture in SPL were excluded.
Moreover, primary studies or studies that mention architecture in SPL, but do not
discuss any type of method, activity, experience, or approach concerning at least
one of the topics of interest in this mapping study were also excluded. We do
not consider feature models as part of PLA. Studies that were only available as
abstracts, PowerPoint presentations, tutorials, panels or demonstrations were also
excluded from the process. Finally, short papers (with three pages or less) and
studies that were not published in the period between 2000 and 2013 were excluded.
We decided to consider the year 2000 as a starting point due to the release of the
SPLC/PFE conference in that year. We believe that a 14-year time frame is enough
for a reasonable acknowledgement of the area to be obtained and evaluated.

32

3.5. CONDUCTING

Table 3.1 Search String
architecture OR architectures OR architectural OR architecting OR

model OR models OR modeling OR
structure OR structures OR structural OR structuring

AND
pattern OR patterns OR style OR styles OR

variability OR variable OR variation OR
document OR documenting OR documentation OR

evaluate OR evaluating OR evaluation OR assess OR assessing OR assessment
AND

“product line” OR “product lines” OR “product-line” OR “product-lines” OR
“product family” OR “product families” OR “product-family” OR “product-families” OR

SPL OR SPLs

3.5 Conducting

Data Sources: In this work, we concentrate the automated search in scientific
databases and the manual search directly in the selected sources rather than considering
technical reports or books. We assume that most of the approaches and methods reported
in books and technical reports are also described or referenced in research papers. We
decided to use both automated and manual search techniques combined with the QGS for
reducing bias by lowering the chance of overlooking relevant studies.

The main journals and conferences (see Appendices A and B) that cover topics in
software architecture, software product lines, software quality and software engineering
in general were manually searched for defining the QGS and having as result high quality
studies. The elimination process is shown in Figure 3.3.

Regarding the automated search, we adapted the search string to satisfy each search
engine syntax requirements. When available, we selected search parameters to return
studies that satisfied the selection criteria, i.e., search filters for only considering studies
under the computer science topic, and within the 2000-2013 publication time frame.

The following electronic databases were searched: ACM Digital Library1, Elsevier –
Engineering Village – Compendex2, IEEE Xplore3, ISI Web of Knowledge4, and SciVerse
ScienceDirect5.

Conduction workflow: The selection of studies included the following activities:

1http://portal.acm.org/dl.cfm
2http://www.engineeringvillage.com
3http://ieeexplore.ieee.org
4http://www.isiknowledge.com
5http://www.sciencedirect.com

33

3.5. CONDUCTING

1. Run the manual searches from DBLP Computer Science Bibliography6 and con-
ferences websites, considering the key terms and all studies published within the
defined time frame;

2. Define the “quasi-gold” standard (QGS) based on manual searches;

3. Run the automated searches using the search terms;

4. Identify the QGS by crosschecking the automatic searches results. If necessary,
include more terms in the search string and run the automated searches again;

5. Exclude studies based on the exclusion criteria;

6. Exclude studies based on the full text read;

7. Exclude irrelevant studies based on researchers agreement; and

8. Obtain primary studies.

First, as recommended in the guidelines (Kitchenham and Charters, 2007), one
researcher checked the title and abstract fields, eliminating papers that were not related
to the subject (PLA). Such step resulted in a list of papers that were analyzed by the
remaining two researchers, who validated the list by eliminating papers that are not
related to the research questions. The duplicated papers from different sources were
eliminated, and two researchers undertook the full-text reading of the studies that were
agreed to remain in the process, after agreement of the three researchers involved. Then,
after the full-text reading, the unclear cases were resolved by another round of discussions
between the researchers. Bias regarding the reliability of inclusion/exclusion decisions
was adjusted in frequent discussions between the researchers involved in the process.

3.5.1 Screening of Papers

The selection of studies involved a screening process for guiding the search for relevant
work. From the different sources, we applied filters for selecting only potentially accept-
able studies according to the defined inclusion criteria. For establishing the QGS, we
manually searched 15 journals and 28 conferences. 84 studies were included from the title
and year examination procedure. After examining their abstracts, 68 studies remained
in the process and such set of studies was considered the QGS of the review. After

6http://www.informatik.uni-trier.de/ ley/db/

34

3.5. CONDUCTING

adjustments in the search string to consider all papers in the QGS, the automated search
engines retrieved together 5697 studies. Only 320 were preserved after title and abstract
analysis. Among the total of 388 studies (68 from manual and 320 from automated
analysis), 272 were excluded due to duplication, and thus 116 were selected for full text
reading. Two researchers undertook full text readings and after 17 studies eliminated,
we agreed that 6 more needed to be excluded from the process. Finally, the resulting 93
studies represent the primary studies, which were critically appraised from the research
questions points of view. The screening process is shown in Figure 3.3.

The complete list of primary studies in their categories is presented in Appendix A.
We categorized the included studies according to the topic that is explicitly covered in
them. For example, if a paper is listed in Table A.2, it reported discussions regarding the
use of patterns in PLAs. The occurrences of the same study in different tables indicate
that such study simultaneously addressed more than one research question.

3.5.2 Classification Scheme

For categorizing studies, we defined a set of facets that will guide researchers in drawing
general conclusions regarding the primary studies and consequently the PLA area. The
classification used was based on (Petersen et al., 2008) and considered both general and
topic specific reasoning.

As far as the general research facets, the categories allow reasonable understanding
of the area by presenting the types of research and types of contribution of each primary
study. With such categorization, the reader is able to easily identify the research-wise
purpose of the previously published papers in the field of PLA. Among the general
research facets, we included the following:

I. Research type: Validation Research, Evaluation Research, Solution Proposal, Philo-
sophical Paper, Opinion Paper, Experience Paper (Wieringa et al., 2005). A descrip-
tion of each category is presented in Table 3.2;

II. Contribution type: Process, Method, Model, Framework, Metric, Tool;

With respect to the context-specific classifications, we elaborated them after reading
the primary studies. The data extraction phase generated several interesting pieces of
information addressing the RQs, which were later distilled into facets. Such facets are
presented below and further discussed while answering the RQs:

35

3.5. CONDUCTING

Figure 3.3 Screening of papers.

36

3.5. CONDUCTING

I. Architectural patterns context: Client requests, Service orientation, Aspect orienta-
tion, Repositories, Dataflow, Distributed systems, Derivation consistency, Adaptable
systems, Multi-purpose;

II. Artifacts related to variability: [Integrated] Decomposition diagrams, Object-
oriented specifications, UML diagrams, Process models, Component models; [Or-
thogonal] Decision models, Variability-Meta-Model, Conceptual models, Specific
tools;

III. Architectural view: Logic, Development, Process, Code (Pohl et al., 2005);

IV. Evaluation method: Architecture Tradeoff Analysis Method (ATAM); Software Ar-
chitecture Analysis Method (SAAM); Scenario-Based Architecture Re-engineering
(SBAR); Other;

3.5.3 Data Extraction

The data extraction strategy was designed to collect all the information needed to cate-
gorize the studies and also address the research questions. For each primary study we
filled information into a data extraction form, as suggested by Dybå et al. (2007). The
report contains general information, including the unique identifier of the study, date of

extraction, data extractor, and data checker. Moreover, information related to the study
description were recorded, which includes the bibliographic information (authors, year,
title, source, venue), objectives, the main problem, results, and categorization based on
the categories and facets.

Regarding the contribution of each study in terms of PLA, we extracted text related
to our research questions, refined the obtained data in order to adequately answer them.
The resulting data from this process was kept in text documents. We decided to keep the
traceability throughout the process because we argue that it is valuable to have choices of
different granularities concerning each topic of research, and also maintaining fairness as
much as possible. Not rarely, studies were able to answer more than one question.

All information regarding the control of the selected primary studies, numbers and
top-level categorization data was managed using spreadsheets. In the next section, we
describe the outcomes of the review process, which include general conclusions, graphs,
and discussions.

37

3.6. OUTCOMES

Table 3.2 Research Type Facet
Classes Description
Validation
Research

Techniques investigated are novel and have not yet been implemented in practice.
Techniques used are, for example, experiments i.e., work done in the lab.

Evaluation
Research

Techniques are implemented in practice and an evaluation of the technique is
conducted. Implementation of the technique is shown in practice (solution im-
plementation) and the consequences of the implementation in terms of benefits
and drawbacks (implementation evaluation) are demonstrated.

Solution
Proposal

A solution for a problem is proposed, the solution can be either novel or a
significant extension of an existing technique. The potential benefits and the
applicability of the solution is shown by a small example or a good line of
argumentation.

Philosophical
Papers

These papers sketch a new way of looking at existing things by structuring the
field in form of a taxonomy or conceptual framework.

Opinion
Papers

These papers express the personal opinion of somebody whether a certain
technique is good or bad, or how things should be done. They do not rely on
related work and research methodologies.

Experience
Papers

Experience papers explain what and how something has been done in practice.
It has to be the personal experience of the author.

3.6 Outcomes

In the previous sections, we described the phases of preparation, conduction, and data
extraction of the review. From the process, we were able to obtain relevant knowledge
in the field of PLAs. In following sections, we present the findings of the review,
including the categorizations and the answers to the research questions. Further, we carry
a discussion regarding the current knowledge on the topics previously defined: patterns,
variability management, documentation and evaluation.

3.6.1 An Overview of the PLA field

In this section, we present an overview of the primary studies, followed by the answers
to the research questions. We show a classification of the top 11 publication sources
according to their contribution to this study in Table 3.3. Some conferences were merged
together because we consider they represent the same venue or joint events. For ex-
ample, the Product-Family Engineering (PFE) workshop was extinguished in 2004, as
the Software Product Line Conference emerged and has been maintained active every
year. As expected, a considerable part of the included studies was published either in
ECSA/WICSA or SPLC/PFE proceedings. The concentration of relevant publications in
those sources indicates the close relation among SPL engineering and architectural issues.
Although we considered a limited number of conferences and journals for the manual

38

3.6. OUTCOMES

Table 3.3 Top 11 contributing publication sources
Source Type Count
European Conference on Software Architecture (ECSA) Conference 18
Working IEEE/IFIP Conference on Software Architecture (WICSA)
Software Product Line Conference (SPLC) Conference 16
Software Product-Family Engineering (PFE)
Information and Software Technology (IST) Journal 6
International Conference on Software Engineering (ICSE) Conference 5
Journal of Systems and Software (JSS) Journal 3
International Conference on Software Reuse (ICSR) Conference 3
Joint ACM SIGSOFT Conference - Quality of Software Architectures
(QoSA)

Conference 2

International Symposium on Architecting Critical Systems (ISARCS)
International Conference on Software Engineering Advances (ICSEA) Conference 2
International Conference on Computational Science and its Applications
(ICCSA)

Conference 2

International Conference on Software Engineering and Knowledge Engi-
neering (SEKE)

Conference 2

Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS)

Symposium 2

search, relevant studies that were retrieved with the automated search and published by
unsearched sources were also included.

Temporal View: In terms of publication years, we identified a trend that allows
us to briefly conclude that architectural aspects are becoming a frequently visited topic
to SPL-related studies. Perhaps the increasing interest in the area is due to the great
magnitude in complexity of the latest known families of systems. In addition, more
organizations are adopting software reuse approaches as a viable and valuable practice to
optimize their business processes. In Figure 3.4, the distribution of studies according to
their publication years is presented.

Research Contibution Views: One of the main contributions of mapping studies
is the map, frequently a bubble plot representation (Keith and Wen, 2010) of different
perspectives. The graph is designed based on the extracted information, and takes
advantage of multiple dimensions allowing reflexive reasoning on data. For the purpose
of this study, we chose to consider the number of identified studies according to the
research type, contribution type, and area of interest within PLA. The bubble plot is
shown in Figure 3.5. Since studies often address multiple RQs, the sum of the numbers in
the bubbles is higher than the number of primary studies included. The ‘solution proposal’
category carries the highest number of studies, and within this research type, the majority

39

3.6. OUTCOMES

Figure 3.4 Distribution of studies in publication years.

of the studies somehow answered questions regarding the problem of handling variability
at the architecture level.

Most studies propose solutions to a problem. In cases where a particular study
presented characteristics of both ‘solution proposal’ and ‘validation research’, for instance,
we considered it to be in the ‘solution proposal’ category, since the main objective is
to actually solve a problem. For example, when a study proposed a novel method for
solving a problem and afterwards applied some form of empirical validation.

We found it worthwhile to also categorize the studies in terms of contribution to
the research community. Through Figure 3.5 we present the number of studies that
aim at different goals according to the type of contribution, following the classification
scheme mentioned in section 3.5.2. In summary, we identified that 67.7% of the primary
studies proposed a method for resolving specific issues (e.g., evaluating derived products
according to a set of quality attributes), followed by the proposal of a framework (8.6%),
process (7.5%), metric (6.4%) and tool (3.2%).

3.6.2 Findings

In this section, answers to the research questions are addressed. We defined a number
of topics to better categorize knowledge regarding each research issue. As previously
mentioned, many times the studies were able to contribute to multiple topics of research,
e.g., a proposal of a mechanism for documenting variability properties in an architec-
ture process provides answers to both ‘variability’ and ‘documentation’ issues. The

40

3.6. OUTCOMES

Figure 3.5 Overview of the area through a bubble plot.

41

3.6. OUTCOMES

Figure 3.6 Number of studies addressing research topics.

distribution of studies that contribute with answers to each question is shown in Figure
3.6.

Most of the included studies address variability issues. It indicates that such aspect is
frequently visited within PLA, as recent studies discuss mechanisms to explicitly deal
with variability. Furthermore, evaluation issues are constantly subject of interest, mainly
concerning scenario-based architecture assessment. Different forms of documentation

are often objects of study, including Architectural Description Languages (ADLs) and
extensions of existing methods originally for single systems. It is also noticeable that
approaches for designing SPLs have emerged in the recent years, by either proposing
novel ways to structure the product line or adapting already established activities. Not
as much work has been undertaken regarding discussions on patterns issues, although
several solutions made use of layered systems to design PLAs, for example.

The links shown in Figure 3.2 (topics within PLA) indicated the connection between
variability handling and every other topic of interest covered in this review. In addiction
to such assumption, after the review we were also able to identify links between (i)
’patterns’ and ’documentation’; and (ii) ’documentation’ and ’evaluation’ (as shown in
Figure 3.6). For example, one paper (Johansson and Höst, 2002) explicitly discussed the
role of documentation in evaluating PLA degradation. On the other hand, we identified
one paper (Babar, 2004) that discussed the importance of documenting architecturally
significant information found in architectural patterns in the context of PLAs. Next, we

42

3.6. OUTCOMES

present the answers to each research question according to the findings from the primary
studies.

RQ1 - Are architectural patterns (or styles) used in SPL?

Patterns are commonly used to help answering questions regarding how and where com-
puter resources are distributed and how their communication should be implemented. As
stated by Hallsteinsen et al. (2003), the goal in using patterns should be to resolve archi-
tectural problems by implementing a pattern language containing both known patterns
and ‘local’ solutions for recurrent problems.

In our MS, we found only 9 primary studies that addressed explicit discussions about
the use of patterns in PLAs (see Table A.2 in the Appendix). These studies proposed
solutions to recurrent situations when developing SPLs, such as the deployment of
services, distributed systems, or deriving products in the mobile games domain. We were
also able to notice a few general-purpose (though SPL-specific) solutions to build PLAs.
Some of the included studies reported frameworks to aid in the selection of adequate
patterns that are commonly used in single systems. The metrics used in the decision are
commonly based on the domain and on the desired quality attributes for that particular
set of products to be developed.

Despite the number of studies addressing specific discussions about the use of pat-
terns in PLA, we identified 33 primary studies that used some type of pattern in their
architectures. Among those, we found 14 (42.4%) studies that used a layered architecture
in their solutions. Such decision is driven by the achievable benefits of reusability and
higher availability in systems designed that way. Next, we present the patterns found in
the literature to structure PLAs.

The patterns. The patterns discussed in the primary studies are organized in cate-
gories in Table 4. The categories represent the type of organization used across different
patterns. The references in parentheses show the authors who originally proposed the
related patterns.

For managing client-request systems, which require appropriate process concurrency
mechanisms to be implemented and supported by the architecture, the Reactor, Proactor
and Leader/follower patterns are considered (Meister et al., 2004). The priority of
communication among components and coordinating services can also be adequately
resolved by the Communication process pattern. Such practice is incorporated in the
Heterogeneous style based ARchiTecture (HEART) model, which consists of three

43

3.6. OUTCOMES

Table 3.4 Patterns in PLAs
Category Pattern QAs Studies

Client requests
Reactor (Synchronous)

Concurrency
Meister 2004

Proactor (Asynchronous)
Leader/Follower (Concurrent) (Schmidt 2000)

Multi-purpose

MVC
Pluggable Meister 2004
Exchangeability Kim 2008
Usability

PAC Meister 2004

Layered systems Security Murwantara 2011Maintainability

Aspect-orientation
UI-oriented Descentralized control Reusability

Cho and Yang 2008Centralized control Performance
Contents-adaptable Traceability

Service-orientation Communication process Concurrency Lee 2010

Repositories Blackboard

Fault tolerance Kim 2008
Robustness
Changeability (Bass 2003;
Maintainability Buschmann 1996;
Reusability Shaw 1996)
Usability

Dataflow Pipes and Filters

Availability Kim 2008
Replacement
Reusability (Bass 2003;
Testability Buschmann 1996;
Usability Shaw 1996)

Distributed systems

Broker

Interoperability Kim 2008
Portability
Reusability (Bass 2003;
Changeability Buschmann 1996;
Extensiblity Shaw 1996)
Client

Transaction | Query | Notifications Concurrency Morisawa 2001(Centralized, Distributed, Asynchronous)

Derivation consistency Component-Relationship Flexibility Murwantara 2011

Adaptable systems Microkernel Flexibility Meister 2004
(Buschmann 1996)

44

3.6. OUTCOMES

decomposition levels, and each level addresses specific design goals within a given
domain by adopting architectural styles (Lee et al., 2010).

There are cases in which PLAs are required to separate the representation of the
information from the user interaction modules, following the same principles commonly
followed in single systems. In such cases, which can be applied to several domains, the
Model - View - Controller (MVC), the Presentation - Abstraction - Control (PAC)
and Layered solutions can be used. These multi-purpose approaches were used when
practitioners required functional flexibility, such as in a product line of statistical analysis
software (Meister et al., 2004), in which highly customizable products are derived based
on different visibility groups.

Variable features can be implemented using aspect oriented programming. In these
cases, framed aspects can be used to manage variability. Besides the implications of
the particular domain, the use of aspect orientation allows the deployment of a number
of patterns for the PLA. In this MS, we found approaches focusing on the control and
structure of architectures in the mobile games domain(Cho and Yang, 2008).

A decision regarding which pattern should be used must take into consideration
the domain and the purpose of the pattern to be adopted, as shown in the DRAMA
framework (Kim et al., 2008a). In the case of a service-oriented architecture, for example,
the Communication process pattern is suggested to assure efficient concurrency in
dealing with multiple services. The framework further discusses the organization of
repositories using the Blackboard pattern (prioritizing robustness and fault tolerance),
and dataflow-related solutions using the Pipes and Filters pattern (prioritizing availability
and testability). The latter provides means to easily replace modules in the process,
although testability is affected due to the data flow principle. Another discussion carried
within the decision framework is whether there are distributed systems. In this case,
interoperability is required to be a priority in order to manage concurrency, thus the
Broker and Transaction - Query - Notifications patterns are recommended.

To address SPL derivation issues, we found that the Component - Relationship
pattern can be used to assure the consistency of variable features to be composed into a
product (Murwantara, 2011). The proposed pattern consists of three layers that collaborate
to manage the derivation consistency: Component (to manage the derivation process),
Relationship (to manage the consistency of variability), and Relationship-to-relationship
(to manage quality attributes).

Finally, we identified the microkernel pattern, which can be used to enable func-
tional flexibility. It was originally proposed to support the design of portable, adaptable

45

3.6. OUTCOMES

operating systems and to enable their extension by new services (Meister et al., 2004).
We found that the solutions proposed by the approaches are isolated and very diverse.

Approaches did not consider variability explicitly, as they used well-established patterns
from single systems. The exception is the Component-Relationship pattern, which takes
advantage of derivation properties. However, this approach lacks rigorous validation and
a deep analysis on the side effects acquired when utilizing it.

Quality attributes as decision drivers. Morisawa and Torii (2001) state that ar-
chitectural styles are usually selected based on designer’s experience. It is known that
patterns adoption decisions have high impact on quality, cost of development and ad-
ministration. However, choosing among different patterns can be difficult, especially
for non-experienced practitioners. One needs to consider that architectural patterns are
closely related to quality attributes. The choice of using a particular pattern results in eas-
ily resolving a recurrent design issue, but also commits the software under development
to the advantages and disadvantages related to that pattern.

One way to properly analyze the tradeoffs between deciding upon a pattern is through
the DRAMA framework (Kim et al., 2008a). It takes into consideration the positive
and negative impacts on the following quality attributes: Availability, Modifiability,
Performance, Security, Testability and Usability. In addition, they cross the evaluation of
such quality attributes with a number of well-known patterns in a decision table.

Another interesting approach is reported in (Hallsteinsen et al., 2003), which is based
on quality scenarios. The process of deriving product architectures considers a decision
model to select patterns that are suitable for the quality requirements. Since the selection
of a particular pattern usually affects more than one quality attribute, designers must
prioritize them in order to achieve the desired goals.

In fact, studies that discussed means to decide between patterns rely on the specific
requirements of the SPL domains. The most considered quality attributes were related to
Security, Maintainability, and Flexibility within the context of SPLs.

Moreover, it may be necessary to combine the use of different patterns (Goedicke
et al., 2004). In this case, scenarios can be used to bridge quality attributes and patterns
in the design guidelines and help resolve trade-off situations (Hallsteinsen et al., 2003).
When patterns are established, there may be a conceptual confusion followed by the
struggling in mapping the relationships among the patterns, quality entities, and scenarios.
The relationships among those aspects can however be made explicit by using templates
to document architectural information (Babar, 2004).

46

3.6. OUTCOMES

In conclusion, we identified very few approaches that discuss patterns and their
relations with quality attributes explicitly in the context of PLAs. We argue that properly
and explicitly bridging those aspects would be valuable when both selecting patterns and
validating requirements.

RQ2 - How is variability handled in the architecture level of SPLs?

One of the main challenges in PLA development is to effectively accommodate the
variability of the member products (Lin et al., 2010). Once the feature model is designed,
it requires considerable effort to maintain traceability and properly represent variability
throughout the following SPL disciplines. The bridge between the feature model and the
PLA is particularly important because it will guide the development process to an actual
solution regarding an architecture that will support the instantiation of several others. In
fact, it is known that when PLAs fail, such thing does not occur because they are not
properly designed, but because they are not properly described as regards to variability
(Moon et al., 2006).

For this reason, representing commonality and variability in an adequate way is
crucial to the quality of the overall SPL process. Recent discussions have been under-
taken regarding the representation mechanisms for PLAs, and include the need for new
variability mechanisms. Such phenomenon occurs due to the lack of research analyzing
to what extent the existing approaches can express commonality and variability (Ahn and
Kang, 2011).

In this work, we refer to variability as the aspect that drives different products to
be derived from the PLA, considering the composition of different features. We do
not refer to flexibility of the PLA, which covers the adaptation and changes in an SPL
architecture (Galster, 2010). Variability in the context of this paper refers to the different
architecture/product versions that can be instantiated from the SPL architecture, used as a
platform.

Integrated vs. Orthogonal. There are currently two types of variability modeling
techniques in PLA: integrated, which extend traditional software artifacts with variability
aspects, and orthogonal, which add new representations separately from existing artifacts.
Issues involving the usage of both types are discussed in the literature (Galster, 2010;
Tekinerdogan and Sözer, 2012).

Integrated type techniques overlap functionalities of existing modeling features (e.g.
creating stereotypes in Unified Modeling Language (UML) diagrams) to represent vari-

47

3.6. OUTCOMES

ability. Examples of integrated approaches include the KobrA mechanism (Atkinson et al.,
2000) and an object oriented approach, which extends UML notations using statecharts
(Gomaa, 2000).

On the other hand, an orthogonal technique manages variability in a separate model,
which requires a mapping strategy between the actual architectural objects and the
corresponding variability entities. One example of such technique is shown in (Capilla and
Babar, 2008), which also takes into consideration product constraints and the variability
binding times. The main orthogonal approach adopts an Orthogonal Variability Model
(OVM) (Pohl et al., 2005), through which the variation points are identified and mapped to
components in a component model. Such approach presents the advantage of maintaining
the usual architecture model, since variability is managed remotely. In this case, the
mapping between the OVM and the actual model adds complexity and requires robust
traceability mechanisms. Two studies addressed the use of OVM (Ahn and Kang, 2011;
Murwantara, 2011), and another one presented an approach aiming at integrating the
OVM and feature modeling into LISA, a toolkit for architecture management an analysis
(Groher and Weinreich, 2012).

Traceability. Since variability is a major concern in SPL engineering, it would
be desirable to maintain an efficient traceability mechanism between the development
artifacts. In the context of this work, we consider development artifacts every output
generated from a SPL development discipline. For instance, the feature model in the
requirements discipline, the component model in the architecture discipline, and the
source code in the implementation discipline. The correct mapping of variable properties
between such artifacts indicates the consistency of the development process, and eases
the future maintenance activities.

From requirements to architecture disciplines, for example, the description of how to
bind variability points can be used through meta-modeling approaches (Moon et al., 2006,
2007; Díaz et al., 2011). The commonalities and variability decisions are stored, and the
product-specific requirement is formally mapped to a component in the PLA model.

We found that in an integrated approach, the practice of extending a component model
is supported by the variations contained in the feature model. In this sense, the properties
and relationships in the feature model will determine how the components interact (Mann
and Rock, 2009; Lin et al., 2010; Murwantara, 2011).

On the other hand, in orthogonal approaches, we identified the importance of rigorous
mapping mechanisms between the commonly used design representation models (e.g.,

48

3.6. OUTCOMES

the component model) and the variations in the variability model. The mapping between
the entities is managed with control tables and graphical representations, according to the
desired focus. The graphical representation carries the disadvantage of being too limited
for large amounts of data in the feature and in the variability models.

We found that, in several cases, variability properties were not explicitly bridged
between artifacts (e.g., views, models). We argue that explicitly documenting where and
which parts of the system vary, between different artifacts, brings beneficial effects to the
understandability of the overall project.

In order to address such issue, a specific model can be used, such as the one proposed
in (Galvão et al., 2010). The model takes into account cognitive aspects (e.g. assumptions,
properties and evidences) to capture the rationale behind the variability design, using
an architectural description language. However, the approach requires refinement and
is limited in regard to automatic interpretation. Formally capturing rationale behind
variability decisions is useful for implementing traceability mechanisms. For example,
first-class descriptions provide traceability of variation points across requirements, design
and code Goedicke et al. (2004). Further, model-driven techniques can be used to trace
variability to and from features and thus justify variations in different artifacts.

In summary, several issues are still open regarding traceability in software architecture.
Aspects to be investigated include the balance between the real need of traceability and
documentation overhead, as well as the application of (mature) traceability models in
heterogeneous environments (Galster et al., 2013).

Supporting languages. The use of ADLs is explored for specifically supporting
variability properties in PLAs. One of the approaches that we found in the literature is
ADLARS (Bashroush et al., 2006), which attempts to bridge product features and the PLA
through the following views: system-level, component-level and task-level. The language
describes templates, which capture the feature dependencies and allows a straightforward
derivation of product-specific architectures. This ADL allows the mapping between
feature model entities and architectural entities. Since it also represents the behavior (i.e.,
the transition between component/interface states) of the specified entities, we classify it
as an orthogonal approach for representing variability.

Further, we found a number of extensions to existing description languages (e.g.,
MontiArc in (Haber et al., 2011a)). These integrated approaches take into account the
already existing representation mechanisms (e.g., describing components and interfaces)
and add parameters to enable the representation of variability as well.

49

3.6. OUTCOMES

Where variability is represented. Solutions in the literature describing ways to
address variability in PLAs vary widely as far as processes and architectural artifacts (such
as descriptions, views, models and viewpoints) that are taken into account. Furthermore,
in general, they were proposed to resolve local issues and lack rigor in validation through
empirical methods. Many different procedures and techniques are described, which calls
to question the existence of conventions and silver bullets that would for instance be
scalable and flexible enough to be utilized in a range of different domains.

Next, we present the classification of the artifacts involved in the proposed variability
representation solutions. As far as integrated approaches, the entities through which
variability points can be expressed include:

• Decomposition view diagrams: containing a specialized module to manage the
rules and configuration (derivation) of required specific architectures/products
(Bachmann and Bass, 2001; Thiel and Hein, 2002); or subsystems in the FORM
approach, considering the link with the feature model (Kang et al., 1998);

• Object-oriented specifications: expliciting predefined interfaces to articulate vari-
able features (Pinzger et al., 2003);

• UML diagrams: taking advantage of established mechanisms such as inheritance,
extensions, parametrization (SEI, 2001); and aggregation and specialization (Matin-
lassi et al., 2002); also considering activity diagrams (Abu-Matar and Gomaa,
2011); and use case models, which add a variability mechanism through the PLUS
approach (Gomaa, 2004);

• Process models: which are associated with entities of the feature model, in the
FORM approach;

• Component models: which are often enhanced with additional variability infor-
mation (Taulavuori et al., 2004);

Moreover, we identified a number of mechanisms that address variability in separate
artifacts. Orthogonal solutions consider the creation of the following artifacts:

• Decision models: reducing complexity in understandability (Dhungana et al.,
2007); and also through the FAST (Weiss and Lai, 1999) and KobrA (Atkinson
et al., 2000) approaches. In the latter case, for example, each variability point
is related to at least one decision in the decision model. The decisions provide
possible resolutions to be implemented in the Komponents;

50

3.6. OUTCOMES

Figure 3.7 Artifacts affected by variability.

• Variability-Meta-Model(VMM): being responsible for modularizing variability
as parameterized transformation rules. The model transformation rules already es-
pecified for the commonalities are separated from the variability rules (Kavimandan
et al., 2011);

• Conceptual models: describing architecture viewpoints based on the ISO/IEEE/IEC
standard for architectural description (Tekinerdogan and Sözer, 2012) or neutral
notations. The standard ISO/IEEE/IEC 42010 defines a conceptual model of ar-
chitectural descriptions defining general syntax and semantics for them (Hilliard,
2010);

• Specific tools: associating the component model or the feature model with ele-
mentary functions, which contains variability information (Abele et al., 2012). In
the EPM tool, for example, the variability is introduced by declaring structural
elements in a function hierarchy optional, or by attaching the feature model to an
elementary function;

A graph showing the artifacts related to variability is presented in Figure 3.7. It shows
the diversity of options discussed by the primary studies with regard to representation of
variable properties. 44.4% of the studies that addressed such issue discussed orthogonal
models, which represents a balance between orthogonal and integrated approaches. We
found that the UML notation (which include component and activity diagrams, use case
models) are commonly used to represent variability in PLAs.

51

3.6. OUTCOMES

Despite the SPL approaches, we argue that the community would benefit from the
establishment of standards and guidelines to efficiently develop PLAs that clearly and
explicitly deal with variability. A comparison between different approaches and methods
for designing PLAs can be found in (Matinlassi, 2004a; Filho et al., 2008). Further,
more evaluations could be undertaken as regards to the included tradeoffs in creating or
extending different design artifacts. The mapping between the created models and the
remaining artifacts plays a fundamental role in quality attributes, and thus requires further
discussion on orthogonal approaches.

RQ3 - How are the SPL architectures documented?

The importance of documentation is mainly revealed when time optimization issues
arise. Artifacts can be used to communicate architectural knowledge, and thus help in
the establishment of a traceable and consistent software process. Babar et al. (2009)
surveyed a number of architects on their opinion regarding the role of documents in the
PLA’s processes, and their answers addressed the times when new architects join the
team and are expected to read the architecture documents thoroughly. Such practice can
be tiresome for the newcomer professional, but it saves the team a considerable amount
of time, because they do not need to give presentations about the design.

It is clear that including proper documentation into architectural processes brings
effective benefits to the overall project, including stakeholders such as subcontractors. In
SPL, however, the existing documentation approaches focus on describing components
and connectors but fail to reflect the decisions made along the architecting phase (Trujillo
et al., 2007). Further, documentation overhead around PLAs must be evaluated.

Frameworks and ADLs We found several approaches to document variability.
These approaches are highlighted in a table below and better explained in the text.

One way to document architectures is through Architecture Description Languages
(ADLs) (as in FAST approach (Weiss and Lai, 1999)). In order to support compositional
specifications, algebraic languages and process algebras are used in PADL (Bernardo
et al., 2002), which aims at describing concurrent and distributed systems. This solution
allows formal methods to be applied, thus increasing the PLA’s maintainability. Formal
analysis is also discussed in (Satyananda et al., 2007b,a), using PVS theory specification
documents to map features and the PLA. In the context of aspect-oriented solutions,
variability descriptions can be achieved through the specification of components, connec-
tors and ports. Describing both PLA and product architectures is possible through the

52

3.6. OUTCOMES

PL-AspectualACME language (Barbosa et al., 2011).
Moreover, Extensible Markup Language (XML) schemas can be used to capture

the basic elements of a SPL representation: versions, options and variants into the
xADL language (Dashofy and Hoek, 2002a). These attributes are defined as independent
extensions to later define a regular architecture.

An interesting approach is reported in (Babar, 2004), which takes into account the
specification of scenarios (also in PuLSE (DeBaud et al., 1998) and ATAM (Kazman
et al., 2000) approaches). The documents describe how architectural solutions can be
implemented to support product requirements that are specified in the domain engineer-
ing artifacts (business and requirements documents). We argue that this practice can
increase the overall process understandability, as well as improve the communication of
architectural knowledge among stakeholders in the SPL project.

Further, PLAs can be modeled by using UML existing generalization concepts ((Go-
maa, 2000; Muthig and Atkinson, 2002) as in the approaches: COPA (America et al.,
2000) and QADA (Matinlassi et al., 2002)), in addition to problem frames (Dao and
Kang, 2010). Mapping heuristics can be applied in accordance to each feature to be
realized with a problem frame, which are in turn transformed into components using the
UML-based approach for problem frame oriented software development (Choppy and
Reggio, 2005). Mechanisms for explicitly handling variability are better discussed in
section 3.6.2.

The extension of standards (e.g. IEEE P1471 in (Thiel and Hein, 2002)) and model-
driven techniques are also object of study in PLA documentation. The use of model
driven engineering for specifying features, variability, can provide a business view of the
process (Asadi et al., 2009; Botterweck et al., 2007). This approach considers business
goals and requirement models to incorporate commonality and variability properties and
support product derivation.

We argue that one effective solution is having separate documentation artifacts such
as in the KobrA approach (Atkinson et al., 2000), which defines structural, behavioral,
functional and decision models through which the ’komponents’ are described and
derivation rules documented.

Views. It is known that the use of multiple architecture views can help increase
understandability of software design. Describing software according to different view-
points allow specific attributes to be represented. The result is a set of models that carry
different characteristics and thus aid different stakeholders in the development process.

53

3.6. OUTCOMES

Table 3.5 How PLAs are documented in different studies
Studies Method

Process
Framework

How the PLA is
documented

Pattern
related?

(Weiss and Lai, 1999) FAST ADL -
(Bernardo et al., 2002) - PADL Yes
(DeBaud et al., 1998) PuLSE Scenarios specifi-

cation
-

(Kazman et al., 2000) ATAM Scenarios specifi-
cation

-

(Babar, 2004) Framework
using two
information
templates

Relationships
of scenarios,
quality attributes
and patterns are
documented in
templates

Yes

(Dashofy and Hoek, 2002a) - xADL (XML-
based)

-

(Barbosa et al., 2011) - PL-Aspectual
ACME

-

(Satyananda et al., 2007a) - PVS Theory speci-
fication

-

(America et al., 2000) COPA UML -
(Matinlassi et al., 2002) QADA UML -
(Gomaa, 2000) - UML -
(Muthig and Atkinson, 2002) - UML -
(Choppy and Reggio, 2005) - UML-based prob-

lem frame
-

(Atkinson et al., 2000) KobrA Structural, behav-
ioral, functional
and decision
models

-

54

3.6. OUTCOMES

The views together determine the structure of the system.
In this sense, we found that one way to document PLAs is through designing artifacts

aimed to satisfy customers. For example, the customer view (as in the COPA approach
(America et al., 2000, 2005) can be used to describe market and business value drivers
related to the architecture decisions.

Further, we found that the organization of components and their relationships can be
documented using a set of three general views (Matinlassi et al., 2002; Atkinson et al.,
2000; Oliveira and Rosa, 2009): - the structural view, to describe the organization of
the modules, for example, through layers and descriptions associated to the entities in
the design; - the behavioral view, to describe the behavior of the architectural elements
considering the relationships between them (e.g. using scenarios); and - the deployment

view, to describe the structures that can be deployed and form units (i.e. product specific
designs).

In the approach proposed in (Gomaa, 2000), every product is considered a view of
the PLA in the form of use cases. The views are then integrated into a domain model
using an integration approach (Gomaa, 1995). In this approach, the key issue is to map
the different views in the domain model back to the products that must be derived from
it. We argue that it may be difficult to perform a reverse engineering procedure to filter
design decisions that are not related to the product requirements.

We found an interesting approach based on Plastic Partial Components (Pérez et al.,
2009), which take into account the SPL variation properties to establish three views: - the
core architectural view, to describe the components that are common in the PLA; - the
variability architectural view, to specify the configurations and component variations;
and - the product architectural view, to describe the architecture of individual products.

It is clear that solutions regarding different documentation views are sparse and many
times focused on the needs of specific projects. Other views are also accounted for,
to cover for example how the applications are used (America et al., 2005). In order
to classify the different PLA viewpoints used or discussed in the primary studies, we
used the model proposed in (Pohl et al., 2005), which consists of: - a logical view to
describe the systems in terms of the problem domain; - a development view to describe
the decomposition of the system into entities; - a process view to describe the behavior of
the system with regard to the running system’s ordered activities; and - a code view to
show the decomposition of the executable code into files that are assigned to processing
units.

In fact, from the primary studies that mentioned viewpoints or showed artifacts for our

55

3.6. OUTCOMES

Figure 3.8 Architectural views addressed in the studies.

evaluation, the majority (76%) addressed documentation considering the development-
related views, as shown in Figure 3.8. Studies also presented logic representations (36%),
process (24%) and code (22%) viewpoints. Views were many times used in conjunction.
The development viewpoint involves the description of the structural elements, in addition
to the rationale behind the relationships between them. That is, the primary studies often
presented component or class diagrams to describe the structure of PLAs. These numbers
show that recent studies are more concerned with documenting PLAs from the developers’
perspective, considering implementation and management issues.

RQ4 - How are the SPL architectures evaluated?

Many times called PLA assessment (van der Hoek et al., 2003; Olumofin and Misic,
2007; Tizzei et al., 2011), the evaluation of PLAs is often connected with two key aspects
in the overall process: quality attributes (Matinlassi, 2004b; Etxeberria and Sagardui,
2008; Zhang et al., 2008; Oliveira Junior et al., 2010; Cavalcanti et al., 2011) and
evolution (Maccari, 2002; Rosso, 2006). Proper evaluation can lead to the identification of
previously unknown architectural defects, and to the consequent planning of improvement
initiatives (Maccari, 2002). In the particular case of SPLs, verification is important
because during the product development, it is necessary to design the product based on
the core PLA asset and check whether the design satisfies the selected features.

However, a number of problems may arise during evaluation, e.g., the interactions of
quality attribute could lead to architectural conflicts (Olumofin and Misic, 2007). In this

56

3.6. OUTCOMES

sense, such procedure must be carefully undertaken and consider a tradeoff analysis.
We argue that evaluating PLA is very important since problems, potentially replicated

among products, can be detected before the actual products are developed. These prob-
lems are easier and cheaper to correct in the earlier stages. Moreover, in the case of PLAs,
the architecture evaluation becomes crucial to ensure that the PLA is flexible enough to
support different products and in order to allow evolution.

Methods. A number of aspects need to be considered when choosing a method
to evaluate a PLA, including the quality attributes to be assessed and the resources
available to perform the procedure. Also, it is desirable to structure the assessment for
performing both qualitative and quantitative evaluation (Abowd et al., 1997). Among the
quantitative methods, one can make use of design simulations, prototypes, experiments
and mathematical models. On the other hand, qualitative evaluations are likely to include
questionnaires, checklists and scenarios. In Figure 3.9, we present the distribution
of studies addressing different methods for evaluation. 50% of the studies discussing
evaluation methods addressed the use of the scenario-based method ATAM, alone or
combined with its extensions.

In fact, we found that scenarios were widely discussed (Matinlassi, 2004b; Cavalcanti
et al., 2011) and used as the main evaluation method. It consists of identifying different
cases in which the PLA is expected to provide support. That is, customer, business,
structural and technical requirements are analyzed and provide basis to the creation of
these cases. Scenarios are then compared to PLA artifacts (such as decomposition or
object-oriented models on the technical side, and market/resources models on the business
side) to identify points of improvement.

We found several studies (Maccari, 2002; Lutz and Gannod, 2003; Rosso, 2006;
Olumofin and Misic, 2007; de Oliveira Junior et al., 2011; Nakagawa, 2012) that discussed
the use of the scenarios-based Architecture Tradeoff Analysis Method (ATAM) (Kazman
et al., 2000). This method takes into account the quality attribute requirements, and how
the architecture artifacts respond to their stimuli (assessment). It is important to notice
that prior to analysis, the architectural requirements must be expressed in terms that are
concrete, measureable and observable.

Further, the ATAM has been extended to specifically cover both PLA and product-
specific architectures (Olumofin and Misic, 2007). The holistic approach considers
risks and quality attributes tradeoff analysis using architectural drivers and variability
properties. The advantage of the HoPLAA approach is that it covers common and variable

57

3.6. OUTCOMES

Figure 3.9 Evaluation methods addressed.

architectural aspects and allows reuse in the analysis.
We also found methods that take into consideration manual review of PLAs (Kishi

et al., 2005), which the authors argue is inefficient due to error proneness. Thus, an-
other way to assess PLAs is through tools, such as design simulators and design model
executions.

Kishi et al. (2005) affirmed that reviewing is one of the most common techniques
to verify the design. However, it is not effective for exhaustive checking because the
technique is performed manually. The authors also suggested design verification by using

tools such as design simulators and design model execution.

Measurements against requirements. By measurement we mean the act of verify-
ing whether the PLAs fulfill determined requirements. We argue that proper measurement
can greatly increase the quality and correctness of PLAs, especially against quality at-
tributes. The majority of the techniques and methods proposed had not developed tools to
support the process (Montagud and Abrahão, 2009), which means that such measurement
is usually performed with high human intervention and is thus error prone. We have,
however, found one study (Lutz and Gannod, 2003) that addresses tool support for PLA
analysis, taking as input ADL and additional formal specifications.

Different aspects of the PLA as a whole can be measured, such as complexity and
extensibility (Oliveira Junior et al., 2010), thus providing a reasonable understanding on
the economic value of a SPL and identifying maintainability improvement points. Further,
other aspects can be measured, such as similarity, variability, reusability (Zhang et al.,

58

3.7. DISCUSSION

2008).
We argue that the decision about which aspects must be measured should be carefully

made envisioning business drivers and customer requirements. If efficient means for
measurements in those areas are implemented, the quality of PLA is drastically increased.

We found that the architectural models and formal specifications are commonly
evaluated against the desired quality attributes. Such measurements are driven by business
processes.

Inputs and Outputs. For practical evaluation, we point the importance of adopting
a process through which the input and output artifacts are explicitly considered.

When it comes to inputs, the architecture description is the main artifact to be assessed.
However, we argue that architectural knowledge (Maccari, 2002) should also be assessed
by considering the business drivers, SPL process properties, and different stakeholders
requirements. Such extra-design information can be evaluated through also using text
documents and presentation slides, as discussed in (Rosso, 2006). The generated artifacts
include documents that present the actual architecture description, evolvability constraints,
and schemas such as scenarios.

In conclusion, we identified that the architect’s experience is important when assessing
PLA. At this point, we verified that the approaches carry the need of human intervention.
The architects involved in the process are required to specify parameters that directly
interfere in the result of a given evaluation measure. We believe that such phenomenon
occurs due to the subjectivity involved in the definition of quality attributes to be achieved.
In fact, the communication between architects, developers and other stakeholders is an
indirect consequence of performing assessments in PLA (Maccari, 2002). Based on the
studies found, we identified a number of strategies that can facilitate the evaluation of
PLAs, and most of them were related to the use of ATAM or its extensions to cover
variability issues. By adopting scenarios or reviewing methods, architects are required
to manually verify the consistency in PLAs. Thus, the current scenario suggests that
subjectivity and expertise are commonly addressed in evaluating architectural models in
SPLs.

3.7 Discussion

The increasing number of studies published that satisfy our inclusion criteria indicate a
research trend over the last 14 years (see Figure 3.4). The SPL community is looking at

59

3.7. DISCUSSION

architectural issues in a much substantial way than it did ten years ago. We associate this
evidence with the fact that information systems are becoming more and more complex
and integrated, and implemented using different platforms and development approaches.
In addition, many issues remain open SPL engineering research. The current scenario
could benefit from efficient means to reuse knowledge and artifacts, e.g., taking into
consideration the structural particularities and coupling requirements of each product.

Depite the fact that most studies (87%) proposed solutions to current problems, we
noticed theoretical/methodological discussions, but few clarifications on actual experi-
ences. Regardless of the demand on proposing new approaches to resolve issues, there
is a need to properly validate the existing ones. Further, new tools and metrics support
should be proposed to help managing different aspects of PLAs.

As evidenced in Figure 3.5, a low percentage of the studies proposed tools (3.2%) or
metrics (6.4%). We understand that even though software architecture issues are widely
discussed in the single systems domain, there is still a need for the research community
to provide more effective means to specifically measure and give tool support for product
lines. In addition, only 7.5% of the papers suggested the use of a process and 8.6% of a
framework. These numbers suggest that the current studies are concerned with resolving
smaller parts of the problem, instead of wrapping a more complete solution for the PLA
domain or validating existing approaches.

Furthermore, 9.6% of the papers included explicitly addressed issues concerning
Patterns in PLAs. We understand that these numbers indicate an opportunity for future
research, since studies often proposed methods to choose appropriate patterns or measure
quality attributes. For instance, the community would really benefit if tools were proposed
to specify PLAs, and support the derivation of product-specific architectures using
patterns. Next, we describe the findings according to each of the identified topics of
research in PLA.

3.7.1 Main Findings

Next, we show the main findings of this study, separated according to the different points
of interest previously defined for this review.

Patterns

Through analyzing the studies, we noticed a number of models that are used for obtaining
solutions to recurrent architecture problems in SPL. The approaches used patterns that are

60

3.7. DISCUSSION

already established in the single systems domain, e.g. the model-view-controller (MVC)
pattern. Among all included studies, 33 (37.5% of the total) used some type of pattern in
their solutions. Further, 42.4% of these studies reported a PLA that used layers. We assert
that the wide use of layered architecture occurs because with this solution, it is easier to
make changes, and the SPL management is better performed through modularity.

In fact, a number of solutions were presented towards guiding SPL architects for
classifying or selecting appropriate patterns for use, mainly considering quality attributes
that are affected with the choice. However, there is a lack of empirical assessment in
measuring the effects to SPL properties in applying those patterns. For example, it
is clear that in SPL the derivation process is greatly affected by the properties of the
selected patterns. However, only one study proposed a pattern that specifically deals with
such SPL aspect. It makes explicit the components and their relationships to preserve
consistency in the derivation process.

In summary, we argue that further investigation is required e.g., in model driven
approaches that support formal specifications and thus allow automated mechanisms to
be used.

Variability

Variability is a major concern in SPL. We verified that this aspect plays an important
role also during architecture definition. Variability should be treated all throughout
SPL disciplines, and thus the process should include effective traceability mechanisms
between the artifacts. In this MS, we identified few approaches that maintain traceability
between artifacts, however the existing ones still need refinement. The solutions should
be empirically validated and better justified with respect to the trade offs involved in the
process. In addition, it would be valuable to discuss the balance between the actual need
to trace and the possible negative effect on usability and maintainability of documentation.

For representing variability, several studies discussed the use of integrated and or-
thogonal approaches, and we found that the majority (55.6%) of the studies addressing
this issue presented integrated solutions. An integrated approach overlaps functionalities
or properties of existing modeling techniques to express variations. We argue that the
wide use of integrated approaches possibly represents the inflexibility of practitioners
with regard to having additional technologies or processes to learn from. Further, by
applying an integrated solution, it is not necessary to maintain as many artifacts as in an
orthogonal solution. On the other hand, by using orthogonal approaches, despite the need
to adequately map variability from a remote model to design artifacts, it is possible to

61

3.7. DISCUSSION

achieve a higher level of organization, thus understandability upon the related artifacts.
Moreover, we found that in many cases UML diagrams, domain-specific or architec-

tural description languages are used for describing variation points. We argue that future
publications should also take into account the binding time in with the variation occurs,
thus discussing whether original artifacts representing variations can continue to be used,
e.g. during runtime in a dynamic derivation approach.

Documentation

We noticed that the same methods used in traditional development for documenting
architecture are used in SPL. Several studies addressed discussions on the implications of
using UML diagrams and text documents, which suggest that variability is many times
simply incorporated into the documentation artifacts, followed by adjustments in the
process.

It could also be noticed that ADLs, along with suitable extensions, have been used
to describe PLAs and thus support the range of products to be derived. The rules for
derivation can be specified through formal methods, which allow the mapping between
features and architectural entities.

Further, 76% of the studies that reported any means for documentation used represen-
tations in the development views. In this sense, concepts such as behavior, deployment
and generalization were constantly mentioned. We argue that different views should also
be discussed, since it is important for the stakeholders to have a reasonable understanding
of the PLA from different viewpoints (e.g. process and logic).

It is clear that documenting not only the architecture itself, by also the knowledge and
decisions, is important because such information may be valuable to future modifications.
Moreover, model driven solutions can be explored to help in the definition and processes
related to PLAs.

Evaluation

The importance in evaluating PLAs is noticeable from the discussions in the studies. We
found that the ATAM method is widely discussed among the solutions for evaluating
PLAs. This approach takes into account a measurement of quality attributes and business
drivers to assess architectures. It does not originally cover variability issues, so extensions
are used to cover such aspect. 47% of the studies that addressed methods for evaluation
included ATAM or its extensions, which suggests that such technique is widely accepted
in SPL practices as well.

62

3.8. THREATS TO VALIDITY

From the studies that discussed evaluation methods, most of them considered the use
of scenarios. Such practice allows different perspectives to be taken into account. We
argue that this practice represents an effective way to evaluate PLAs, when compared to
approaches that do not consider customer, business, structural and technical requirements
within the evaluation.

3.8 Threats to Validity

Despite the fact that we asked broad questions and used a systematic method to reduce
bias, it is possible that the search strategy was not designed perfectly so it covers the most
relevant topics of research within PLA. On the review process, one researcher structured
the contents of the protocol and presented to the research group for feedback, and thus,
the review terms are a result of many discussion sessions.

We cannot guarantee that all relevant studies were included, although we put signifi-
cant effort to avoid this threat by combining automated and manual searches. In addition,
we established the “quasi-gold” standard to calibrate the search string and increase the
trustworthiness of the review. Moreover, we conducted the search on the leading digital
libraries (automated), journals and conferences (manual) according to experts.

Regarding the data extraction process, the granularity of the selected answers to
questions and consequently conclusions drawing were based on our judgment. As an
attempt to reduce bias, more than one researcher performed the classification process,
and discussions were undertaken to settle agreements.

Also, studies that presented both a solution to a problem and some sort of validation
method or experience reports, for example, were classified as solution proposal because
this refers to their main goal. This decision might have influenced the classification
scheme.

3.9 Chapter Summary

In this chapter, we discussed the motivation for performing a systematic mapping study.
We presented details on the method chosen to review literature, and how it differs from
classic systematic literature reviews. Further, we also presented the findings of the
systematic mapping study performed in the field of PLAs. Based on the guidelines
proposed by Kitchenham and Charters (2007) and Petersen et al. (2008), we selected a
set of studies that satisfied a number of criteria. Then, we analyzed, categorized, and

63

3.9. CHAPTER SUMMARY

extracted information from them in order to answer our research questions. We were able
to provide evidence of the fields that still require further research for a consistent body of
knowledge, despite the growing number of studies that are being published every year
concerning PLAs.

We argue that one of the most relevant aspects to be discussed in this field is PLA
evaluation, due to the inherent complexity involved in the SPL processes. However, we
were not able to find approaches that attempt to evaluate PLAs explicitly with respect to
lifecycle attributes, without considering business aspects. Thus, in the next chapter we
present an exploratory study in the field of architectural bad smells in SPLs.

With the exploratory study, we aim to characterize the phenomenon of architectural
bad smells in the context of SPLs, because such smells were initially proposed to single
systems. We argue that such an investigation is valuable because the identification of
architectural smells do not depend on previous knowledge with respect to the history of
the system or organizational aspects.

64

4
Architectural Bad Smells in Software
Product Lines: An Exploratory Study

Software architectures are often required to be modified or completely redesigned over
time to improve software quality. Nevertheless, such activity is many times absent from
a PLA’s lifecycle because changing design decisions might represent a risk that affects
several products. Instead, changes are usually made to the product architecture, which is
a simpler choice to undergo.

However, we argue that points that can improve the maintainability of PLAs should be
identified and treated whenever possible. Even though such task requires careful analysis
and might result in changes in all products, the overall quality can also be increased.
When the PLA is improved, benefits can be achieved in both the platform and in product
specific structures.

This chapter is organized as follows: Section 4.1 presents the study setup, including
the research questions and the conducted workflow. Section 4.2 presents information
about our object of study: Notepad SPL. Section 4.3 describes the process followed to
perform the recovery of its architecture. Section 4.4 describes the process of identification
of smells from the extracted architecture. Section 4.5 presents the threats to the validity
of this study. Finally, Section 4.6 presents a summary of this chapter.

4.1 Study Setup

One way to assess PLAs is through the identification of bad smells. Despite the different
methods for evaluation and evolution of SPLs, to the best of our knowledge, no studies
have discussed the issue of smells in PLAs. We argue that considering lifecycle properties
is important because guidelines can aid in the improvement of the internal structures with

65

4.2. NOTEPAD SPL

respect to quality attributes.
According to Runeson and Höst (2009), an exploratory case study should be per-

formed when the purpose is to “find out what is happening, seeking new insights and
generating ideas and hypotheses for new research”. In this sense, the present study
aims at characterizing the problem through the main question: “Do architectural bad
smells occur in software product lines?”. We are particularly interested in investigating
whether the same identification method used in single systems is also effective in the SPL
context. Further, we check whether the same smells that occur in single systems also
occur in SPLs. In case of occurrences, we discuss their behavior and the implications of
having such architectural design attributes in a variability-based environment.

In order to address the aforementioned issues, we selected a sample SPL that was
available online and refined the implementation within our research group. Since there
was no architecture artifacts related to this project, we undertook a recovery process prior
to identifying smells. While searching for the four representative smells, we noticed the
occurrence of a fifth smell, which is related to the context of variability expressed by the
PLA. Thus, in addition to the search for the existing smells, we propose a new one.

Five major steps are suggested when performing a case study: (i) define objectives,
(ii) prepare for data collection, (iii) collect evidence, (iv) analyze collected data, and (v)
report findings (Runeson and Höst, 2009). After defining the objectives, cited earlier, we
strictly followed these guidelines by having a workflow consisting of:

(1) analyzing a sample SPL in the domain of text editors / desktop;

(2) extracting its conceptual architecture from the code;

(3) searching for smells in the recovered architecture; and

(4) analyzing results.

Next, we describe the process in detail, starting with a description of the sample SPL.

4.2 Notepad SPL

The object of this study is Notepad, a Java implementation resulting from a feature-
oriented design course in the University of Texas at Austin. This sample product line
was also used in an empirical study within the FeatureVisu project, which is a structure
analysis and measurement tool for SPLs (Apel and Beyer, 2011). The class assignment

66

4.2. NOTEPAD SPL

at the University of Texas was to individually develop an application in the text editor
/ desktop domain using a common base and applying feature orientation development
concepts.

The Notepad release contains a set of 7 different products, and can be obtained in the
FeatureVisu project website1. Each of the products implements a random set of features
related to text editing, such as Copy, Paste, and Find. The products contain from 1397 to
1716 lines of code, and also vary in the number of features: 4 to 10.

4.2.1 Feature Model

Since the source code of each product was conceived separately, the first step of our work
consisted in analyzing the code and designing a Feature Model using the FeatureIDE
tool (Thüm et al., 2012) and providing each feature the proper level of abstraction. A
few graduation student members of RiSE research group2 were involved in the task of
modeling the features and turning the separated products into a single product line.

The features in the feature model were grouped according to the user’s point of view,
representing dropdown menus in the GUI (i.e. File, Format, Edit, Help and Menu), as
presented in Figure 4.1. All features on the tree represented as leaves refer to selectable
functionalities when deriving a product. The inside nodes (except the root) represent a
higher level of abstraction responsible for grouping and organizing the features from the
user perspective. Solid circles connecting to their parents represent mandatory features,
and hollow circles represent optional features.

The Feature Model serves as a guideline to develop the different products supported
by the SPL. It defines the rules for the composition of features and allows stakeholders
to acknowledge the scope of the product line through an overview. All products to be
derived from the SPL must be supported by the rules contained in the feature model.

In this particular SPL, there are no constraints related to the inclusion of features.
That is, there are not cases in which the inclusion of a feature requires the inclusion of
another feature. The same occurs to the exclusion of features. In order to handle both
product specific requirements and feature coexistence constraints, every SPL requires a
variability management mechanism that must control the variability and assure that the
expected products can be derived from the structure.

1http://www.fosd.de/FeatureVisu/
2http://www.rise.com.br

67

4.2. NOTEPAD SPL

Figure 4.1 Feature Model for the Notepad SPL.

68

4.2. NOTEPAD SPL

4.2.2 Variability Management

When implementing our version of the Notepad SPL, we used the Colored Integrated
Development Environment (CIDE) tool (Feigenspan et al., 2010) to orthogonally manage
the SPL variability. The tool consists of an Eclipse IDE3 plug-in that features manual code
annotations and results in conditional compilation using preprocessors. The concerns
(SPL features) are separated visually through background coloring. Moreover, different
views can be used to identify scattered functionalities that may not be modularly thought
of during design stage.

The CIDE tool allows programmers to annotate blocks of code concerning each of
the previously defined features. Once the feature-related code is annotated and the tool
is executed, the tool provides a feature selection window through which the product
configuration is possible. Every feature contains a corresponding checkbox, and the
mandatory ones are set as true by default. When a constraint-related feature is selected, the
software automatically provides checks to resolve conflicts. A new product is generated
once all the desired features are selected and the code corresponding to that given set of
features is compiled.

Notepad SPL was developed without proper documentation to support its decisions.
Besides the feature model, the only artifact that could be used for analysis and possible
improvements was the source code with sparse comments. For this reason, maintaining
such environment mainly as regards to structural improvements may represent a chal-
lenging task. Having a well-defined and updated specification is important not only to
make the understanding of the overall system significantly easier, but also to enable the
evolution of the artifacts.

Prior to extracting the SPL architecture, we were required to clearly understand what
the scope of the SPL was. Thus, we produced the Product Map artifact, which aids in the
description of the system scope through of the definition of the products to be derived
with regards to their features.

4.2.3 Product Map

The products supported by the SPL should be the main focus for the organization and
development activities. They can be depicted in the form of a table containing all
functionalities that exist in each product, as showed in the Product Map (Table 4.1).

It is important to mention that there are many composition possibilities for the feature

3http://www.eclipse.org

69

4.3. ARCHITECTURE RECOVERY

model in question. In a company context, for example, there may be hundreds of products
to be derived. In this work, 10 representative products were selected for the sake of
showing the product map artifact and the variability implications to the architectural
design (shown in the next sections).

Including the feature map artifact is useful for stimulating new product ideas and for
explaining the difference between different products in the SPL. A customer, for example,
can easily acknowledge the current products developed and request the inclusion or
exclusion of features, if that is the case.

For our product map, all 18 features were aligned and crossed with 10 products
within the scope of the Notepad SPL. The rows with a shaded background represent the
mandatory features. As we were concerned about different composition of features and
their effects to the architectural of the SPL, we set the following attributes to the products:

• P1 contains only the basic (mandatory) functionalities;

• P10 carries all functionalities supported in the SPL, including all optional features;
and

• The remaining products randomly include features.

Having products with different feature compositions may represent different require-
ments with respect to architectural design. That is, in a component-based architecture,
different features are likely to be related to different components. For this reason, the
representative products were selected, and their architectures are expected to differ.

4.3 Architecture Recovery

The process of architecture recovery refers to the extraction or completion of architectural
information about a software system. The main output of such process is an architectural
model that represents the system components and their relations. As far as the case
presented in this work, the output is a component model that supports all products in the
scope of the SPL.

It is known that the architectural artifacts are often set aside when developing software,
especially within small projects. Either because there is not much time available to deliver
the product, or when developers do not realize the importance of structural specifications.
There are a few reasons why an architecture recovery should be performed in these
scenarios, such as: (i) to improve communication between stakeholders regarding the

70

4.3. ARCHITECTURE RECOVERY

Table 4.1 Notepad SPL Product Map.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
About X X X X X X X X X X
Open X X X X X X X X X X
New . . X X . X
Print X . . X X
Save . . . X X . . X . X
Save as X X X X X X X X X X
Line wrap X X X X X X X X X X
Set font . X . X . . X . . X
Find . . X . . X . X . X
Find next . . X . . X . X . X
Undo . . . X X . . . X X
Redo . . . X X . . . X X
Paste X X X X X X X X X X
Cut X X X X X X X X X X
Copy X X X X X X X X X X
Select all . . X . X X X . . X
Exit X X X X X X X X X X
Menu bar X X X X X X X X X X

system; (ii) to ease the process of system understanding for new employees; and (iii) to
enable system improvements at architectural design level.

When there exists a thorough comprehension, the system can be properly managed
and points of improvement may be identified at the architectural level. In the context of
SPLs, it becomes easier to provide valuable information for application developers and
maintainers to include new products or modify the existing ones.

One way to perform the recovery of PLAs, is considering the available artifacts, such
as source code, design artifacts and domain knowledge to be manually and automatically
analyzed (Eixelsberger, 1998). The architectural attributes can be specified in an archi-
tectural description language such as xADL (Dashofy and Hoek, 2002b), which allows
automatic transformations and derivation of product specific architectures.

Nevertheless, the process might be error-prone. The recovered architecture can
be inaccurate and a result of misinterpretations due to a number of factors that are
involved in the process, including (i) different stakeholders’ expertise levels, (ii) high
complexity of code artifacts, (iii) impossibility of involving the project’s original architect
and/or software engineers for validation, and (iv) human subjectivity. We attempt to

71

4.3. ARCHITECTURE RECOVERY

minimize those risks by recovering a system that is already familiar, and involving
different researchers for validating the outcomes.

As previously mentioned, the major difference of PLAs when compared to single
systems’ architectures is their purpose. While a system architecture concerns the design
decisions of one system in particular, a PLA is required to depict all systems to be derived
from the SPL. In other words, the PLA must sustain the design decisions of a range of
different products through a software infrastructure. In order to recover the architectural
design decisions of Notepad SPL, all available resources were used: the source code, the
domain knowledge, and the available documentation of the original project. The recovery
process is described in the next subsection.

4.3.1 Recovery Process

In order to obtain the architectural model of Notepad SPL, we followed the workflow
presented in Figure 4.2. The first block represents the artifacts that were available for us
to run an analysis in. The source code was available through our research group, since
we were responsible for adjusting the features granularities and adding a variability/-
configuration management mechanism at implementation level. Along the development
process, we obtained the required expertise in the domain, which had led us to compose a
feature model in such granularity and interaction constraints. The original documentation
was also used as means to understand the implementation rationale. By documentation
we mean the published article (Apel and Beyer, 2011) and the limited comments in the
source code. The article presented very little description of Notepad, which has driven a
lot of our effort towards analyzing the actual code.

4.3.2 Automated Analysis

The second block represents the artifacts obtained from both automated and manual anal-
ysis of the available artifacts. The automated analysis was performed using Structure1014,
which is a tool that receives the source code as input and provides a number of models as
outputs after a lexical interpretation. Among the different types of representations in a
higher abstraction level, we found it relevant to consider the decomposition view and the
dependency view, which are shown in Figure 4.3 and in Figure 4.4.

The tool outputs a decomposition model showing the hierarchy of the entities. The
implementation of Notepad SPL is supported by two main entities that orchestrate the

4http:www.structure101.com

72

4.3. ARCHITECTURE RECOVERY

Figure 4.2 Architecture Recovery Process adapted from (Taylor et al., 2009).

main procedures and GUI actions. Among them, the features are implemented and a
trigger is set to generate a Java window with the product specified with code annotations.
In this case, the system was implemented by separating two entities to specifically handle
files and font customizations. Those structures are called by the Actions entity, which
carries all functionalities and provides the selected functionalities to the product assembler
Notepad.

Figure 4.3 Decomposition View of Notepad SPL.

Figure 4.4 shows a dependency graph that explicates the relation between the core
entities of Notepad. The constructor mechanism and the functionalities are organized
within this core. The implementation technology requires specific libraries to implement
functionalities, such as Undo/Redo and File handlers. The structure of the implementation
was then separated to cover such needs and still maintain modularity. From the figure,

73

4.3. ARCHITECTURE RECOVERY

it is clear that the core entities are closer linked between them when compared to the
functionalities provided by those libraries. The weighted arrows represent procedure
calls, and indicate the level of dependency of each entity in respect to the related entities.

Figure 4.4 Dependency View of Notepad SPL.

4.3.3 Manual Analysis

Regarding the manual analysis, we were guided by the documentation and also considered
domain knowledge to evaluate the source code. In order to understand the implemented
mechanisms, we provided several different configurations through CIDE’s interface, thus
generating 10 different products that were previously presented.

Since we were interested in aspects that were relevant to the architecture, we searched
the code for aspects that allowed the specification of Components, Connectors and
Interfaces. For these terms, we maintain their definitions as described in Section 2.3.

The search was undertaken in the source code, and considered all characteristics
within the concepts and the available artifacts from analysis. Since the code implemented
all possible features in the SPL, the resulting specification refers to the SPL as a whole.
We identified the components, interfaces, and specified the methods related to each
interface. The specification is attached in Appendix B.

The features implemented in the Actions component are manually annotated at
development time. A number of features require core handlers that are provided by
pre-set Java libraries, such as the ones related to the Files and Fonts components. Derived
products are instances of Notepad, which implements listeners for events provided through
the GUI interfaces. Annotated code inputs the CIDE component, which in turn provides
a valid configuration in a XML file according to previous feature modeling.

74

4.3. ARCHITECTURE RECOVERY

The configuration is built at run time, based on the selection of features through
CIDE’s graphics interface. Only the product configuration code specified in the XML is
considered for derivation. The event-based interface provides control from the Java GUI
libraries as the Notepad contains direct procedure calls to the features implementation
within the Actions component. The code is conditionally compiled according to the
annotations and the features selected by the user.

From the specification it was possible to identify components that were related to
specific functionalities offered as features. For example, the Undo/Redo component is
directly related to Undo and Redo features. Based on the product map, such analysis
aided in the development of product specific architectural knowledge. The generated
mapping between products and architecturally relevant elements (components) is shown
in Table 4.2.

Table 4.2 Notepad SPL Variability Points.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Actions X X X X X X X X X X
Notepad X X X X X X X X X X
Undo/Redo . . . X X . . . X X
Fonts . X . X . . X . . X
Files X X X X X X X X X X
GUI X X X X X X X X X X

Through the mapping of components and products, we conclude that the only variable
architectural entities are Undo/Redo and Fonts. The shaded rows represent components
that are mandatory, as they realize features that are present in every product. In this sense,
the architecture model of each product will contain at least the four components (Actions,
Notepad, Files and GUI), and the Undo/Redo component will be added in the case of
P4-5 and P9-10. Also, the Fonts component will be added in the case of P2, P4, P7 and
P10.

4.3.4 Merging Product Architectures

Such incremental style of composing the architecture is used when focusing on the
product specifications. The resulting PLA is the composition of all 6 components, as
presented in Figure 4.5. It respects the rules that are determined by the components
and interfaces as well as corresponds to the features and the variability management

75

4.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

mechanism implemented in the source code.
Component interactions are defined by the connectors, which in turn determine the

type of communication in terms of required and provided interfaces.

Figure 4.5 Notepad SPL Component Model.

For deriving a product, the PLA is reduced through a process called selection. In the
case of Notepad SPL, the selection is managed by CIDE and the composition of features
is verified by the XML specifications.

Recovering architectures represents a difficult task especially in the context of SPLs
due to the variability involved in each step of the process. Instead of straightforwardly an-
alyzing the code and specifying the system in terms of it’s underlying structure, individual
features and their composition rules need to be considered.

4.4 Identifying Architectural Bad Smells

From the recovered Notepad SPL architectural model, we manually searched for smells
and discussed their implications in the SPL context. We also propose a new type of smell
that is present in the current Notepad SPL specification. We maintain the definitions of
components, connectors and interfaces as previously discussed. Next, we describe the
identified smells and their existence is highlighted with respect to the impacts on quality
attributes.

76

4.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

4.4.1 Connector Envy

Components with Connector Envy cover too much functionality as regards to connections.
Instead of having the interaction facilities delegated to a connector, the components
encompass, to a great extent, one or more of the following types of interaction services:
communication, coordination, conversion and facilitation.

As previously mentioned, the Actions component contains the implementation of
the functionalities, as the Notepad component triggers what is displayed in the text
editor window after CIDE’s validation. We identified the connector envy smell in the
Notepad component, due to its extensive coordination and communication links to other
components. Notepad contains an operation that transfers control set by the provided
events to the Actions component through several conditional statements. The direct
method invocation represents a negative effect to the component’s reusability in that the
dependability of these components is increased.

Despite the fact that ideally each feature should be considered a component, the
granularity of these functionalities’ specifications is set by the simplicity of the operations.
By grouping fine-grained features into one architecture entity, different functionalities
may demand diverse interfaces to realize their requirements. In the case of Notepad

component, it requires both Undo/Redo functionalities and feature implementations in
Actions, which can be translated to intense communication requirements between these
components. The Notepad component imports several libraries that are used to implement
the graphical interface of generated products, and also implements a listener of events,
which are sent through GUI interactions.

Furthermore, the Actions component presents high communication and facilitation
services by interacting with every other component in the system. In order to improve
the component’s maintainability, it is possible to designate the connection attributes to
a specialized entity. However, in this case, the performance of the operations could be
affected, since all features are concentrated within the functional part of the component.

Combining product construction capabilities and connector responsibilities represents
a reduction in testability because application functionalities and interaction functionalities
cannot be separately tested. In an SPL, it should be possible to perform tests both in
product-specific architectures (e.g., through scenarios) and in the PLA for assessing the
variability mechanism and derivation procedures with respect to quality attributes.

Understandability is also compromised due to the unclear separation of roles and
concerns. On the other hand, providing an interaction mechanism would imply in the
deployment of new processes, as well as increment the overall complexity of the system.

77

4.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

4.4.2 Scattered Parasitic Functionality

This smell is characterized by the existence of a high-level concern that is realized across
multiple components. That is, at least one component addresses multiple concerns,
which makes the smell a bottleneck for modifiability. If all components implementing a
scattered concern were to be composed, the resulting component would realize orthogonal
functionalities.

We were not able to find scattered functionality evidence in Notepad SPL. Even
though the GUI concern implements the triggered GUI attributes in Actions and aids in
constructing the visual components orchestrated by Notepad, it refers to the Java native
library to handle interfaces. Since it does not represent a high-level concern, changes in
such related components would not represent a widespread impact.

The main class responsible for specifying the product, Notepad, inherits the properties
of JFrame class. Its constructor sets the default window settings that will be composed
with the valid configuration received from CIDE at development time. The Actions

component is notified about the user graphics interface events and realizes the required
functionalities via a direct procedure call from Notepad. In this sample case, these
two components would be required to be refactored and such modifications are not
complicated. However, the cost requirements to change aspects in a shared concern of
bigger projects might prevent such changes to be made.

In SPLs, scattered functionalities can represent aspects that are difficult to realize,
given the widespread effect among products. In a shared concern environment, the
understandability is compromised due to orthogonal contexts being realized in a single
component. Feature granularities should be adjusted at specification time in order to
take advantage of each component’s reusability levels. That is, having coarse-grained
features can elevate the chances of specifying a single component with multiple concerns.
On the other hand, fine-grained features can induce architects to realize errors during
specification, for instance, having similar functionalities under different components.

4.4.3 Ambiguous Interfaces

When a component offers only one single and generic entry-point, such interface is
referred as ambiguous. Ambiguous interfaces reduce static analyzability and can occur
independently of the implementation-level constructs that realize them. Despite the fact
that the component may offer and process multiple services, an ambiguous interface will
offer only one public service or method.

78

4.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

This smell results in reduced understandability because an ambiguous interface
does not reveal which services a component is offering. In other words, a user of this
component needs to inspect the implementation of the internals before using its services.
In the case of Notepad SPL, this smell is characterized in the Actions component and
its relations. All features are implemented in this component and accessed through one
generic action listener.

The event-based parameterization presents a dynamic dispatch despite the conditional
compilation imposed by CIDE. Such scenario is usually motivated by the implementation
of generic GUI listeners. In the case of Notepad, the triggers are executed through the user
relation with the buttons and text pane area. This type of solution can be implemented
in small SPLs, but might cause complications when understanding and analyzing the
feature entity. On the other hand, with such centralized solution, new features can be
more easily added and specified respecting the limits of one component and obeying a
single connecting point.

We argue that this smell is common in SPL engineering due to its intrinsic char-
acteristics. The common implementation and composition of features is given by one
single repository of features that obey a rule at the time of composition and product
derivation. This solution would probably carry a number of down points in the case of a
large SPL supporting hundreds of features, for example. Such a generic entry-point could
be overloaded by functionalities that differ too much, thus require very different handlers
for effective management.

4.4.4 Extraneous Adjacent Connector

This smell is characterized by the use of two connectors of different types to link a pair
of components. For example, the use of procedure calls makes the transfer of control
explicit, thus understandability is increased. On the other hand, event connectors can be
easily replaced or updated because senders and receivers of events are usually unaware of
each other. In this case, reusability and adaptability are increased.

However, having two components with both connector types may affect understand-
ability, because it becomes difficult to determine whether and under which circumstances
additional communication occurs between the affected components. The side effects of
using both connector types should be assessed, since the beneficial effects of each individ-
ual connector might cancel each other out. Although we focused on the combination of
procedure calls and event connectors, this smell also considers other types of connectors.

In our sample SPL, the Actions component provides functionality services to construct

79

4.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

a Notepad instance (product). A procedure call would represent the occurrence of this
smell due to the use of event listeners to trigger the execution of features. However, the
only interaction between Notepad and Action components is through events provided by
the GUI. Thus, we were not able to identify the extraneous adjacent connector smell in
Notepad SPL.

Although it may not be specific to PLAs, the scenario of extraneous adjacent connec-
tor could be found in an SPL implementation that breaks the unique connecting restriction
set by a given PLA. For instance, if an event bus is designed to handle communications be-
tween an instantiation entity and a feature repository, there should be no direct procedure
call between these two components. Such restriction can be assured by setting protective
rules to access the repository, either through parameterization or strict procedure call
policies.

4.4.5 Feature Concentration

This smell is specific to the SPL context, and is characterized by the centralization of
the SPL features in one architectural entity. It is related to the ambiguous interfaces and
scattered functionality smells in that different functionalities are implemented in a single
construct, which might offer only one generic entry point.

Design decisions are usually driven by metrics, such as coupling and cohesion between
different entities. For example, in a store management system, the employee registration
and payment modules should be closely related in the architectural design because both
of them represent human resources concerns. At the same time, the inventory should be
handled by different instances since it is not closely related to these modules.

Such design solution might not be obvious in an SPL environment when the feature
granularity is too fine grained, because it would require an effort to accommodate different
concerns in different design entities. A generic solution would be to group all features
into one entity and implement a configuration management mechanism that will derive
products according to previously defined rules. The decision to ignore different concerns
at design time represents an easier development, but also negatively affects the system
understandability and modularity attributes.

As previously mentioned, the Actions component concentrates the features in one
component through a single generic entry-point, which characterizes both feature con-
centration and ambiguous interfaces smells. In the case of Notepad SPL, such decisions
are supported by the fact that it is not a complex implementation, so understandability
is not a major concern in the project. However, we argue that making the same design

80

4.5. THREATS TO VALIDITY

decisions in an SPL with several hundreds of features would represent severe impacts on
this PLA’s understandability and changeability throughout its lifecycle.

4.5 Threats to Validity

The threats to validity of this work are described next.
We understand that many software projects do not include architecture documentation,

which makes it difficult and costly for one to investigate the occurrence of architectural
smells. We minimized this threat by describing an architecture recovery process which
allows the smell identification process to be carried out.

For the architecture recovery process, we designed the PLA based on the analysis of
the source code and adjacent artifacts. Recovering architectures from code represents a
difficult task through which important aspects may not be properly captured accurately,
such as coupling and cohesion. We minimized the threat of misconceptions in defining the
architecture by carrying out discussions with developers involved in the implementation
of our Notepad SPL version. However, we understand that many times the developers are
not available.

Despite the fact that several studies had been undertaken in the area of code smells,
the concept of architectural smells is fairly recent. In order to maintain the transparency
of the process and concepts, we throughly described what are smells and how they may
influence in an SPL project.

The identification of smells was originally proposed to be carried out in single systems.
Thus, identifying bad smells in PLAs may represent a threat. The feasibility of using
such technique in the context of PLAs is also considered in this work.

We limited the discussion on a set of five smells, although additional ones may occur.
In order to minimize this threat, we intend to further investigate this issue and possibly
discover other smells. In this study, we only took into consideration one SPL. However,
in the next chapters, we minimize this threat by considering another one.

4.6 Chapter Summary

This chapter presented the exploratory study, which was conducted to characterize the
phenomenon of architectural bad smells in SPLs. We selected a sample SPL in the text
editor / desktop domain, and extracted its architecture through a recovery process.

For the recovery process, we considered both manual and automated analysis:

81

4.6. CHAPTER SUMMARY

• For the automated analysis, we ran a supporting software - having the source
code as input - to aid in the understanding of the software structure, and how the
messages are passed between subsystems;

• For the manual analysis, we considered the source code and the available documen-
tation, including variability management, and architecturally relevant information
to built the architecture.

Then, we analyzed the architecture and the code in order to identify smells. We
described where the smells were found and what type of effect their occurrence would
represent to the PLA’s lifecycle. In addition, we proposed a new smell - Feature Concen-
tration - which has been identified from the analysis.

Next chapter presents a replicated study considering an SPL in a different domain.
The idea is to follow the same procedures adopted to perform the present exploratory
study in order to obtain and compare results.

82

5
A Replicated Study on Architectural Bad

Smells in Software Product Lines

In the last chapter, we obtained evidence that architectural bad smells also occur in SPLs.
Moreover, the smells can be identified using the same method initially proposed to the
context of single systems. In this chapter, we report on a replicated study with an SPL in
a different domain.

This chapter is organized as follows: Section 5.1 presents the study setup, including
the research question and the conducted workflow. Section 5.2 presents information
about our object of study: RescueMe SPL. Section 5.3 describes the process followed to
perform the recovery of its architecture. Section 5.4 describes the process of identification
of smells from the extracted architecture. Section 5.5 describes the comparative analysis
considering both studies performed. Section 5.6 presents the main findings of this study.
Section 5.7 presents the threats to the validity of this study. Finally, Section 5.8 presents
a summary of this chapter.

5.1 Study Setup

In the last chapter, we presented an exploratory study that aimed at characterizing the
architectural bad smells phenomenon in the context of SPLs. We were able to draw initial
conclusions from the analysis we carried out in a PLA in the text editor / desktop domain.
As next step, we performed a case study aiming to replicate the procedures conducted
in the exploratory study. By replicating the last study in a different domain, the idea is
to obtain more evidence to be compared and analyzed towards a better understanding of
smells in PLAs.

According to Carver (2010), there are no existing guidelines for reporting replications.

83

5.2. RESCUEME SPL

However, the author claims that a replicated study should contain (i) information about
the original study, (ii) information about the replication, (iii) a comparison of results to
the original and (iv) conclusions drawn across the studies. The complete original study
can be found in the previous chapter of this dissertation, as well as a brief discussion
on its results. This chapter reports on the motivation for conducting the replication, as
well as describes the steps performed to replicate the original study. After describing the
procedures in the search for smells, we report on a comparative analysis that considers
the characteristics and results of both studies.

In summary, the present study aims at replicating the exploratory study, presented
previously, through the main research question: “Do architectural bad smells occur in
software product lines?”. We are particularly interested in investigating whether the
same smells found in the text editor / desktop domain can also be found in the emergency
/ mobile domain. In addition, we present a comparative analysis considering the two
case studies, and further discuss the results. Thus, the findings from our replication
study increase the generalizability of the initial results by providing (i) the same smells
identification strategy with a PLA in a different domain; and (ii) comparing results from
both studies.

In order to address the aforementioned goals, we selected a sample SPL, that has been
developed by students in our research group. Since there were not sufficient architecture
artifacts related to the project, we were also required to extract its component model prior
to the search for smells.

The study workflow is similar to the one conducted in the exploratory study, with the
addition of a comparative analysis. It consisted in:

(1) analyzing a sample SPL in the domain of emergency / mobile;

(2) extracting its conceptual architecture from the code;

(3) searching for smells in the recovered architecture; and

(4) analyzing and comparing results from both studies.

Next, we describe the process in detail, starting with a description of the sample SPL.

5.2 RescueMe SPL

The object of this study is RescueMe SPL, an Objective-C implementation of a set of
applications in the mobile domain. The scope of RescueMe SPL is to develop products

84

5.2. RESCUEME SPL

Figure 5.1 Screenshot of the RescueMe app main screen.

for the Apple iOS platform1, which runs on Apple smartphone devices and tablets. The
development team was comprised of one post-doctoral researcher, five Ph.D. students,
two M.Sc. students and two B.Sc. students, all members of RiSE research group.

RescueMe products aim to aid users in emergency and dangerous situations. In
summary, the application contains a red button which triggers pre-set messages to be sent
to a list of contacts using SMS (short message service), Email or Social networks (see
Figure 5.1). When the message is sent through the latter, the recipients are able to track
the sender’s location in a map.

The RescueMe SPL release contains a set of 5 different products, 22 features in total,
and can be obtained from a repository2, as an open-source project. The entire project
contains 75,928 lines of source code, including the 3rd party code blocks, Facebook
SDK and Message UI Framework. The application is arranged in 310 files and 303

1http://www.apple.com/ios/
2http://svn.code.sf.net/p/rescueme-spl/code-0/trunk

85

5.2. RESCUEME SPL

classes. With respect to the blocks that are strictly built for the application - without
supporting services - there are 2,504 lines of source code, divided into 28 files and 28
classes. Products derived from RescueMe SPL contain from 5 to 16 features in their
composition.

It is important to note that in this work we consider the first release of RescueMe SPL,
since the second release is currently under development. The original planning includes
more features and different configurations for the products. However, we decided to only
work with the features that are fully implemented and functional.

5.2.1 Feature Model

The features and sub-features implementation was carried out using Objective-C language
with XCode IDE3 version 4.6.2. The features in the feature model were grouped according
to the user’s point of view, which were distributed among developers to be implemented.

Features in the feature model obey the layers of abstraction presented earlier: the
inside nodes (except the root) represent a higher level of abstraction, responsible for
grouping and organizing the features from the user perspective. All features on the
tree represented as leaves refer to selectable functionalities when deriving a product.
Solid circles connecting to their parents represent mandatory features, and hollow circles
represent optional features. The tree is presented in Figure 5.2.

In this SPL, there are 2 dependencies with respect to feature inclusion: when selecting
“Twitter Destination”, the user must also include “Twitter Import”; also, when selecting
“Facebook Destination”, the “Facebook Import” feature must be included. This occurs
because the importation of contacts is necessary to the composition of Twitter and
Facebook messages, although they were implemented separately. In RescueMe SPL,
there are not cases of feature coexistence restrictions (i.e. forced exclusion of features
due to the selection of a given feature).

5.2.2 Variability Management

Variability management in the RescueMe SPL project is characterized by conditional
compilation. Such technique is realized through XCode IDE’s macro definitions, which
represent support for pre-processor directives. In the IDE, each feature is represented by
a macro with the same name.

3http://developer.apple.com/xcode

86

5.2. RESCUEME SPL

Figure 5.2 Feature Model for the RescueMe SPL.

87

5.2. RESCUEME SPL

Variability at the code level is well defined in the source code with annotations and
comments. As far as documentation, the project contains some artifacts that describe what
varies and how these variations behave. In addition, there are text documents concerning
the management of time, risk, quality, configuration and communication.

5.2.3 Product Map

One of the available documentation artifacts was the product map, which is shown in
Table 5.1. It consists of 16 features. These features are the selectable ones depicted in the
feature model, i.e., abstract features are not considered in the product map. Shadowed
rows represent mandatory features.

From the business rules defined in the initial stages of this SPL, there are 5 versions
(or products, in the context of SPLs) that must be derived: Lite, Standard, Social, Pro
and Ultimate. The first product is the simplest one, and carries only add/delete contact,
sending SMS, English language and basic information functionalities. On the other hand,
the most complete version of RescueMe contains all available functionality, including
social networks support and multiple languages.

Table 5.1 RescueMe SPL Product Map

Lite Standard Social Pro Ultimate
Add Contact X X X X X
Delete Contact X X X X X
Twitter Import . . X X X
Facebook Import . . X X X
Phone Import . X X X X
SMS Destination X X X X X
Twitter Destination . . X X X
Facebook Destination . . X X X
Email Destination . X X X X
English (language) X X X X X
Portuguese (language) X
German (language) X
Spanish (language) X
French (language) X
How to Use . X X X X
Info X X X X X

88

5.3. ARCHITECTURE RECOVERY

5.3 Architecture Recovery

Despite the number of documentation artifacts available, at the architectural design
level, only two diagrams were produced: deployment view and modules view, which are
depicted in Figure 5.3 and Figure 5.4, respectively.

Figure 5.3 Deployment View for the RescueMe SPL.

These models represent how the project is organized as far as deployment units,
using the MVC pattern. The protocols for exchanging messages are explicit, providing
an idea of how the Client, Storage Server and Devices communicate with the central
application. The MVC pattern is also used in the modules abstraction, showing the
top-level composition and dependency connections between them. As noted in the figures,
the consistency is depicted in the Model layer, and basically includes contact information.
Controller layer is responsible for managing the consistency, as the View layer allows to
update information through the GUI.

Although these diagrams were of high importance for the understanding of the project,
they are not sufficient for the search for smells. As mentioned earlier, the search for
smells assumes the existence of a component model, as well as a component specification.

89

5.3. ARCHITECTURE RECOVERY

Figure 5.4 Modules View for the RescueMe SPL.

90

5.3. ARCHITECTURE RECOVERY

Thus, prior to the search for smells, we were required to also recover the architecture of
RescueMe SPL. We explain such process in the next subsection.

5.3.1 Recovery Process

In order to recover the architecture of RescueMe SPL, we followed the same process
that was described in the last chapter, depicted in Figure 4.2. As mentioned before, the
source code and some documentation artifacts were available from within our research
group. The domain knowledge was obtained from meetings with the developers and from
studying the documents.

After analyzing the source code and the available documentation, we extracted
attributes that are relevant to the architecture (from the automated analysis) and the
decomposition model (from the manual analysis).

5.3.2 Automated Analysis

We were not able to use Structure101 tool to perform the automated analysis due to
the lack of support to the Objective-C language. Thus, the analysis was performed
using Understand4, whose developers kindly provided us with product licensing for our
research project. The tool takes the source code as input, and provides diagrams, different
types analysis and metrics as outputs. It supports several languages and describes the
dependencies contained between the project modules.

For the understanding of the project, we found it relevant to obtain a number of
graphs that consider internal and external dependencies, procedure calls and hierarchical
structures, as shown in the figures.

Figure 5.5 shows a graph which includes both header and implementation classes.
The weighted arrows represent message passing between classes. The numbers represent
how many times procedure calls take place. From the figure, it is evident that Contact-

Manager.h is constantly called, as this class is responsible for selecting/updating contacts,
regardless of their type (phone, facebook or twitter contacts). Relationships between the
implementation class and its corresponding header are also evident.

Figure 5.6 shows a diagram depicting the calls between entity clusters, while main-
taining the original project’s directory structure. The lines represent calls, and the layers
represent the hierarchical level in which they are organized. Despite the classes created

4http:www.scitools.com

91

5.3. ARCHITECTURE RECOVERY

Figure 5.5 Internal Dependencies Classes of RescueMe SPL.

to implement functionalities of RescueMe, the diagram shows their relationships with
3rd party clusters and external dependencies.

92

5.3. ARCHITECTURE RECOVERY

Figure 5.6 Cluster Call Graph of RescueMe SPL.

93

5.3. ARCHITECTURE RECOVERY

Fi
gu

re
5.

7
H

ie
ra

rc
hy

In
te

rn
al

D
ep

en
de

nc
ie

s
of

R
es

cu
eM

e
SP

L
.

94

5.3. ARCHITECTURE RECOVERY

Figure 5.7 shows the same internal dependencies, but this time considering more
details of 3rd party application blocks, still obeying the hierarchical layers. The diagram
provides an overview of the dependencies of the entities according to the layer in which
they are allocated. Relations between classes of different layers are not depicted here.

5.3.3 Manual Analysis

By analyzing the diagrams generated by the source code analysis tool, we obtained
knowledge regarding the top-level configuration of the project. We then analyzed the
source code, the available documentation, and the generated graphs in order to start the
specification of RescueMe SPL architecture.

For the specification, we considered the source code as a whole, i.e., all features that
were implemented, regardless of the ifdefs for product configuration. The specification is
attached in Appendix C.

The configuration of products is built at development time, based on the feature model
constraints and the desired product to be derived. There is no GUI interface for selecting
features or products to be developed, thus the variations are realized through the code
annotations using pre-processors.

In the case of RescueMe SPL, we were not required to select random features and
generate products for building their architecture and then merging them to form the PLA.
The products had been already defined and their scope was clearly stated by the original
documentation and code. Thus, we realized the specification of components and crossed
them with the 5 individual products, to find out the variability points. The generated
mapping between products and architecturally relevant elements (components) is shown
in Table 5.2.

Table 5.2 shows the components recovered from the project’s source. Shadowed rows
represent components that are mandatory, i.e., components that exist in every product
derived. In this sense, every product (or version) developed from this SPL will contain
such components. The only two components that are optional in RescueMe SPL are
Facebook API and Twitter API, which are present in versions Social, Pro and Ultimate.
These components are required for obtaining contacts through a connection with social
networks, by using the services they provide. Optional features that are not related to the
connection with social networks are implemented within the components that must be
included in every product derivation.

95

5.3. ARCHITECTURE RECOVERY

Table 5.2 RescueMe SPL Variability Points

Lite Standard Social Pro Ultimate
Contact X X X X X
Location X X X X X
GUI X X X X X
Contact Manager X X X X X
Contact View Controller X X X X X
Destination X X X X X
Message Composer X X X X X
Facebook API . . X X X
Twitter API . . X X X
iOS API X X X X X

5.3.4 Merging Product Architectures

As previously conducted, in order to form the PLA, we merged the individual products’
architectures, according to the extracted specification. The resulting PLA is the compo-
sition of 10 components, as shown in Figure 5.8. The model respects the rules that are
determined by the functionality and connection attributes implemented in the source code.
Component interactions here are also defined by the connectors, which in turn determine
the type of communication in terms of required and provided interfaces.

Figure 5.8 RescueMe SPL Component Model.

96

5.3. ARCHITECTURE RECOVERY

The component model is defined by a set of components that are divided into 4 major
groups: model, view, controller, and external entities. Contact and Location components
are responsible for the persistence of the application. While the first is responsible for
storing contact information that will be accessed in case of emergency, the Location

component keeps information with respect to the geographic location of the sender
(application user).

In all cases, the recipients are previously selected by the user through a screen
provided by the GUI component. Users are able to select the contacts who are going
to receive the messages in case of emergency. In addition, the trigger of sending the
messages is activated by the touch of a red button on the screen.

Changes in the Model components are managed by Contact Manager, through the
Contacts interface and by Destination, through the Position interface. The Destination

component is responsible for the main operations within the application. It requests a
number of services that will be used for sending the rescue message: the user location,
the recipients of the message, the means through which the message will be sent, the
actual composed message, and the trigger for finally sending it. The message is passed by
the Message Composer component, which builds the message according to the language
selected by the user and the available version of the application. Recipients are collected
depending on the type of connectivity existing in the version of the product: Phone
contacts, Twitter contacts, Facebook contacts, or any combination of the three, being the
phone contacts mandatory. The language in which the message is composed depends on
a pre-configuration of the user preferences, when available in the application version. For
the most basic versions of the application, the English language is standard, and does not
require selection from the user.

A number of services are required to complete the functionality of sending the rescue
message to the user’s social network contacts. Facebook and Twitter APIs are part of
the project when the Facebook and Twitter-related features are selected. The iOS API

component, on the other hand, is always included, since it is responsible for providing the
framework for a working iOS application. All three components are organized in such a
way that a high level of abstraction is maintained for the programer to use their services.
In other words, these components are not extensively accessible and changeable, as the
MVC model and the iOS development constraints exist.

The component model and its components’ specification have been validated with
the developers. Once the model is built, we are able to search for the smells. In the next
section, we report on such identification of the architectural bad smells.

97

5.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

5.4 Identifying Architectural Bad Smells

From the recovered RescueMe SPL architectural model, we searched for smells and
hereby discuss their implications in the lifecycle properties of the project. For the charac-
terization of the architecture and identification of smells, we maintain the definitions of
components, connectors and interfaces as previously discussed. Next, we describe the
identified smells and their existence is highlighted with respect to the impacts on quality
attributes.

5.4.1 Connector Envy

The Destination component concentrates most of the functionality provided by the
application. As depicted in Figure 5.8, it has connections with other 6 components,
which makes the Destination component fundamental for the main functionality of
the application: sending rescue messages. We identified the connector envy smell
in the Destination component, due to its extensive communication and coordination
responsibility. The component contains several connections to both pass execution
control, and also send/receive data (messages, computational results) to/from other
components.

For example, the Destination component requires several attributes to be obtained
in order to send the rescue message (which is itself a message passed from the Message

Composer): the recipients of the message (provided by the social networks or the contact
manager of the stored information), the location of the user, and the trigger for finally
sending the message.

As far as the coordination services, Destination carries the responsibility of submitting
the message after the thread of execution has passed to and from components managing
(phone and social networks) contacts, the location obtained from the local user’s device,
and the rescue message that is composed. Such activity includes the language in which
the message is composed, and a warning in case the message was not successfully sent.
However, the main passing of execution thread is passed to and from the GUI component.
This entity is responsible for capturing user inputs and showing outputs on the screen.
All of such activity, thus control of execution, is sent over the interface to the Destination

component.
The Destination component was designed in a way that compromises the overall

system’s reusability, understandability and testability. It would be very difficult to
reuse the component without carrying other components (and their services) due to the

98

5.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

number of connections they own. In other words, the components are not concise to be
reused separately. For the same reason, the organization with respect to functionality
and connections is not easy to understand. The component carries the functionality
of sending the rescue message, and also manages several message passing tasks and
coordination characteristics to and from other components. Another concern with the
implementation of Destination is the lack of proper means for testing. By having such
commingled concerns, unit testing is not feasible, forcing developers to test the component
in conjunction with other components. Such scenario requires developers to spend
considerable time in this task, and could compromise the quality of the component.

In the case of RescueMe SPL, one possible justification of such design decision is
the reduced number of features to the overall project. Instead of designating a separate
connector only to deal with the numerous connections required to send the rescue message,
it is simpler and handier to implement a component as it is. In the context in which the
Destination component was implemented, such design it may be acceptable also because
of the low expectations of maintainability activities for this SPL. The higher priority
seems to be related to the performance of the derived product, instead of planning to make
the project grow and become sufficiently complex to require maintainability directives.

5.4.2 Scattered Parasitic Functionality

When the scattered parasitic functionality smell occurs, there is at least one concern that
is shared between different components. We were not able to find such scenario in the
RescueMe SPL. Perhaps the SPLs are defined in such a way that the components are
responsible for a separate functionality, being less probable to meet several concerns
at the same time. This is due to the definition of features, and the style of developing
feature-oriented blocks of code.

The graphics interfaces in the application are managed by the GUI component, which
provides the navigation screens for selecting preferences, triggering the rescue message
and also selecting/updating contacts. In the case where contacts are provided by social
networks, the interfaces are also provided by their APIs. We decided not to consider
such scenario as a shared concern because the APIs are external to the actual RescueMe
application. Further, the MVC pattern plays a role in separating the concerns and forcing
developers to write code following a set of separation constraints. At the same time, the
protected type of interaction between the actual application and the supporting services
(iOS and Social Networks) also contribute for this smell not to occur.

By not presenting the scattered parasitic functionality smell, RescueMe SPL maintains

99

5.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

an acceptable level of modifiability, understandability, testability and reusability for its
components.

5.4.3 Ambiguous Interfaces

Usually, systems using the event-based publish-subscribe pattern (Birman and Joseph,
1987) are susceptible to ambiguous interfaces due to the uncertainty of what type of data
is exactly being passed. We were not able to find such scenario in the implementation of
RescueMe SPL. Despite the fact that the GUI component handles a number of events
occurring from the interaction with the user, all types of activities are predictable and
consistent with the expected responses.

The features in the project are not concentrated into a single entity, so an ambiguous
interface is not the first idea to compose functionalities in order to derive products. Further,
one other characteristic that might have influenced in the clear specification of data is the
organization of which the SPL is developed. The separation of concerns into model, view
and controller aids in the understanding of the responsibilities of each component and
what types of messages are being passed.

Another characteristic that helped in the clear role of interfaces is the fact that the
APIs are intrinsically strict in their uses. Very well defined methods and attributes are
available from the social networks and iOS frameworks, which reduces the possibility of
confusing types of data and services that are being required and provided. In addition,
such mandatory and strict interfaces ease the analyzability and understandability of the
overall project. The services provided by the APIs are meant to be consistent and clearly
reusable in different context, thus such intrinsic characteristic helps in avoiding such
smell.

5.4.4 Extraneous Adjacent Connector

In the case of RescueMe SPL, the most extensive activity regarding events and listeners
is given by the GUI component and its interactions. The relating components receive
messages asynchronously as the GUI requests information from the user. We have not
found any case in which such events are parallel to a set of procedure calls, making the
relationship between components confusing. The implemented listeners are concerned
with activities such as: the button clicking, row and contact selecting, and receive rescue
message warnings. Despite the fact that the listeners are not handled by an exclusive
designated connector (such as an event bus), procedure calls related to those component

100

5.4. IDENTIFYING ARCHITECTURAL BAD SMELLS

relationships do not exist.
It was clear that the development of this SPL has given priority to the simplicity

of having listeners and direct commands to the events that asynchronously occur. The
communication between any pair of components is not ambiguous to the extent that the
data or control flow are put in doubt. The GUI component implements listeners that
are used to determine what type of changes will take place in different (managerial and
functionality) components.

The overall reusability and adaptability of the involved components are increased
due to the fact that those entities carry generic pre-defined types of events to be sent and
received.

5.4.5 Feature Concentration

RescueMe is an SPL aiming to develop products that, summarily, send text messages
to a number of recipients in dangerous situations. The architectural design under which
the SPL was implemented includes a component that majorly controls the functionality
of uniting the required attributes to have the messages sent (Destination component).
In other words, the Destination component is essential for the functionality of every
application that is derived from this SPL. However, the high-level features defined in
the feature model are not entirely implemented within this component. Destination

component is not a repository of features, although it contains most of the variable
functionalities defined in the feature model.

The role of sending messages is fundamentally attributed to the Destination compo-
nent. However, features such as Twitter Import and German are essentially implemented
in external components (Contact View Controller and Message Composer, respectively).
In conclusion, we cannot affirm that the feature concentration smell appears in this
project.

It is true that if the Destination component were to be changed, there would be a
major effect to the overall system, since this component implements key functionality to
any product developed. Thus, understandability is negatively affected by this decision, as
well as the modularity/reusability of the component. However, the negative impact is not
as severe as it would be if all features were concentrated within this single entity.

101

5.5. COMPARATIVE ANALYSIS

Table 5.3 Comparative table considering the two objects of study.
Notepad SPL RescueMe SPL

Language Java Objective-C
SLOC (internal) 1,927 2,504
Domain Text-Editor (Desktop) Emergency (Mobile)

Variability Technique Conditional Compilation Conditional Compilation
(CIDE GUI) (IFDEFs)

Pattern . Model-View-Controller
Number of Products 10 5
Number of Features 24 (18 selectable) 22 (16 selectable)
Number of Mandatory Features 13 10
Number of Optional Features 11 12
Number of Alternative Features 0 0
Granularity of Features Very Fine-Grained Fine-Grained

Connector Envy
Architectural Smells Found Ambiguous Interfaces Connector Envy

Feature Concentration

Affected Maintainability Attributes

Reusability ReusabilityUnderstandability UnderstandabilityChangeability TestabilityTestability

5.5 Comparative Analysis

In the last section, we conducted the search for architectural smells in the RescueMe
PLA. We were only able to identify the occurrence of one smell in the specification -
the connector envy smell. In this section, we compare relevant attributes and the results
obtained from analyzing both architectures and searching for smells.

5.5.1 Features

The Notepad SPL project contains 24 features in total (18 if the abstract ones are removed).
13 of them are mandatory, and 11 are optional. There are not alternative features. Since
Notepad is in a domain that is not complex, when developing in the feature-oriented way,
the features tend to be very fine-grained, i.e., individual features implement very little
functionality because the variations are also fine-grained.

In the previous chapter, we raised the question of the possible relationship between
having a fine-grained feature specification and the occurrence of a number of smells. In
the case of feature concentration, for example, such smell tends to occur in projects with
fine-grained features because it is probably the simplest way to implement variability
in those conditions. Also, by having fine-grained features, the chances of choosing an
ambiguous interface solution for the design are increased due to the feature repository

102

5.5. COMPARATIVE ANALYSIS

that is created. As far as the architecture level, the most intuitive solution would be to
simplify the interface through which these features are accessed.

The design issues of the Notepad PLA are related to the implementation of the Actions

component. It contains all features - mandatory and optional - thus we see no distinction in
the occurrence of smells with the types of features. The ambiguous interface is also given
by how the GUI component is implemented. However, the non-functional requirement of
having a user interface is not included in the feature model.

Identifying bad smells basically means that the quality attributes related to the main-
tainability of the project may be compromised. In the case of Notepad, the chosen design
represent a negative impact on reusability, understandability, changeability and testability.

On the other hand, the RescueMe SPL project contains 22 features in total (16 when
removing the abstract ones). There are 10 mandatory features and 12 optional. Alternative
features are also not present in this project.

The features in RescueMe are also fine-grained, but not as much as the features in
Notepad. The functionalities implemented throughout RescueMe components are more
complex in extension and responsibility. In this project, the main mandatory features, are
orchestrated by the Destination component. By analyzing this component, we identified
the occurrence of the connector envy smell, indicating too much responsibility with
respect to connections and actual functionality. In this sense, we identified a relationship
between the occurrence of the connector envy smell with the implementation of mandatory
features. The SMS Destination feature is mandatory to all products, and is realized by
the Destination component. This functionality requires several communication activities
with other components in order to have its service performed.

The overall project’s reusability, understandability and testability are negatively
impacted by the occurrence of the connector envy smell. One interesting finding is
that although Notepad presented more smells, only one additional quality attribute was
affected (changeability).

5.5.2 Domain

The first study on architectural bad smells reports on the Notepad, which is an SPL in
the text editor / desktop domain. From the analysis of features that were specified in this
project, we conclude that, in this domain, features tend to be fine-grained. In other words,
functionalities that are specific to text editing are likely to be of small complexity.

When the project contains very fine-grained features specified, the feature concentra-
tion smell tends to appear. Such phenomenon occurs because it is more convenient to

103

5.5. COMPARATIVE ANALYSIS

group small features into one single architectural entity, thus simplifying the implementa-
tion.

On the other hand, the RescueMe SPL is in the emergency / mobile domain. The
implementation of emergency applications fundamentally requires several connections to
be made across different components (or subsystems), in order to provide their function-
ality. For example, it is expected that a communication service is considered when an
emergency application is designed, thus forcing the application to be developed in either
a strongly dependent or a distributed manner. Such obligation increases the possibility
of occurring the connector envy smell, since a lot of connection capabilities need to be
implemented in addition to the application functionalities.

Further, emergency applications usually deal with asynchronous events. Having
implemented a design that allows events (e.g., rescue messages) and accidentally making
a procedure call between the same pair of components characterizes the extraneous
adjacent connector smell. We were not able to identify such smell in the RescueMe SPL
project.

5.5.3 Lines of code and complexity

One way to measure a system’s complexity is through the number of lines of code
and connections realized between components. Both SPLs studied in this work are
fairly small and represent relatively low complexity in their functionalities. We argue
that when a given system is complex, its design tends to allow the scattered parasitic
functionality to appear. This occurs because several concerns are implemented throughout
the components, and in such condition it is not difficult to end up developing one concern
across multiple components. When this occurs, architecture entities are responsible for
implementing multiple concerns, which decreases the overall component’s reusability
and understandability.

In summary, considering Notepad and RescueMe SPLs, we were not able to find this
smell perhaps due to the low complexity of these projects.

5.5.4 Variability technique

Both SPLs use the conditional compilation technique to realize variability at the code
level. While Notepad uses a GUI for manually selecting features to be included in
the product derivation (at running time), RescueMe requires developers to annotate the
desired features in the code. The binding time of RescueMe is development time perhaps

104

5.6. MAIN FINDINGS

due to the pre-defined products that were meant to be developed - obeying the product
requirements initially specified.

We argue that the conditional compilation technique may induce programmers to
concentrate concerns into a single architecture entity. The parts of the code referring
to specific features are annotated and easily recognized, thus making it easy to use the
architectural entity as a feature repository.

In conclusion, having conditional compilation as variability technique at the code
level decreases the possibility of having the scattered parasitic functionality.

5.5.5 Patterns

One attribute of RescueMe that differs from Notepad is the pattern in which the developers
were forced to develop the application. Developing for iOS assumes that every application
is written in the MVC pattern. As previously mentioned, such scenario aids in the
separation of concerns, thus decreasing the possibility of occurring the scattered parasitic
functionality.

Further, such obligation to follow strict rules may induce the occurrence of ambiguous
interfaces, as they are not directly managed by the developers. Despite the need to
include the frameworks that provide essential services to the developing application. the
implementation mechanism is not always transparent to developers when developing
iOS applications. Systems containing clear contents within components and how they
communicate through interfaces are easier to maintain.

In summary, we conclude that the architectural pattern might influence in the occur-
rence of smells. In special, developing for the iOS platform may even prevent such design
decisions to be made.

5.6 Main Findings

This study aimed to help in the understanding of architectural bad smells in software
product lines. The objective was to acquire evidence on whether such phenomenon
occurred in SPLs, by considering two PLAs in different domains. Thus, we performed
architecture recovery, identified bad smells, and compared results of both studies. The
main findings obtained from these activities can be summarized as follows:

• The granularity of the features plays an important role in the occurrence of smells.
Having a small SPL (or having a SPL in a domain such as the Text Editor) may

105

5.7. THREATS TO VALIDITY

influence in the definition of fine grained features, thus increasing the chances
of the architect to decide upon a solution that concentrates features into a single
architecture entity. By making such decision, the feature concentration smell occurs
and the PLA is negatively impacted on understandability, changeability;

• Having too many mandatory features may influence in the occurrence of the con-
nector envy smell. Since these features are present in every product to be derived,
developers tend to inflate the referred architectural entities with both functional-
ity and connection capabilities. In these cases, reusability, understandability and
testability are negatively affected;

• Developing a complex system is many times necessary, but such scenario may
induce scattered parasitic functionality to occur. Although none of the sample SPLs
were very complex, we argue that distributing concerns/functionalities in complex
systems is easier to occur;

• iOS applications are required to be developed under specific rules, and some aspects
of implementation are hidden from the developer. This scenario alone can make
possible the occurrence of ambiguous interfaces, since not all internals of the
components are clear. Fortunately, we were not able to find ambiguous interfaces
in RescueMe;

• Deciding upon the use of a pattern that clearly separates responsibilities may de-
crease the chances of occurring the scattered parasitic functionality smell. When
the concerns are transparently separated, the architecture achieves higher cohe-
sion levels, thus avoiding the negative impacts related to the scattered parasitic
functionality smell;

• Using conditional compilation may induce the occurrence of the feature concentra-
tion smell. Such technique most of the times allows code annotation, thus making
it easier to separate concerns visually, but not necessarily architecturally.

5.7 Threats to Validity

There are a number of threats to the validity of this work, as described next.
The present study subjected to the same threats as described in the last chapter. The

architecture recovery process may be guided by subjective interpretations. The specifi-
cations obtained when analyzing the same code and available artifacts can vary when

106

5.8. CHAPTER SUMMARY

conducted by different individuals. In order to minimize this threat, the recovery process
was carefully conducted by two researchers. We discussed the different interpretations
and agreed on the specification reported in this work. Further, we carefully validated the
obtained model and specification with the developers.

In addition, we were only able to use fairly small SPLs and the search for smells is
more valuably conducted in more complex systems. In order to minimize this threat, we
selected two SPLs in different domains. By having two different objects of study and
different results, we increase the generalizability of our conclusions.

On the other hand, having SPLs in different domains may be a threat on its own.
The SPLs considered in this work are in different domains and were implemented using
different programming languages, technologies and platforms. Such scenario may have
influenced in the search for smells and comparison of results. However, observing how
the proposed smells are identified and behave in different contexts was part of the goals
in the comparative analysis.

5.8 Chapter Summary

In this chapter, we reported on a replication study that aimed at obtaining evidence from
an analysis of an SPL in a different domain than the one used in the previous chapter.
This time, we selected a sample SPL in the emergency / mobile domain. In this study, we
were also required to recover the PLA, because the available architecture artifacts were
not sufficient for the intended search for smells. Thus, we followed the same recovery
process explained in the last chapter, and obtained means for properly searching for
smells.

Then, we performed the same procedures for identifying smells. With the intention
of drawing further conclusions from the conduction of both studies, we performed
a comparative analysis, discussing differences and similarities in both studies. The
Connector Envy smell was identified in both studies, and we related the occurrence of
smells with a number of aspects of the compared SPLs: (i) types of features specified,
(ii) domain of the SPLs, (iii) number of source lines of code and complexity, (iv) chosen
variability management technique, and (v) architectural patterns used.

Next chapter presents the conclusions of this dissertation. We briefly describe the
work conducted, the published paper, and ideas on future directions of research in this
field.

107

6
Conclusions

This dissertation reports on the conduction of a systematic mapping study, from which we
were able to determine what issues have been addressed in the field of Software Product
Line Architectures. It also provides maps and discussions to help researchers in their
planning for future research.

The amount of methods that handle different and specific aspects in PLAs make the
studies comparison a difficult task, since they do not deal with the same goals or contexts.
Nevertheless, in this work we identified and discussed properties of published work in
order to draw conclusions on how the researchers were conducting research work in PLA
in the lastest years. Relevant research aspects were raised, and these can be considered
an important input to further research.

The results of the review suggest that the current studies are concerned with resolving
smaller parts of the problem, instead of wrapping a more complete solution for the PLA
domain. We have also identified very few papers concerning the validation of existing
approaches.

Further, we presented a case study that aimed at understanding the phenomenon of
architectural bad smells in the context of SPLs. The study consisted in (i) recovering
the architecture of a sample PLA, (ii) analyzing both the code and the recovered design
decisions, and (iii) discussing the occurrence of smells against issues related to variability
and SPLs.

We have discovered that the same smells initially identified in single systems can also
be found in PLAs. As far as the evaluation process, we were able to use the same method,
originally proposed to single systems, for analysing architectures and identifying smells
in the SPL context. On the other hand, we argue that the choice of using Java libraries
may have influenced the process of identifying smells due to its intrinsic architectural
implications. Moreover, we proposed a SPL-specific smell that indicates the concentration

108

6.1. PUBLISHED WORK

of features in a single design entity.
After conducting the exploratory study, we considered an SPL in a different domain,

in order to replicate the initial study and find out whether the same smells occur in SPLs
in different domains. From the replicated study, we were only able to identify one smell -
connector envy - which is characterized by the double responsibility of an architecture
component (application functionality and internal connections). From the analysis, we
compared the attributes and the results obtained from both studies, concerning the two
sample SPLs. We identified a number of aspects that might have influenced in the
occurence of smells in them.

6.1 Published Work

The work reported in this dissertation has resulted in one publication (de Andrade et al.,
2014) at the Third International Workshop on Variability in Software Architecture, which
is an internal event held within WICSA - Working IEEE/IFIP Conference on Software
Architecture, in the year of 2014.

Additional papers concerning the systematic mapping study and the empirical studies
have been submitted and are currently under evaluation.

6.2 Future Work

From the results obtained in this dissertation, we have identified a number of aspects that
can be investigated in the future, as decribed next.

• Patterns in PLAs. We identified a number of aspects that can be further inves-
tigated in the area of PLAs, such as the use of patterns. Additional experiences
in using different types of patterns in SPLs can be valuable to aid architects in
designing better PLAs, according to their needs;

• Validating existing approaches. From the literature review, we found several
approaches aiming to resolve different issues in PLAs. However, it would be
valuable to conduct additional research aiming at the evaluation of the existing
ones. In this sense, the approaches would be empirically validated, thus achieving
higher levels of consistency and trustability over time;

• Industrial SPL projects. It would be interesting to combine the evidence obtained
in this work with evidence from empirical studies in industrial SPL projects. For

109

6.3. CONCLUDING REMARKS

example, a survey can be conducted with SPL experts, regarding their experiences
in maintainability issues of PLAs;

• Types of features. One can also further investigate the relation between the
occurrence of smells the types of features that were specified;

• Identifying smells. Another valuable work can be conducted on the feasibility of
using a tool for identifying smells;

• Avoiding smells. We discussed the benefits of identifying architectural smells in
SPL projects. Thus, one interesting work to be conducted is on the need/effective-
ness of adopting an inspection process during the PLA design stage;

• Resolving smells. Another interesting investigation would be on how to effectively
remedy the occurrence of smells. It would be valuable to evaluate whether it is
appropriate to resolve smells through specific manual operations, using tools to
support such corrections, or other manners.

6.3 Concluding Remarks

The goal of this work was to investigate the phenomenon of architectural bad smells in
software product lines. The search for architectural smells is motivated by the fact that
extensive knowledge with respect to the business’ processes is not required for identifying
points of improvement in PLAs. The concept is similar to code smells, but held in a
different level of abstraction.

From this work, we conclude that additional investigations regarding architectural bad
smells in the context of SPLs would be valuable for both practitioners and researchers.
Despite the evidence we obtained from the studies, it would be interesting to further
investigate the phenomenon in industry contexts.

Our findings helped us in the understanding of architectural smells in SPLs, and our
evidences show that such design decisions have a direct impact on the lifecycle properties
of PLAs.

110

References

Abele, A., Lönn, H., Reiser, M.-O., Weber, M., and Glathe, H. (2012). EPM: a prototype
tool for variability management in component hierarchies. In Proceedings of the 16th

International Software Product Line Conference - Volume 2, SPLC ’12, pages 246–249,
New York, NY, USA. ACM.

Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., and Zaremski, A. (1997).
Recommended Best Industrial Practice for Software Architecture Evaluation. Technical
report, Software Engineering Institute (SEI) Carnegie Mellon University.

Abu-Matar, M. and Gomaa, H. (2011). Feature Based Variability for Service Oriented
Architectures. In Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Con-

ference on, pages 302–309.

Adachi, E., Batista, T., Kulesza, U., Medeiros, A., Chavez, C., and Garcia, A. (2009).
Variability Management in Aspect-Oriented Architecture Description Languages: An
Integrated Approach. In Software Engineering, 2009. SBES ’09. XXIII Brazilian

Symposium on, pages 1–11.

Ahn, H. and Kang, S. (2011). Analysis of Software Product Line Architecture Rep-
resentation Mechanisms. In 9th International Conference on Software Engineering

Research, Management and Applications, SERA 2011, Baltimore, MD, USA, August

10-12, 2011, pages 219–226. IEEE Computer Society.

Alves, V., Niu, N., Alves, C., and Valença, G. (2010). Requirements engineering for
software product lines: A systematic literature review. Inf. Softw. Technol., 52(8),
806–820.

America, P., Obbink, H., Muller, J., and van Ommering, R. (2000). COPA: A Component-
Oriented Platform Architecting Method for Families of Software Intensive Electronic
Products.

America, P., Hammer, D. K., Ionita, M. T., Obbink, J. H., and Rommes, E. (2005).
Scenario-based decision making for architectural variability in product families. Soft-

ware Process: Improvement and Practice, 10, 171–187.

Angelov, S., Grefen, P. W. P. J., and Greefhorst, D. (2009). A classification of software
reference architectures: Analyzing their success and effectiveness. In Joint Working

IEEE/IFIP Conference on Software Architecture 2009 and European Conference on

111

REFERENCES

Software Architecture 2009, WICSA/ECSA 2009, Cambridge, UK, 14-17 September

2009, pages 141–150. IEEE.

Angelov, S., Grefen, P., and Greefhorst, D. (2012). A framework for analysis and design
of software reference architectures. Inf. Softw. Technol., 54(4), 417–431.

Apel, S. and Beyer, D. (2011). Feature cohesion in software product lines: an exploratory
study. In Proceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 421–430, New York, NY, USA. ACM.

Arcoverde, R., Macia, I., Garcia, A., and Von Staa, A. (2012). Automatically detecting
architecturally-relevant code anomalies. In Recommendation Systems for Software

Engineering (RSSE), 2012 Third International Workshop on, pages 90–91.

Asadi, M., Mohabbati, B., Kaviani, N., Gasevic, D., Boskovic, M., and Hatala, M.
(2009). Model-driven development of families of service-oriented architectures. In
S. Apel, W. R. Cook, K. Czarnecki, C. Kästner, N. Loughran, and O. Nierstrasz, editors,
Proceedings of the First International Workshop on Feature-Oriented Software Devel-

opment, FOSD 2009, Denver, Colorado, USA, October 6, 2009, ACM International
Conference Proceeding Series, pages 95–102. ACM.

Atkinson, C., Bayer, J., and Muthig, D. (2000). Component-based product line de-
velopment: the KobrA Approach. In P. Donohoe, editor, Software Product Lines;

Experiences and Research Directions, Proceedings of the First International Con-

ference, SPLC 1, Denver, Colorado, USA, August 28-31, 2000, Proceedings, pages
289–310. Kluwer.

Babar, M. A. (2004). Scenarios, quality attributes, and patterns: Capturing and using their
synergistic relationships for product line architectures. In 11th Asia-Pacific Software

Engineering Conference (APSEC 2004), pages 574–578. IEEE Computer Society.

Babar, M. A., Ihme, T., and Pikkarainen, M. (2009). An industrial case of exploiting
product line architectures in agile software development. In D. Muthig and J. D.
McGregor, editors, Software Product Lines, 13th International Conference, SPLC

2009, San Francisco, California, USA, August 24-28, 2009, Proceedings, volume 446
of ACM International Conference Proceeding Series, pages 171–179. ACM.

Bachmann, F. and Bass, L. J. (2001). Managing variability in software architectures. In
SSR, pages 126–132.

112

REFERENCES

Barbosa, E. A., Batista, T. V., Garcia, A. F., and Silva, E. (2011). PL-AspectualACME:
An Aspect-Oriented Architectural Description Language for Software Product Lines.
In I. Crnkovic, V. Gruhn, and M. Book, editors, Software Architecture - 5th Euro-

pean Conference, ECSA 2011, Essen, Germany, September 13-16, 2011. Proceedings,
volume 6903 of Lecture Notes in Computer Science, pages 139–146. Springer.

Bashroush, R., Brown, T. J., Spence, I. T. A., and Kilpatrick, P. (2006). ADLARS: An
Architecture Description Language for Software Product Lines. In 29th Annual IEEE

/ NASA Software Engineering Workshop (SEW-29 2005), 6-7 April 2005, Greenbelt,

Maryland, USA, pages 163–173. IEEE Computer Society.

Bass, L., Clements, P., and Kazman, R. (2003a). Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc.

Bass, L. J., Bachmann, F., and Klein, M. (2003b). Making Variability Decisions during
Architecture Design. In F. van der Linden, editor, Software Product-Family Engineering,

5th International Workshop, PFE 2003, Siena, Italy, November 4-6, 2003, Revised

Papers, volume 3014 of Lecture Notes in Computer Science, pages 454–465. Springer.

Bernardo, M., Ciancarini, P., and Donatiello, L. (2002). Architecting families of software
systems with process algebras. ACM Trans. Softw. Eng. Methodol., 11(4), 386–426.

Bertoncello, I. A., Dias, M. O., Brito, P. H. S., and Rubira, C. M. F. (2008). Explicit
exception handling variability in component-based product line architectures. In
Proceedings of the 4th International Workshop on Exception Handling, WEH 2008,

Atlanta, Georgia, USA, November 14, 2008, pages 47–54. ACM.

Birman, K. and Joseph, T. (1987). Exploiting virtual synchrony in distributed systems.
SIGOPS Oper. Syst. Rev., 21(5), 123–138.

Bosch, J. (2000). Design and use of software architectures: adopting and evolving a

product-line approach. ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA.

Botterweck, G., O’Brien, L., and Thiel, S. (2007). Model-driven derivation of product
architectures. In R. E. K. Stirewalt, A. Egyed, and B. Fischer, editors, 22nd IEEE/ACM

International Conference on Automated Software Engineering (ASE 2007), November

5-9, 2007, Atlanta, Georgia, USA, pages 469–472. ACM.

113

REFERENCES

Breivold, H. P., Crnkovic, I., and Larsson, M. (2012). A systematic review of software
architecture evolution research. Inf. Softw. Technol., 54(1), 16–40.

Brown, W. J., Malveau, R. C., McCormick, III, H. W., and Mowbray, T. J. (1998).
AntiPatterns: refactoring software, architectures, and projects in crisis. John Wiley &
Sons, Inc., New York, NY, USA.

Budgen, D., Turner, M., Brereton, P., and Kitchenham, B. (2008). Using Mapping Studies
in Software Engineering. In Proceedings of PPIG 2008, pages 195–204. Lancaster
University.

Capilla, R. and Babar, M. A. (2008). On the Role of Architectural Design Decisions
in Software Product Line Engineering. In R. Morrison, D. Balasubramaniam, and
K. E. Falkner, editors, Software Architecture, Second European Conference, ECSA

2008, Paphos, Cyprus, September 29 - October 1, 2008, Proceedings, volume 5292 of
Lecture Notes in Computer Science, pages 241–255. Springer.

Carvalho, S., Murta, L., and Loques, O. (2012). Variabilities as first-class elements in
product line architectures of homecare systems. In Software Engineering in Health

Care (SEHC), 2012 4th International Workshop on, pages 33–39.

Carver, J. C. (2010). Towards reporting guidelines for experimental replications: A pro-
posal. In 1st international workshop on replication in empirical software engineering

research (RESER 2010), RESER ’10, New York, NY, USA. ACM SIGSOFT Software
Engineering Notes.

Cavalcanti, R. O., de Almeida, E. S., and Meira, S. R. L. (2011). Extending the RiPLE-DE
process with quality attribute variability realization. In I. Crnkovic, J. A. Stafford,
D. C. Petriu, J. Happe, and P. Inverardi, editors, 7th International Conference on the

Quality of Software Architectures, QoSA 2011 and 2nd International Symposium on

Architecting Critical Systems, ISARCS 2011. Boulder, CO, USA, June 20-24, 2011,

Proceedings, pages 159–164. ACM.

Cho, H. and Yang, J.-S. (2008). Architecture Patterns for Mobile Games Product Lines.
In Advanced Communication Technology, 2008. ICACT 2008. 10th International

Conference on, volume 1, pages 118–122.

Choi, Y., Shin, G., Yang, Y., and Park, C. (2005). An approach to extension of uml
2.0 for representing variabilities. In Proceedings of the Fourth Annual ACIS Interna-

114

REFERENCES

tional Conference on Computer and Information Science, ICIS ’05, pages 258–261,
Washington, DC, USA. IEEE Computer Society.

Choppy, C. and Reggio, G. (2005). A uml-based approach for problem frame oriented
software development. Inf. Softw. Technol., 47(14), 929–954.

Clements, P. and McGregor, J. (2012). Better, faster, cheaper: Pick any three. Business

Horizons, 55(2), 201 – 208.

Clements, P. and Northrop, L. (2001). Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, USA.

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Merson, P., Nord,
R., and Stafford, J. (2010). Documenting Software Architectures: Views and Beyond

(2nd Edition). Addison-Wesley Professional, 2 edition.

da Mota Silveira Neto, P. A., Carmo Machado, I. d., McGregor, J. D., de Almeida, E. S.,
and de Lemos Meira, S. R. (2011). A systematic mapping study of software product
lines testing. Inf. Softw. Technol., 53(5), 407–423.

Dao, T. M. and Kang, K. C. (2010). Mapping features to reusable components: A problem
frames-based approach. In J. Bosch and J. Lee, editors, Software Product Lines:

Going Beyond - 14th International Conference, SPLC 2010, Jeju Island, South Korea,

September 13-17, 2010. Proceedings, volume 6287 of Lecture Notes in Computer

Science, pages 377–392. Springer.

Dashofy, E. M. and Hoek, A. v. d. (2002a). Representing product family architectures
in an extensible architecture description language. In Revised Papers from the 4th

International Workshop on Software Product-Family Engineering, PFE ’01, pages
330–341, London, UK, UK. Springer-Verlag.

Dashofy, E. M. and Hoek, A. v. d. (2002b). Representing product family architectures
in an extensible architecture description language. In Revised Papers from the 4th

International Workshop on Software Product-Family Engineering, PFE ’01, pages
330–341, London, UK, UK. Springer-Verlag.

Dashofy, E. M. and Hoek, A. v. d. (2002c). Representing product family architectures
in an extensible architecture description language. In Revised Papers from the 4th

International Workshop on Software Product-Family Engineering, PFE ’01, pages
330–341, London, UK, UK. Springer-Verlag.

115

REFERENCES

de Andrade, H. S., Almeida, E., and Crnkovic, I. (2014). Architectural bad smells in
software product lines: An exploratory study. In Proceedings of the WICSA 2014

Companion Volume, WICSA ’14 Companion, pages 12:1–12:6, New York, NY, USA.
ACM.

de Oliveira, L. B. R., Felizardo, K. R., Feitosa, D., and Nakagawa, E. Y. (2010). Reference
models and reference architectures based on service-oriented architecture: A systematic
review. In M. A. Babar and I. Gorton, editors, Software Architecture, 4th European

Conference, ECSA 2010, Copenhagen, Denmark, August 23-26, 2010. Proceedings,
volume 6285 of Lecture Notes in Computer Science, pages 360–367. Springer.

de Oliveira Junior, E. A., de Souza Gimenes, I. M., and Maldonado, J. C. (2011). A
Meta-Process to Support Trade-Off Analysis in Software Product Line Architecture.
In SEKE, pages 687–692. Knowledge Systems Institute Graduate School.

DeBaud, J.-M., Flege, O., and Knauber, P. (1998). Pulse-dssa—a method for the devel-
opment of software reference architectures. In Proceedings of the third international

workshop on Software architecture, ISAW ’98, pages 25–28, New York, NY, USA.
ACM.

Del Rosso, C. (2006). Continuous evolution through software architecture evaluation: a
case study: Practice articles. J. Softw. Maint. Evol., 18(5), 351–383.

Dhungana, D., Rabiser, R., and Grünbacher, P. (2007). Decision-Oriented Modeling of
Product Line Architectures. In Sixth Working IEEE / IFIP Conference on Software

Architecture (WICSA 2007), 6-9 January 2005, Mumbai, Maharashtra, India, page 22.
IEEE Computer Society.

Díaz, J., Pérez, J., Garbajosa, J., and Wolf, A. L. (2011). Change Impact Analysis in
Product-Line Architectures. In I. Crnkovic, V. Gruhn, and M. Book, editors, Software

Architecture - 5th European Conference, ECSA 2011, Essen, Germany, September

13-16, 2011. Proceedings, volume 6903 of Lecture Notes in Computer Science, pages
114–129. Springer.

Dincel, E., Medvidovic, N., and van der Hoek, A. (2001). Measuring Product Line
Architectures. In F. van der Linden, editor, Software Product-Family Engineering, 4th

International Workshop, PFE 2001, Bilbao, Spain, October 3-5, 2001, Revised Papers,
volume 2290 of Lecture Notes in Computer Science, pages 346–352. Springer.

116

REFERENCES

Ducasse, S. and Pollet, D. (2009). Software architecture reconstruction: A process-
oriented taxonomy. IEEE Trans. Softw. Eng., 35(4), 573–591.

Dybå, T., Dingsoyr, T., and Hanssen, G. (2007). Applying Systematic Reviews to
Diverse Study Types: An Experience Report. In Empirical Software Engineering and

Measurement, 2007. ESEM 2007. First International Symposium on, pages 225–234.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. (2008). Selecting Empirical
Methods for Software Engineering Research. In F. Shull and J. Singer, editors, Guide

to Advanced Empirical Software Engineering, chapter 11, pages 285–311. Springer
London, London.

Eixelsberger, W. (1998). Recovery of a reference architecture: a case study. In Proceed-

ings of the third international workshop on Software architecture, ISAW ’98, pages
33–36, New York, NY, USA. ACM.

Engström, E. and Runeson, P. (2011). Software product line testing - a systematic
mapping study. Inf. Softw. Technol., 53(1), 2–13.

Etxeberria, L. and Mendieta, G. S. (2005). Product-Line Architecture: New Issues for
Evaluation. In J. H. Obbink and K. Pohl, editors, Software Product Lines, 9th Interna-

tional Conference, SPLC 2005, Rennes, France, September 26-29, 2005, Proceedings,
volume 3714 of Lecture Notes in Computer Science, pages 174–185. Springer.

Etxeberria, L. and Sagardui, G. (2008). Variability driven quality evaluation in soft-
ware product lines. In Software Product Line Conference, 2008. SPLC ’08. 12th

International, pages 243–252.

Fant, J. S. (2011). Building domain specific software architectures from software architec-
tural design patterns. In R. N. Taylor, H. Gall, and N. Medvidovic, editors, Proceedings

of the 33rd International Conference on Software Engineering, ICSE 2011, Waikiki,

Honolulu , HI, USA, May 21-28, 2011, pages 1152–1154. ACM.

Feigenspan, J., Kästner, C., Frisch, M., Dachselt, R., and Apel, S. (2010). Visual
support for understanding product lines. In The 18th IEEE International Conference

on Program Comprehension, ICPC 2010, Braga, Minho, Portugal, June 30-July 2,

2010, pages 34–35. IEEE Computer Society.

Filho, E. D. S., Cavalcanti, R. O., Neiva, D. F. S., Oliveira, T. H. B., Lisboa, L. B.,
Almeida, E. S., and Meira, S. R. L. (2008). Evaluating domain design approaches

117

REFERENCES

using systematic review. In R. Morrison, D. Balasubramaniam, and K. E. Falkner,
editors, 2nd European Conference on Software Architecture (ECSA’08), volume 5292
of Lecture Notes in Computer Science, pages 50–65. Springer.

Fowler, M. (1999). Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Galster, M. (2010). Describing variability in service-oriented software product lines. In
I. Gorton, C. E. Cuesta, and M. A. Babar, editors, Software Architecture, 4th European

Conference, ECSA 2010, Copenhagen, Denmark, August 23-26, 2010. Companion

Volume, ACM International Conference Proceeding Series, pages 344–350. ACM.

Galster, M., Weyns, D., Avgeriou, P., and Becker, M. (2013). Variability in software
architecture: views and beyond. SIGSOFT Softw. Eng. Notes, 37(6), 1–9.

Galvão, I., van den Broek, P., and Aksit, M. (2010). A model for variability design
rationale in SPL. In I. Gorton, C. E. Cuesta, and M. A. Babar, editors, Software

Architecture, 4th European Conference, ECSA 2010, Copenhagen, Denmark, August

23-26, 2010. Companion Volume, ACM International Conference Proceeding Series,
pages 332–335. ACM.

Gannod, G. C. and Lutz, R. R. (2000). An approach to architectural analysis of product
lines. In ICSE, pages 548–557.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N. (2009). Toward a catalogue of
architectural bad smells. In Proceedings of the 5th International Conference on the

Quality of Software Architectures: Architectures for Adaptive Software Systems, QoSA
’09, pages 146–162, Berlin, Heidelberg. Springer-Verlag.

Ghezzi, C. and Molzam Sharifloo, A. (2013). Model-based verification of quantitative
non-functional properties for software product lines. Inf. Softw. Technol., 55(3), 508–
524.

Goedicke, M., Köllmann, C., and Zdun, U. (2004). Designing runtime variation points in
product line architectures: three cases. Sci. Comput. Program., 53(3), 353–380.

Gomaa, H. (1995). Reusable software requirements and architectures for families of
systems. Journal of Systems and Software, 28(3), 189 – 202.

118

REFERENCES

Gomaa, H. (2000). Object Oriented Analysis and Modeling for Families of Systems with
UML. In W. B. Frakes, editor, Software Reuse: Advances in Software Reusability, 6th

International Conerence, ICSR-6, Vienna, Austria, June 27-29, 2000, Proceedings,
volume 1844 of Lecture Notes in Computer Science, pages 89–99. Springer.

Gomaa, H. (2004). Designing Software Product Lines with UML: From Use Cases to

Pattern-Based Software Architectures. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA.

Groher, I. and Weinreich, R. (2012). Integrating Variability Management and Software
Architecture. In Proceedings of the Joint 10th Working IEEE/IFIP Conference on

Software Architecture and 6th European Conference on Software Architecture (accepted

for publication), WICSA/ECSA’12.

GröNer, G., BošKović, M., Silva Parreiras, F., and GašEvić, D. (2013). Modeling and
validation of business process families. Inf. Syst., 38(5), 709–726.

Guana, V. and Correal, D. (2013). Improving software product line configuration: A qual-
ity attribute-driven approach. Information and Software Technology. <ce:title>Special
Issue on Software Reuse and Product Lines</ce:title> <ce:subtitle>Special Issue on
Software Reuse and Product Lines</ce:subtitle>.

Haber, A., Kutz, T., Rendel, H., Rumpe, B., and Schaefer, I. (2011a). Delta-oriented archi-
tectural variability using MontiCore. In W. Hasselbring and V. Gruhn, editors, Software

Architecture, 5th European Conference, ECSA 2011, Essen, Germany, September 13

- 16, 2011. Companion Volume, ACM International Conference Proceeding Series,
page 6. ACM.

Haber, A., Rendel, H., Rumpe, B., Schaefer, I., and van der Linden, F. (2011b). Hier-
archical variability modeling for software architectures. In Proceedings of the 2011

15th International Software Product Line Conference, SPLC ’11, pages 150–159,
Washington, DC, USA. IEEE Computer Society.

Hallsteinsen, S. O., Fægri, T. E., and Syrstad, M. (2003). Patterns in Product Family
Architecture Design. In F. van der Linden, editor, Software Product-Family Engineering,

5th International Workshop, PFE 2003, Siena, Italy, November 4-6, 2003, Revised

Papers, volume 3014 of Lecture Notes in Computer Science, pages 261–268. Springer.

Hendrickson, S. A. and van der Hoek, A. (2007). Modeling Product Line Architectures
through Change Sets and Relationships. In 29th International Conference on Software

119

REFERENCES

Engineering (ICSE 2007), Minneapolis, MN, USA, May 20-26, 2007, pages 189–198.
IEEE Computer Society.

Hilliard, R. (2010). On representing variation. In I. Gorton, C. E. Cuesta, and M. A. Babar,
editors, Software Architecture, 4th European Conference, ECSA 2010, Copenhagen,

Denmark, August 23-26, 2010. Companion Volume, ACM International Conference
Proceeding Series, pages 312–315. ACM.

Johansson, E. and Höst, M. (2002). Tracking degradation in software product lines
through measurement of design rule violations. In SEKE, pages 249–254.

Kang, K. C., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). Form: A feature-
oriented reuse method with domain-specific reference architectures. Ann. Softw. Eng.,
5, 143–168.

Kavimandan, A., Gokhale, A. S., Karsai, G., and Gray, J. (2011). Managing the quality
of software product line architectures through reusable model transformations. In
I. Crnkovic, J. A. Stafford, D. C. Petriu, J. Happe, and P. Inverardi, editors, 7th

International Conference on the Quality of Software Architectures, QoSA 2011 and

2nd International Symposium on Architecting Critical Systems, ISARCS 2011. Boulder,

CO, USA, June 20-24, 2011, Proceedings, pages 13–22. ACM.

Kazman, R., Bass, L., Webb, M., and Abowd, G. (1994). Saam: a method for analyzing
the properties of software architectures. In Proceedings of the 16th international

conference on Software engineering, ICSE ’94, pages 81–90, Los Alamitos, CA, USA.
IEEE Computer Society Press.

Kazman, R., Klein, M., and Clements, P. (2000). ATAM: Method for Architecture
Evaluation. Technical report, CMU/SEI.

Keith, M. and Wen, G. (2010). Advances in Social Science Research Using R, Book Chap-
ter Bubble Plots as a Model-Free Graphical Tool for Continuous Variables. Journal of

Statistical Software, Book Reviews, 34(2).

Kekre, S. and Srinivasan, K. (1990). Broader product line: A necessity to achieve success?
Manage. Sci., 36(10), 1216–1231.

Kim, J., Park, S., and Sugumaran, V. (2008a). DRAMA: A framework for domain
requirements analysis and modeling architectures in software product lines. Journal of

Systems and Software, 81(1), 37–55.

120

REFERENCES

Kim, K., Kim, H., Kim, S., and Chang, G. (2008b). A Case Study on SW Product
Line Architecture Evaluation: Experience in the Consumer Electronics Domain. In
Software Engineering Advances, 2008. ICSEA ’08. The Third International Conference

on, pages 192–197.

Kim, T., Ko, I. Y., Kang, S. W., and Lee, D. H. (2008c). Extending ATAM to assess
product line architecture. In Computer and Information Technology, 2008. CIT 2008.

8th IEEE International Conference on, pages 790–797.

Kim, Y.-G., Lee, S. K., and Jang, S.-B. (2011). Variability Management for Software
Product-Line Architecture Development. International Journal of Software Engineer-

ing and Knowledge Engineering, 21(07), 931–956.

Kishi, T., Noda, N., and Katayama, T. (2005). Design Verification for Product Line Devel-
opment. In J. H. Obbink and K. Pohl, editors, Software Product Lines, 9th International

Conference, SPLC 2005, Rennes, France, September 26-29, 2005, Proceedings, volume
3714 of Lecture Notes in Computer Science, pages 150–161. Springer.

Kitchenham, B. and Charters, S. (2007). Guidelines for performing Systematic Literature
Reviews in Software Engineering. Software Engineering Group School of , 2, 1051.

Kolb, R. and Muthig, D. (2006). Making testing product lines more efficient by improving
the testability of product line architectures. In R. M. Hierons and H. Muccini, editors,
Proceedings of the 2006 Workshop on Role of Software Architecture for Testing and

Analysis, held in conjunction with the ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA 2006), ROSATEA 2006, Portland, Maine, USA,

July 17-20, 2006, pages 22–27. ACM.

Kruchten, P., Obbink, H., and Stafford, J. (2006). The past, present, and future for
software architecture. IEEE Softw., 23(2), 22–30.

Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24(2), 131–183.

Lee, H., Yang, J.-s., and Kang, K. C. (2012). Vulcan: Architecture-model-based work-
bench for product line engineering. In Proceedings of the 16th International Software

Product Line Conference - Volume 2, SPLC ’12, pages 260–264, New York, NY, USA.
ACM.

121

REFERENCES

Lee, J., Muthig, D., and Naab, M. (2010). A feature-oriented approach for developing
reusable product line assets of service-based systems. Journal of Systems and Software,
83(7), 1123–1136.

Lin, Y., Ye, H., and Li, G. (2010). An Approach for Modelling Software Product Line
Architecture. In Computational Intelligence and Software Engineering (CiSE), 2010

International Conference on, pages 1 –4.

Lippert, M. and Roock, S. (2006). Refactoring in Large Software Projects: Performing

Complex Restructurings Successfully. Wiley, 1 edition.

Lutz, R. R. and Gannod, G. C. (2003). Analysis of a software product line architecture:
an experience report. Journal of Systems and Software, 66(3), 253–267.

Maccari, A. (2002). Experiences in assessing product family software architecture
for evolution. In Proceedings of the 22rd International Conference on Software

Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA, pages 585–592.
ACM.

Macia, I., Garcia, J., Popescu, D., Garcia, A., Medvidovic, N., and von Staa, A. (2012a).
Are automatically-detected code anomalies relevant to architectural modularity?: an ex-
ploratory analysis of evolving systems. In Proceedings of the 11th annual international

conference on Aspect-oriented Software Development, AOSD ’12, pages 167–178,
New York, NY, USA. ACM.

Macia, I., Arcoverde, R., Garcia, A., Chavez, C., and von Staa, A. (2012b). On the
relevance of code anomalies for identifying architecture degradation symptoms. In
Proceedings of the 2012 16th European Conference on Software Maintenance and

Reengineering, CSMR ’12, pages 277–286, Washington, DC, USA. IEEE Computer
Society.

Mann, S. and Rock, G. (2009). Dealing with Variability in Architecture Descriptions to
Support Automotive Product Lines. In D. Benavides, A. Metzger, and U. W. Eisenecker,
editors, Third International Workshop on Variability Modelling of Software-Intensive

Systems, Seville, Spain, January 28-30, 2009. Proceedings, volume 29 of ICB Research

Report, pages 111–120. Universität Duisburg-Essen.

Matinlassi, M. (2004a). Comparison of Software Product Line Architecture Design
Methods: COPA, FAST, FORM, KobrA and QADA. In 26th International Conference

122

REFERENCES

on Software Engineering (ICSE 2004), 23-28 May 2004, Edinburgh, United Kingdom,
pages 127–136. IEEE Computer Society.

Matinlassi, M. (2004b). Evaluating the portability and maintainability of software
product family architecture: Terminal software case study. In 4th Working IEEE / IFIP

Conference on Software Architecture (WICSA 2004), 12-15 June 2004, Oslo, Norway,
pages 295–300. IEEE Computer Society.

Matinlassi, M., Niemelä, E., and Dobrica, L. (2002). Quality-driven Architecture Design

and Quality Analysis Method: A Revolutionary Initiation Approach to a Product

Line Architecture. VTT publications: Valtion Teknillinen Tutkimuskeskus. Technical
Research Centre of Finland.

Meister, J., Reussner, R., and Rohde, M. (2004). Applying Patterns to Develop a Product
Line Architecture for Statistical Analysis Software. In 4th Working IEEE / IFIP

Conference on Software Architecture (WICSA 2004), 12-15 June 2004, Oslo, Norway,
pages 291–294. IEEE Computer Society.

Meyer, M. and Lehnerd, A. (1997). The Power of Product Platforms. Free Press.

Montagud, S. and Abrahão, S. (2009). Gathering current knowledge about quality
evaluation in software product lines. In D. Muthig and J. D. McGregor, editors,
Software Product Lines, 13th International Conference, SPLC 2009, San Francisco,

California, USA, August 24-28, 2009, Proceedings, volume 446 of ACM International

Conference Proceeding Series, pages 91–100. ACM.

Montagud, S., Abrahão, S., and Insfran, E. (2012). A systematic review of quality
attributes and measures for software product lines. Software Quality Journal, 20,
425–486. 10.1007/s11219-011-9146-7.

Moon, M. and Yeom, K. (2006). An Approach to Developing Domain Architectures
Based on Variability Analysis. In M. L. Gavrilova, O. Gervasi, V. Kumar, C. J. K.
Tan, D. Taniar, A. Laganà, Y. Mun, and H. Choo, editors, Computational Science and

Its Applications - ICCSA 2006, International Conference, Glasgow, UK, May 8-11,

2006, Proceedings, Part II, volume 3981 of Lecture Notes in Computer Science, pages
441–450. Springer.

Moon, M., Chae, H. S., and Yeom, K. (2006). A Metamodel Approach to Architecture
Variability in a Product Line. In M. Morisio, editor, Reuse of Off-the-Shelf Components,

123

REFERENCES

9th International Conference on Software Reuse, ICSR 2006, Turin, Italy, June 12-

15, 2006, Proceedings, volume 4039 of Lecture Notes in Computer Science, pages
115–126. Springer.

Moon, M., Chae, H. S., Nam, T., and Yeom, K. (2007). A Metamodeling Approach to
Tracing Variability between Requirements and Architecture in Software Product Lines.
In Seventh International Conference on Computer and Information Technology (CIT

2007), October 16-19, 2007, University of Aizu, Fukushima, Japan, pages 927–933.
IEEE Computer Society.

Moraes, M. B. S., Almeida, E. S., and Meira, S. R. L. (2009). A Systematic Review
on Software Product Lines Scoping. In VI Experimental Software Engineering Latin

American Workshop (ESELAW), pages 63–72.

Morisawa, Y. and Torii, K. (2001). An architectural style of product lines for distributed
processing systems, and practical selection method. In ESEC / SIGSOFT FSE, pages
11–20.

Murugesupillai, E., Mohabbati, B., and Gasevic, D. (2011). A preliminary mapping
study of approaches bridging software product lines and service-oriented architectures.
In I. Schaefer, I. John, and K. Schmid, editors, Software Product Lines - 15th Inter-

national Conference, SPLC 2011, Munich, Germany, August 22-26, 2011. Workshop

Proceedings (Volume 2), page 11. ACM.

Murwantara, I. (2011). Initiating layers architecture design for Software Product Line.
In Uncertainty Reasoning and Knowledge Engineering (URKE), 2011 International

Conference on, volume 1, pages 48–51.

Muthig, D. and Atkinson, C. (2002). Model-Driven Product Line Architectures. In G. J.
Chastek, editor, Software Product Lines, Second International Conference, SPLC 2,

San Diego, CA, USA, August 19-22, 2002, Proceedings, volume 2379 of Lecture Notes

in Computer Science, pages 110–129. Springer.

Nakagawa, E. Y. (2012). Reference architectures and variability: current status and
future perspectives. In Proceedings of the WICSA/ECSA 2012 Companion Volume,
WICSA/ECSA ’12, pages 159–162, New York, NY, USA. ACM.

Nakagawa, E. Y., Antonino, P. O., and Becker, M. (2011). Reference architecture and
product line architecture: a subtle but critical difference. In Proceedings of the 5th

124

REFERENCES

European conference on Software architecture, ECSA’11, pages 207–211, Berlin,
Heidelberg. Springer-Verlag.

Neto, P. A. d. M. S., Machado, I. d. C., Cavalcanti, Y. C., Almeida, E. S. d., Garcia, V. C.,
and Meira, S. R. d. L. (2010). A regression testing approach for software product lines
architectures. In Proceedings of the 2010 Fourth Brazilian Symposium on Software

Components, Architectures and Reuse, SBCARS ’10, pages 41–50, Washington, DC,
USA. IEEE Computer Society.

Niemelä, E., Matinlassi, M., and Taulavuori, A. (2004). Practical Evaluation of Software
Product Family Architectures. In R. L. Nord, editor, Software Product Lines, Third

International Conference, SPLC 2004, Boston, MA, USA, August 30-September 2, 2004,

Proceedings, volume 3154 of Lecture Notes in Computer Science, pages 130–145.
Springer.

Oliveira, D. and Rosa, N. (2009). Ubá: A Software Product Line Architecture for
Grid-Oriented Middleware. In S. I. Ahamed, E. Bertino, C. K. Chang, V. Getov,
L. Liu, H. Ming, and R. Subramanyan, editors, Proceedings of the 33rd Annual IEEE

International Computer Software and Applications Conference, COMPSAC 2009,

Seattle, Washington, USA, 20-24 July 2009, pages 160–165. IEEE Computer Society.

Oliveira Junior, E., Maldonado, J., and Gimenes, I. (2010). Empirical Validation of
Complexity and Extensibility Metrics for Software Product Line Architectures. In
Software Components, Architectures and Reuse (SBCARS), 2010 Fourth Brazilian

Symposium on, pages 31–40.

Oliveira Junior, E. A., Gimenes, I. M. S., Maldonado, J. C., Masiero, P. C., and Barroca,
L. (2013). Systematic evaluation of software product line architectures. Journal of

Universal Computer Science, 19(1), 25–52.

Olumofin, F. G. and Misic, V. B. (2005). Extending the ATAM Architecture Evaluation
to Product Line Architectures. In Fifth Working IEEE / IFIP Conference on Software

Architecture (WICSA 2005), 6-10 November 2005, Pittsburgh, Pennsylvania, USA,
pages 45–56. IEEE Computer Society.

Olumofin, F. G. and Misic, V. B. (2007). A holistic architecture assessment method for
software product lines. Information & Software Technology, 49(4), 309–323.

Pérez, J., Díaz, J., Soria, C. C., and Garbajosa, J. (2009). Plastic Partial Components: A
solution to support variability in architectural components. In Joint Working IEEE/IFIP

125

REFERENCES

Conference on Software Architecture 2009 and European Conference on Software

Architecture 2009, WICSA/ECSA 2009, Cambridge, UK, 14-17 September 2009, pages
221–230. IEEE.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008). Systematic Mapping
Studies in Software Engineering. 12th International Conference on Evaluation and

Assessment in Software Engineering.

Pinzger, M., Gall, H., Girard, J.-F., Knodel, J., Riva, C., Pasman, W., Broerse, C., and
Wijnstra, J. G. (2003). Architecture recovery for product families. In F. van der Linden,
editor, Software Product-Family Engineering, 5th International Workshop, PFE 2003,

Siena, Italy, November 4-6, 2003, Revised Papers, volume 3014 of Lecture Notes in

Computer Science, pages 332–351. Springer.

Pohl, K., Böckle, G., and Linden, F. J. v. d. (2005). Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

Razavian, M. and Khosravi, R. (2008). Modeling variability in the component and
connector view of architecture using uml. In Proceedings of the 2008 IEEE/ACS

International Conference on Computer Systems and Applications, AICCSA ’08, pages
801–809, Washington, DC, USA. IEEE Computer Society.

Reinhartz-Berger, I. and Sturm, A. (2009). Utilizing domain models for application
design and validation. Information & Software Technology, 51(8), 1275–1289.

Rosik, J., Le Gear, A., Buckley, J., Babar, M. A., and Connolly, D. (2011). Assessing
architectural drift in commercial software development: a case study. Softw. Pract.

Exper., 41(1), 63–86.

Rossel, P. O., Perovich, D., and Bastarrica, M. C. (2009). Reuse of Architectural Knowl-
edge in SPL Development. In S. H. Edwards and G. Kulczycki, editors, Formal

Foundations of Reuse and Domain Engineering, 11th International Conference on Soft-

ware Reuse, ICSR 2009, Falls Church, VA, USA, September 27-30, 2009. Proceedings,
volume 5791 of Lecture Notes in Computer Science, pages 191–200. Springer.

Rosso, C. D. (2006). Continuous evolution through software architecture evaluation: a
case study. Journal of Software Maintenance, 18(5), 351–383.

126

REFERENCES

Runeson, P. and Höst, M. (2009). Guidelines for conducting and reporting case study
research in software engineering. Empirical Softw. Engg., 14(2), 131–164.

Satyananda, T., Lee, D., Kang, S., and Hashmi, S. (2007a). Identifying Traceability
between Feature Model and Software Architecture in Software Product Line using
Formal Concept Analysis. In Computational Science and its Applications, 2007. ICCSA

2007. International Conference on, pages 380–388.

Satyananda, T. K., Lee, D., and Kang, S. (2007b). Formal Verification of Consistency
between Feature Model and Software Architecture in Software Product Line. In
Proceedings of the Second International Conference on Software Engineering Advances

(ICSEA 2007). IEEE Computer Society.

SEI, F. (2001). Software product lines: practices and patterns. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Silva, E., Medeiros, A. L., Cavalcante, E., and Batista, T. (2013). A lightweight language
for software product lines architecture description. In Proceedings of the 7th European

Conference on Software Architecture, ECSA’13, pages 114–121, Berlin, Heidelberg.
Springer-Verlag.

Silva de Oliveira, D. and Rosa, N. (2010a). Evaluating Product Line Architecture for
Grid Computing Middleware Systems: Ubá experience. In Advanced Information

Networking and Applications Workshops (WAINA), 2010 IEEE 24th International

Conference on, pages 257 –262.

Silva de Oliveira, D. J. and Rosa, N. S. (2010b). Evaluating product line architecture for
grid computing middleware systems: Ubá experience. In Proceedings of the

2010 IEEE 24th International Conference on Advanced Information Networking and

Applications Workshops, WAINA ’10, pages 257–262, Washington, DC, USA. IEEE
Computer Society.

Simidchieva, B. I. and Osterweil, L. J. (2010). Categorizing and modeling variation in
families of systems: a position paper. In I. Gorton, C. E. Cuesta, and M. A. Babar,
editors, Software Architecture, 4th European Conference, ECSA 2010, Copenhagen,

Denmark, August 23-26, 2010. Companion Volume, ACM International Conference
Proceeding Series, pages 316–323. ACM.

127

REFERENCES

Taulavuori, A., Niemelä, E., and Kallio, P. (2004). Component documentation—a key
issue in software product lines. Information and Software Technology, 46(8), 535 –
546.

Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2009). Software Architecture:

Foundations, Theory, and Practice. Wiley, 1 edition.

Tekinerdogan, B. and Sözer, H. (2012). Variability viewpoint for introducing variability in
software architecture viewpoints. In Proceedings of the WICSA/ECSA 2012 Companion

Volume, WICSA/ECSA ’12, pages 163–166, New York, NY, USA. ACM.

Thiel, S. and Hein, A. (2002). Systematic Integration of Variability into Product Line
Architecture Design. In G. J. Chastek, editor, Software Product Lines, Second Interna-

tional Conference, SPLC 2, San Diego, CA, USA, August 19-22, 2002, Proceedings,
volume 2379 of Lecture Notes in Computer Science, pages 130–153. Springer.

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2012). Fea-
tureide: An extensible framework for feature-oriented software development. Science

of Computer Programming. to appear; accepted 7 Jun 2012.

Tizzei, L. P., Dias, M. O., Rubira, C. M. F., Garcia, A., and Lee, J. (2011). Components
meet aspects: Assessing design stability of a software product line. Information &

Software Technology, 53(2), 121–136.

Trujillo, S., Azanza, M., Diaz, O., and Capilla, R. (2007). Exploring Extensibility of
Architectural Design Decisions. In Sharing and Reusing Architectural Knowledge -

Architecture, Rationale, and Design Intent, 2007. SHARK/ADI ’07: ICSE Workshops

2007. Second Workshop on.

van der Hoek, A. (2004). Design-time product line architectures for any-time variability.
Sci. Comput. Program., 53(3), 285–304.

van der Hoek, A., Dincel, E., and Medvidovic, N. (2003). Using service utilization
metrics to assess the structure of product line architectures. In 9th IEEE International

Software Metrics Symposium (METRICS 2003), 3-5 September 2003, Sydney, Australia,
pages 298–308. IEEE Computer Society.

van der Linden, F. J., Schmid, K., and Rommes, E. (2007). Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering. Springer, Berlin.

128

REFERENCES

van Gurp, J. and Bosch, J. (2002). Design erosion: problems and causes. J. Syst. Softw.,
61(2), 105–119.

Weiss, D. M. and Lai, C. T. R. (1999). Software product-line engineering: a family-based

software development process. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

Wieringa, R., Maiden, N., Mead, N., and Rolland, C. (2005). Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion. Requir. Eng.,
11(1), 102–107.

Zhang, H., Babar, M. A., and Tell, P. (2011). Identifying relevant studies in software
engineering. Information and Software Technology, 53(6), 625 – 637. <ce:title>Special
Section: Best papers from the APSEC</ce:title> <ce:subtitle>Best papers from the
APSEC</ce:subtitle>.

Zhang, T., Deng, L., Wu, J., Zhou, Q., and Ma, C. (2008). Some metrics for Accessing
Quality of Product Line Architecture. In International Conference on Computer

Science and Software Engineering, CSSE 2008, Volume 2: Software Engineering,

December 12-14, 2008, Wuhan, China, pages 500–503. IEEE Computer Society.

Zheng, L., Wu, Z., Zhang, C., and Yang, F. (2010). Developing an Architecture De-
scription Language for Data Processing Product Line. In S. Latifi, editor, Seventh

International Conference on Information Technology: New Generations, ITNG 2010,

Las Vegas, Nevada, USA, 12-14 April 2010, pages 944–949. IEEE Computer Society.

129

Appendix

130

A
Mapping Study

A.1 List of Journals Manually Searched

Journal
ACM Computing Surveys
ACM Transactions on Software Engineering and Methodology
Annals of Software Engineering
Communications of the ACM
Empirical Software Engineering Journal
IEEE Software
IEEE Transactions on Software Engineering
IET Software
Information and Software Technology
Journal of Object Technology
Journal of Systems and Software
Journal of Systems Architecture
Management Science
Software Practice and Experience Journal
Software Process: Improvement and Practice

131

A.2. LIST OF CONFERENCES MANUALLY SEARCHED

A.2 List of Conferences Manually Searched

Acronym Conference

APSEC Asia Pacific Software Engineering Conference
ASE International Conference on Automated Software Engineering

ASWEC Australian Software Engineering Conference
CAiSE International Conference on Advanced Information Systems Engineering
CBSE International Symposium on Component-based Software Engineering

COMPSAC International Computer Software and Applications Conference
ECBS International Conference and Workshop on the Engineering of Computer Based

Systems
ECOOP European Conference for Object-Oriented Programming
ECSA European Conference on Software Architecture
ESEC European Software Engineering Conference
ESEM Empirical Software Engineering and Measurement
FASE Fundamental Approaches to Software Engineering
ICEIS International Conference on Enterprise Information Systems
ICPC International Conference on Program Comprehension
ICSE International Conference on Software Engineering
ICSM International Conference on Software Maintenance
ICSR International Conference on Software Reuse
IRI International Conference on Information Reuse and Integration

GPCE International Conference on Generative Programming and Component Engi-
neering

OOPSLA ACM SIGPLAN conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications

PFE Software Product-Family Engineering
PROFES International Conference on Product Focused Software Development and Pro-

cess Improvement
QoSA International Conference on the Quality of Software Architectures
QSIC International Conference on Quality Software
SEAA Euromicro Conference on Software Engineering and Advanced Applications
SEKE International Conference on Software Engineering and Knowledge Engineering
SPLC Software Product Line Conference

VaMoS Variability Modeling of Software-intensive Systems
WICSA Working IEEE/IFIP Conference on Software Architecture

132

A.3. DATA EXTRACTION REPORT

A.3 Data Extraction Report

Data Extraction Report: Systematic Mapping on PLAs

General Information

Study Identifier: (Unique ID for the study)
Date of data extraction:
Data extractor:
Data checker:

Study Description

Objectives:
Problem (main problem approached in the study):
Results (contributions and outcomes found):
Classification (based on the categories and facets):

Answers to Research Questions

Q1. Are architectural patterns (styles) used in SPL?
Q2. How is variability handled in the architecture level of SPLs?
Q3. How are the SPL architectures documented?
Q4. How are the SPL architectures evaluated?

Table A.1 Data extraction report

133

A.4. PRIMARY STUDIES MAPPED ACCORDING TO ASPECTS IN PLA

A.4 Primary Studies Mapped According to Aspects in
PLA

(following pages in landscape)

134

A.4. PRIMARY STUDIES MAPPED ACCORDING TO ASPECTS IN PLA
Ta

bl
e

A
.2

Pr
im

ar
y

St
ud

ie
s

ad
dr

es
si

ng
Pa

tte
rn

s
Ti

tle
R

ef
er

en
ce

A
fe

at
ur

e-
or

ie
nt

ed
ap

pr
oa

ch
fo

rd
ev

el
op

in
g

re
us

ab
le

pr
od

uc
tl

in
e

as
se

ts
of

se
rv

ic
e-

ba
se

d
sy

st
em

s
(L

ee
et

al
.,

20
10

)
A

n
ar

ch
ite

ct
ur

al
st

yl
e

of
pr

od
uc

tl
in

es
fo

rd
is

tr
ib

ut
ed

pr
oc

es
si

ng
sy

st
em

s,
an

d
pr

ac
tic

al
se

le
ct

io
n

m
et

ho
d

(M
or

is
aw

a
an

d
To

ri
i,

20
01

)
A

pp
ly

in
g

Pa
tte

rn
s

to
D

ev
el

op
a

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
fo

rS
ta

tis
tic

al
A

na
ly

si
s

So
ft

w
ar

e
(M

ei
st

er
et

al
.,

20
04

)
A

rc
hi

te
ct

in
g

fa
m

ili
es

of
so

ft
w

ar
e

sy
st

em
s

w
ith

pr
oc

es
s

al
ge

br
as

(B
er

na
rd

o
et

al
.,

20
02

)
A

rc
hi

te
ct

ur
e

Pa
tte

rn
s

fo
rM

ob
ile

G
am

es
Pr

od
uc

tL
in

es
(C

ho
an

d
Y

an
g,

20
08

)
B

ui
ld

in
g

do
m

ai
n

sp
ec

ifi
c

so
ft

w
ar

e
ar

ch
ite

ct
ur

es
fr

om
so

ft
w

ar
e

ar
ch

ite
ct

ur
al

de
si

gn
pa

tte
rn

s
(F

an
t,

20
11

)
D

R
A

M
A

:A
fr

am
ew

or
k

fo
rd

om
ai

n
re

qu
ir

em
en

ts
an

al
ys

is
an

d
m

od
el

in
g

ar
ch

ite
ct

ur
es

in
so

ft
w

ar
e

pr
od

uc
tl

in
es

(K
im

et
al

.,
20

08
a)

Pa
tte

rn
s

in
Pr

od
uc

tF
am

ily
A

rc
hi

te
ct

ur
e

D
es

ig
n

(H
al

ls
te

in
se

n
et

al
.,

20
03

)
Sc

en
ar

io
s,

Q
ua

lit
y

A
ttr

ib
ut

es
,a

nd
Pa

tte
rn

s:
C

ap
tu

ri
ng

an
d

U
si

ng
th

ei
rS

yn
er

gi
st

ic
R

el
at

io
ns

hi
ps

fo
rP

ro
du

ct
L

in
e

A
rc

hi
te

ct
ur

es
(B

ab
ar

,2
00

4)

135

A.4. PRIMARY STUDIES MAPPED ACCORDING TO ASPECTS IN PLA
Ta

bl
e

A
.3

Pr
im

ar
y

St
ud

ie
s

ad
dr

es
si

ng
V

ar
ia

bi
lit

y
Ti

tle
R

ef
er

en
ce

A
M

et
am

od
el

A
pp

ro
ac

h
to

A
rc

hi
te

ct
ur

e
V

ar
ia

bi
lit

y
in

a
Pr

od
uc

tL
in

e
(M

oo
n

et
al

.,
20

06
)

A
m

od
el

fo
rv

ar
ia

bi
lit

y
de

si
gn

ra
tio

na
le

in
SP

L
(G

al
vã

o
et

al
.,

20
10

)
A

D
L

A
R

S:
A

n
A

rc
hi

te
ct

ur
e

D
es

cr
ip

tio
n

L
an

gu
ag

e
fo

rS
of

tw
ar

e
Pr

od
uc

tL
in

es
(B

as
hr

ou
sh

et
al

.,
20

06
)

A
n

A
pp

ro
ac

h
fo

rM
od

el
lin

g
So

ft
w

ar
e

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
(L

in
et

al
.,

20
10

)
A

n
ap

pr
oa

ch
to

de
ve

lo
pi

ng
do

m
ai

n
ar

ch
ite

ct
ur

es
ba

se
d

on
va

ri
ab

ili
ty

an
al

ys
is

(M
oo

n
an

d
Y

eo
m

,2
00

6)
A

n
A

pp
ro

ac
h

to
E

xt
en

si
on

of
U

M
L

2.
0

fo
rR

ep
re

se
nt

in
g

V
ar

ia
bi

lit
ie

s
(C

ho
ie

ta
l.,

20
05

)
A

na
ly

si
s

of
So

ft
w

ar
e

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
R

ep
re

se
nt

at
io

n
M

ec
ha

ni
sm

s
(A

hn
an

d
K

an
g,

20
11

)
A

rc
hi

te
ct

in
g

fa
m

ili
es

of
so

ft
w

ar
e

sy
st

em
s

w
ith

pr
oc

es
s

al
ge

br
as

(B
er

na
rd

o
et

al
.,

20
02

)
A

rc
hi

te
ct

ur
e

R
ec

ov
er

y
fo

rP
ro

du
ct

Fa
m

ili
es

(P
in

zg
er

et
al

.,
20

03
)

C
at

eg
or

iz
in

g
an

d
m

od
el

in
g

va
ri

at
io

n
in

fa
m

ili
es

of
sy

st
em

s:
a

po
si

tio
n

pa
pe

r
(S

im
id

ch
ie

va
an

d
O

st
er

w
ei

l,
20

10
)

C
ha

ng
e

Im
pa

ct
A

na
ly

si
s

in
Pr

od
uc

t-
L

in
e

A
rc

hi
te

ct
ur

es
(D

ía
z

et
al

.,
20

11
)

C
om

pa
ri

so
n

of
So

ft
w

ar
e

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
D

es
ig

n
M

et
ho

ds
:C

O
PA

,F
A

ST
,F

O
R

M
,K

ob
rA

an
d

Q
A

D
A

(M
at

in
la

ss
i,

20
04

a)
C

om
po

ne
nt

-b
as

ed
pr

od
uc

tl
in

e
de

ve
lo

pm
en

t:
th

e
K

ob
rA

A
pp

ro
ac

h
(A

tk
in

so
n

et
al

.,
20

00
)

D
ea

lin
g

w
ith

V
ar

ia
bi

lit
y

in
A

rc
hi

te
ct

ur
e

D
es

cr
ip

tio
ns

to
Su

pp
or

tA
ut

om
ot

iv
e

Pr
od

uc
tL

in
es

(M
an

n
an

d
R

oc
k,

20
09

)
D

ec
is

io
n-

O
ri

en
te

d
M

od
el

in
g

of
Pr

od
uc

tL
in

e
A

rc
hi

te
ct

ur
es

(D
hu

ng
an

a
et

al
.,

20
07

)
D

el
ta

-o
ri

en
te

d
ar

ch
ite

ct
ur

al
va

ri
ab

ili
ty

us
in

g
M

on
tiC

or
e

(H
ab

er
et

al
.,

20
11

a)
D

es
cr

ib
in

g
va

ri
ab

ili
ty

in
se

rv
ic

e-
or

ie
nt

ed
so

ft
w

ar
e

pr
od

uc
tl

in
es

(G
al

st
er

,2
01

0)
D

es
ig

n-
tim

e
pr

od
uc

tl
in

e
ar

ch
ite

ct
ur

es
fo

ra
ny

-t
im

e
va

ri
ab

ili
ty

(v
an

de
rH

oe
k,

20
04

)
D

es
ig

ni
ng

ru
nt

im
e

va
ri

at
io

n
po

in
ts

in
pr

od
uc

tl
in

e
ar

ch
ite

ct
ur

es
:t

hr
ee

ca
se

s
(G

oe
di

ck
e

et
al

.,
20

04
)

D
R

A
M

A
:A

fr
am

ew
or

k
fo

rd
om

ai
n

re
qu

ir
em

en
ts

an
al

ys
is

an
d

m
od

el
in

g
ar

ch
ite

ct
ur

es
in

so
ft

w
ar

e
pr

od
uc

tl
in

es
(K

im
et

al
.,

20
08

a)
E

PM
:a

pr
ot

ot
yp

e
to

ol
fo

rv
ar

ia
bi

lit
y

m
an

ag
em

en
ti

n
co

m
po

ne
nt

hi
er

ar
ch

ie
s

(A
be

le
et

al
.,

20
12

)
E

xp
lic

it
ex

ce
pt

io
n

ha
nd

lin
g

va
ri

ab
ili

ty
in

co
m

po
ne

nt
-b

as
ed

pr
od

uc
tl

in
e

ar
ch

ite
ct

ur
es

(B
er

to
nc

el
lo

et
al

.,
20

08
)

Fe
at

ur
e

B
as

ed
V

ar
ia

bi
lit

y
fo

rS
er

vi
ce

O
ri

en
te

d
A

rc
hi

te
ct

ur
es

(A
bu

-M
at

ar
an

d
G

om
aa

,2
01

1)
H

ie
ra

rc
hi

ca
lV

ar
ia

bi
lit

y
M

od
el

in
g

fo
rS

of
tw

ar
e

A
rc

hi
te

ct
ur

es
(H

ab
er

et
al

.,
20

11
b)

Im
pr

ov
in

g
so

ft
w

ar
e

pr
od

uc
tl

in
e

co
nfi

gu
ra

tio
n:

A
qu

al
ity

at
tr

ib
ut

e-
dr

iv
en

ap
pr

oa
ch

(G
ua

na
an

d
C

or
re

al
,2

01
3)

In
iti

at
in

g
la

ye
rs

ar
ch

ite
ct

ur
e

de
si

gn
fo

rS
of

tw
ar

e
Pr

od
uc

tL
in

e
(M

ur
w

an
ta

ra
,2

01
1)

In
te

gr
at

in
g

V
ar

ia
bi

lit
y

M
an

ag
em

en
ta

nd
So

ft
w

ar
e

A
rc

hi
te

ct
ur

e
(G

ro
he

ra
nd

W
ei

nr
ei

ch
,2

01
2)

M
ak

in
g

V
ar

ia
bi

lit
y

D
ec

is
io

ns
du

ri
ng

A
rc

hi
te

ct
ur

e
D

es
ig

n
(B

as
s

et
al

.,
20

03
b)

M
an

ag
in

g
th

e
qu

al
ity

of
so

ft
w

ar
e

pr
od

uc
tl

in
e

ar
ch

ite
ct

ur
es

th
ro

ug
h

re
us

ab
le

m
od

el
tr

an
sf

or
m

at
io

ns
(K

av
im

an
da

n
et

al
.,

20
11

)
M

an
ag

in
g

va
ri

ab
ili

ty
in

so
ft

w
ar

e
ar

ch
ite

ct
ur

es
(B

ac
hm

an
n

an
d

B
as

s,
20

01
)

M
od

el
-b

as
ed

ve
ri

fic
at

io
n

of
qu

an
tit

at
iv

e
no

n-
fu

nc
tio

na
lp

ro
pe

rt
ie

s
fo

rs
of

tw
ar

e
pr

od
uc

tl
in

es
(G

he
zz

ia
nd

M
ol

za
m

Sh
ar

ifl
oo

,2
01

3)
M

od
el

in
g

an
d

va
lid

at
io

n
of

bu
si

ne
ss

pr
oc

es
s

fa
m

ili
es

(G
rö

N
er

et
al

.,
20

13
)

M
od

el
in

g
Pr

od
uc

tL
in

e
A

rc
hi

te
ct

ur
es

th
ro

ug
h

C
ha

ng
e

Se
ts

an
d

R
el

at
io

ns
hi

ps
(H

en
dr

ic
ks

on
an

d
va

n
de

rH
oe

k,
20

07
)

M
od

el
in

g
V

ar
ia

bi
lit

y
in

th
e

C
om

po
ne

nt
an

d
C

on
ne

ct
or

V
ie

w
of

A
rc

hi
te

ct
ur

e
U

si
ng

U
M

L
(R

az
av

ia
n

an
d

K
ho

sr
av

i,
20

08
)

O
n

re
pr

es
en

tin
g

va
ri

at
io

n
(H

ill
ia

rd
,2

01
0)

O
n

th
e

R
ol

e
of

A
rc

hi
te

ct
ur

al
D

es
ig

n
D

ec
is

io
ns

in
So

ft
w

ar
e

Pr
od

uc
tL

in
e

E
ng

in
ee

ri
ng

(C
ap

ill
a

an
d

B
ab

ar
,2

00
8)

Pl
as

tic
Pa

rt
ia

lC
om

po
ne

nt
s:

A
so

lu
tio

n
to

su
pp

or
tv

ar
ia

bi
lit

y
in

ar
ch

ite
ct

ur
al

co
m

po
ne

nt
s

(P
ér

ez
et

al
.,

20
09

)
R

ef
er

en
ce

ar
ch

ite
ct

ur
es

an
d

va
ri

ab
ili

ty
:c

ur
re

nt
st

at
us

an
d

fu
tu

re
pe

rs
pe

ct
iv

es
(N

ak
ag

aw
a,

20
12

)
Sc

en
ar

io
-b

as
ed

de
ci

si
on

m
ak

in
g

fo
ra

rc
hi

te
ct

ur
al

va
ri

ab
ili

ty
in

pr
od

uc
tf

am
ili

es
(A

m
er

ic
a

et
al

.,
20

05
)

Sy
st

em
at

ic
In

te
gr

at
io

n
of

V
ar

ia
bi

lit
y

in
to

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
D

es
ig

n
(T

hi
el

an
d

H
ei

n,
20

02
)

V
ar

ia
bi

lit
ie

s
as

fir
st

-c
la

ss
el

em
en

ts
in

pr
od

uc
tl

in
e

ar
ch

ite
ct

ur
es

of
ho

m
ec

ar
e

sy
st

em
s

(C
ar

va
lh

o
et

al
.,

20
12

)
V

ar
ia

bi
lit

y
M

an
ag

em
en

tf
or

So
ft

w
ar

e
Pr

od
uc

t-
lin

e
A

rc
hi

te
ct

ur
e

D
ev

el
op

m
en

t
(K

im
et

al
.,

20
11

)
V

ar
ia

bi
lit

y
M

an
ag

em
en

ti
n

A
sp

ec
t-

O
ri

en
te

d
A

rc
hi

te
ct

ur
e

D
es

cr
ip

tio
n

L
an

gu
ag

es
:A

n
In

te
gr

at
ed

A
pp

ro
ac

h
(A

da
ch

ie
ta

l.,
20

09
)

136

A.4. PRIMARY STUDIES MAPPED ACCORDING TO ASPECTS IN PLA
Ta

bl
e

A
.4

Pr
im

ar
y

St
ud

ie
s

ad
dr

es
si

ng
D

oc
um

en
ta

tio
n

Ti
tle

R
ef

er
en

ce

A
lig

ht
w

ei
gh

tL
an

gu
ag

e
fo

rS
of

tw
ar

e
Pr

od
uc

tL
in

es
A

rc
hi

te
ct

ur
e

D
es

cr
ip

tio
n

(S
ilv

a
et

al
.,

20
13

)
A

D
L

A
R

S:
A

n
A

rc
hi

te
ct

ur
e

D
es

cr
ip

tio
n

L
an

gu
ag

e
fo

rS
of

tw
ar

e
Pr

od
uc

tL
in

es
(B

as
hr

ou
sh

et
al

.,
20

06
)

A
n

A
pp

ro
ac

h
to

E
xt

en
si

on
of

U
M

L
2.

0
fo

rR
ep

re
se

nt
in

g
V

ar
ia

bi
lit

ie
s

(C
ho

ie
ta

l.,
20

05
)

A
n

in
du

st
ri

al
ca

se
of

ex
pl

oi
tin

g
pr

od
uc

tl
in

e
ar

ch
ite

ct
ur

es
in

ag
ile

so
ft

w
ar

e
de

ve
lo

pm
en

t
(B

ab
ar

et
al

.,
20

09
)

A
na

ly
si

s
of

So
ft

w
ar

e
Pr

od
uc

tL
in

e
A

rc
hi

te
ct

ur
e

R
ep

re
se

nt
at

io
n

M
ec

ha
ni

sm
s

(A
hn

an
d

K
an

g,
20

11
)

A
rc

hi
te

ct
in

g
fa

m
ili

es
of

so
ft

w
ar

e
sy

st
em

s
w

ith
pr

oc
es

s
al

ge
br

as
(B

er
na

rd
o

et
al

.,
20

02
)

C
om

po
ne

nt
do

cu
m

en
ta

tio
n

-a
ke

y
is

su
e

in
so

ft
w

ar
e

pr
od

uc
tl

in
es

(T
au

la
vu

or
ie

ta
l.,

20
04

)
D

ev
el

op
in

g
an

ar
ch

ite
ct

ur
e

de
sc

ri
pt

io
n

la
ng

ua
ge

fo
rd

at
a

pr
oc

es
si

ng
pr

od
uc

tl
in

e
(Z

he
ng

et
al

.,
20

10
)

E
xp

lo
ri

ng
E

xt
en

si
bi

lit
y

of
A

rc
hi

te
ct

ur
al

D
es

ig
n

D
ec

is
io

ns
(T

ru
jil

lo
et

al
.,

20
07

)
Id

en
tif

yi
ng

tr
ac

ea
bi

lit
y

be
tw

ee
n

fe
at

ur
e

m
od

el
an

d
so

ft
w

ar
e

ar
ch

ite
ct

ur
e

in
so

ft
w

ar
e

pr
od

uc
tl

in
e

us
in

g
fo

rm
al

co
nc

ep
ta

na
ly

si
s

(S
at

ya
na

nd
a

et
al

.,
20

07
a)

In
iti

at
in

g
la

ye
rs

ar
ch

ite
ct

ur
e

de
si

gn
fo

rS
of

tw
ar

e
Pr

od
uc

tL
in

e
(M

ur
w

an
ta

ra
,2

01
1)

M
ap

pi
ng

fe
at

ur
es

to
re

us
ab

le
co

m
po

ne
nt

s:
A

pr
ob

le
m

fr
am

es
-b

as
ed

ap
pr

oa
ch

(D
ao

an
d

K
an

g,
20

10
)

M
od

el
-d

riv
en

de
riv

at
io

n
of

pr
od

uc
ta

rc
hi

te
ct

ur
es

(B
ot

te
rw

ec
k

et
al

.,
20

07
)

M
od

el
-d

riv
en

de
ve

lo
pm

en
to

ff
am

ili
es

of
Se

rv
ic

e-
O

ri
en

te
d

A
rc

hi
te

ct
ur

es
(A

sa
di

et
al

.,
20

09
)

M
od

el
-D

riv
en

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

es
(M

ut
hi

g
an

d
A

tk
in

so
n,

20
02

)
M

od
el

in
g

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

es
th

ro
ug

h
C

ha
ng

e
Se

ts
an

d
R

el
at

io
ns

hi
ps

(H
en

dr
ic

ks
on

an
d

va
n

de
rH

oe
k,

20
07

)
M

od
el

in
g

V
ar

ia
bi

lit
y

in
th

e
C

om
po

ne
nt

an
d

C
on

ne
ct

or
V

ie
w

of
A

rc
hi

te
ct

ur
e

U
si

ng
U

M
L

(R
az

av
ia

n
an

d
K

ho
sr

av
i,

20
08

)
O

bj
ec

tO
ri

en
te

d
A

na
ly

si
s

an
d

M
od

el
in

g
fo

rF
am

ili
es

of
Sy

st
em

s
w

ith
U

M
L

(G
om

aa
,2

00
0)

PL
-A

sp
ec

tu
al

A
C

M
E

:A
n

A
sp

ec
t-

O
ri

en
te

d
A

rc
hi

te
ct

ur
al

D
es

cr
ip

tio
n

L
an

gu
ag

e
fo

rS
of

tw
ar

e
Pr

od
uc

tL
in

es
(B

ar
bo

sa
et

al
.,

20
11

)
Pl

as
tic

Pa
rt

ia
lC

om
po

ne
nt

s:
A

so
lu

tio
n

to
su

pp
or

tv
ar

ia
bi

lit
y

in
ar

ch
ite

ct
ur

al
co

m
po

ne
nt

s
(P

ér
ez

et
al

.,
20

09
)

R
ep

re
se

nt
in

g
Pr

od
uc

tF
am

ily
A

rc
hi

te
ct

ur
es

in
an

E
xt

en
si

bl
e

A
rc

hi
te

ct
ur

e
D

es
cr

ip
tio

n
L

an
gu

ag
e

(D
as

ho
fy

an
d

H
oe

k,
20

02
c)

R
eu

se
of

ar
ch

ite
ct

ur
al

kn
ow

le
dg

e
in

SP
L

de
ve

lo
pm

en
t

(R
os

se
le

ta
l.,

20
09

)
Sc

en
ar

io
-b

as
ed

de
ci

si
on

m
ak

in
g

fo
ra

rc
hi

te
ct

ur
al

va
ri

ab
ili

ty
in

pr
od

uc
tf

am
ili

es
(A

m
er

ic
a

et
al

.,
20

05
)

Sc
en

ar
io

s,
Q

ua
lit

y
A

ttr
ib

ut
es

,a
nd

Pa
tte

rn
s:

C
ap

tu
ri

ng
an

d
U

si
ng

th
ei

rS
yn

er
gi

st
ic

R
el

at
io

ns
hi

ps
fo

rP
ro

du
ct

L
in

e
A

rc
hi

te
ct

ur
es

(B
ab

ar
,2

00
4)

Sy
st

em
at

ic
In

te
gr

at
io

n
of

V
ar

ia
bi

lit
y

in
to

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
D

es
ig

n
(T

hi
el

an
d

H
ei

n,
20

02
)

Tr
ac

ki
ng

de
gr

ad
at

io
n

in
so

ft
w

ar
e

pr
od

uc
tl

in
es

th
ro

ug
h

m
ea

su
re

m
en

to
fd

es
ig

n
ru

le
vi

ol
at

io
ns

(J
oh

an
ss

on
an

d
H

ös
t,

20
02

)
U

ba
:A

So
ft

w
ar

e
Pr

od
uc

tL
in

e
A

rc
hi

te
ct

ur
e

fo
rG

ri
d-

O
ri

en
te

d
M

id
dl

ew
ar

e
(O

liv
ei

ra
an

d
R

os
a,

20
09

)
U

til
iz

in
g

do
m

ai
n

m
od

el
s

fo
ra

pp
lic

at
io

n
de

si
gn

an
d

va
lid

at
io

n
(R

ei
nh

ar
tz

-B
er

ge
ra

nd
St

ur
m

,2
00

9)
V

ar
ia

bi
lit

y
M

an
ag

em
en

ti
n

A
sp

ec
t-

O
ri

en
te

d
A

rc
hi

te
ct

ur
e

D
es

cr
ip

tio
n

L
an

gu
ag

es
:A

n
In

te
gr

at
ed

A
pp

ro
ac

h
(A

da
ch

ie
ta

l.,
20

09
)

137

A.4. PRIMARY STUDIES MAPPED ACCORDING TO ASPECTS IN PLA

Ta
bl

e
A

.5
Pr

im
ar

y
St

ud
ie

s
ad

dr
es

si
ng

E
va

lu
at

io
n

Ti
tle

R
ef

er
en

ce

A
C

as
e

St
ud

y
on

SW
Pr

od
uc

tL
in

e
A

rc
hi

te
ct

ur
e

E
va

lu
at

io
n:

E
xp

er
ie

nc
e

in
th

e
C

on
su

m
er

E
le

ct
ro

ni
cs

D
om

ai
n

(K
im

et
al

.,
20

08
b)

A
cl

as
si

fic
at

io
n

of
so

ft
w

ar
e

re
fe

re
nc

e
ar

ch
ite

ct
ur

es
:A

na
ly

zi
ng

th
ei

rs
uc

ce
ss

an
d

ef
fe

ct
iv

en
es

s
(A

ng
el

ov
et

al
.,

20
09

)
A

ho
lis

tic
ar

ch
ite

ct
ur

e
as

se
ss

m
en

tm
et

ho
d

fo
rs

of
tw

ar
e

pr
od

uc
tl

in
es

(O
lu

m
ofi

n
an

d
M

is
ic

,2
00

7)
A

m
et

a-
pr

oc
es

s
to

su
pp

or
tt

ra
de

-o
ff

an
al

ys
is

in
so

ft
w

ar
e

pr
od

uc
tl

in
e

ar
ch

ite
ct

ur
e

(d
e

O
liv

ei
ra

Ju
ni

or
et

al
.,

20
11

)
A

R
eg

re
ss

io
n

Te
st

in
g

A
pp

ro
ac

h
fo

rS
of

tw
ar

e
Pr

od
uc

tL
in

es
A

rc
hi

te
ct

ur
es

(N
et

o
et

al
.,

20
10

)
A

n
ap

pr
oa

ch
to

ar
ch

ite
ct

ur
al

an
al

ys
is

of
pr

od
uc

tl
in

es
(G

an
no

d
an

d
L

ut
z,

20
00

)
A

na
ly

si
s

of
a

so
ft

w
ar

e
pr

od
uc

tl
in

e
ar

ch
ite

ct
ur

e:
an

ex
pe

ri
en

ce
re

po
rt

(L
ut

z
an

d
G

an
no

d,
20

03
)

C
ha

ng
e

Im
pa

ct
A

na
ly

si
s

in
Pr

od
uc

t-
L

in
e

A
rc

hi
te

ct
ur

es
(D

ía
z

et
al

.,
20

11
)

C
om

po
ne

nt
s

m
ee

ta
sp

ec
ts

:A
ss

es
si

ng
de

si
gn

st
ab

ili
ty

of
a

so
ft

w
ar

e
pr

od
uc

tl
in

e
(T

iz
ze

ie
ta

l.,
20

11
)

C
on

tin
uo

us
ev

ol
ut

io
n

th
ro

ug
h

so
ft

w
ar

e
ar

ch
ite

ct
ur

e
ev

al
ua

tio
n:

a
ca

se
st

ud
y

(R
os

so
,2

00
6)

D
es

ig
n

V
er

ifi
ca

tio
n

fo
rP

ro
du

ct
L

in
e

D
ev

el
op

m
en

t
(K

is
hi

et
al

.,
20

05
)

E
m

pi
ri

ca
lV

al
id

at
io

n
of

C
om

pl
ex

ity
an

d
E

xt
en

si
bi

lit
y

M
et

ri
cs

fo
rS

of
tw

ar
e

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

es
(O

liv
ei

ra
Ju

ni
or

et
al

.,
20

10
)

E
va

lu
at

in
g

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
fo

rG
ri

d
C

om
pu

tin
g

M
id

dl
ew

ar
e

Sy
st

em
s:

U
ba

E
xp

er
ie

nc
e

(S
ilv

a
de

O
liv

ei
ra

an
d

R
os

a,
20

10
a)

E
va

lu
at

in
g

th
e

Po
rt

ab
ili

ty
an

d
M

ai
nt

ai
na

bi
lit

y
of

So
ft

w
ar

e
Pr

od
uc

tF
am

ily
A

rc
hi

te
ct

ur
e:

Te
rm

in
al

So
ft

w
ar

e
C

as
e

St
ud

y
(M

at
in

la
ss

i,
20

04
b)

E
xp

er
ie

nc
es

in
as

se
ss

in
g

pr
od

uc
tf

am
ily

so
ft

w
ar

e
ar

ch
ite

ct
ur

e
fo

re
vo

lu
tio

n
(M

ac
ca

ri
,2

00
2)

E
xt

en
di

ng
A

TA
M

to
as

se
ss

pr
od

uc
tl

in
e

ar
ch

ite
ct

ur
e

(K
im

et
al

.,
20

08
c)

E
xt

en
di

ng
th

e
A

TA
M

A
rc

hi
te

ct
ur

e
E

va
lu

at
io

n
to

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

es
(O

lu
m

ofi
n

an
d

M
is

ic
,2

00
5)

E
xt

en
di

ng
th

e
R

iP
L

E
-D

E
pr

oc
es

s
w

ith
qu

al
ity

at
tr

ib
ut

e
va

ri
ab

ili
ty

re
al

iz
at

io
n

(C
av

al
ca

nt
ie

ta
l.,

20
11

)
Fo

rm
al

V
er

ifi
ca

tio
n

of
C

on
si

st
en

cy
be

tw
ee

n
Fe

at
ur

e
M

od
el

an
d

So
ft

w
ar

e
A

rc
hi

te
ct

ur
e

in
So

ft
w

ar
e

Pr
od

uc
tL

in
e

(S
at

ya
na

nd
a

et
al

.,
20

07
b)

M
ak

in
g

te
st

in
g

pr
od

uc
tl

in
es

m
or

e
ef

fic
ie

nt
by

im
pr

ov
in

g
th

e
te

st
ab

ili
ty

of
pr

od
uc

tl
in

e
ar

ch
ite

ct
ur

es
(K

ol
b

an
d

M
ut

hi
g,

20
06

)
M

an
ag

in
g

th
e

qu
al

ity
of

so
ft

w
ar

e
pr

od
uc

tl
in

e
ar

ch
ite

ct
ur

es
th

ro
ug

h
re

us
ab

le
m

od
el

tr
an

sf
or

m
at

io
ns

(K
av

im
an

da
n

et
al

.,
20

11
)

M
ea

su
ri

ng
Pr

od
uc

tL
in

e
A

rc
hi

te
ct

ur
es

(D
in

ce
le

ta
l.,

20
01

)
M

od
el

-b
as

ed
ve

ri
fic

at
io

n
of

qu
an

tit
at

iv
e

no
n-

fu
nc

tio
na

lp
ro

pe
rt

ie
s

fo
rs

of
tw

ar
e

pr
od

uc
tl

in
es

(G
he

zz
ia

nd
M

ol
za

m
Sh

ar
ifl

oo
,2

01
3)

Pr
ac

tic
al

E
va

lu
at

io
n

of
So

ft
w

ar
e

Pr
od

uc
tF

am
ily

A
rc

hi
te

ct
ur

es
(N

ie
m

el
ä

et
al

.,
20

04
)

R
ef

er
en

ce
ar

ch
ite

ct
ur

es
an

d
va

ri
ab

ili
ty

:c
ur

re
nt

st
at

us
an

d
fu

tu
re

pe
rs

pe
ct

iv
es

(N
ak

ag
aw

a,
20

12
)

So
m

e
M

et
ri

cs
fo

rA
cc

es
si

ng
Q

ua
lit

y
of

Pr
od

uc
tL

in
e

A
rc

hi
te

ct
ur

e
(Z

ha
ng

et
al

.,
20

08
)

Sy
st

em
at

ic
E

va
lu

at
io

n
of

So
ft

w
ar

e
Pr

od
uc

tL
in

e
A

rc
hi

te
ct

ur
es

(O
liv

ei
ra

Ju
ni

or
et

al
.,

20
13

)
Tr

ac
ki

ng
de

gr
ad

at
io

n
in

so
ft

w
ar

e
pr

od
uc

tl
in

es
th

ro
ug

h
m

ea
su

re
m

en
to

fd
es

ig
n

ru
le

vi
ol

at
io

ns
(J

oh
an

ss
on

an
d

H
ös

t,
20

02
)

U
si

ng
se

rv
ic

e
ut

ili
za

tio
n

m
et

ri
cs

to
as

se
ss

th
e

st
ru

ct
ur

e
of

pr
od

uc
tl

in
e

ar
ch

ite
ct

ur
es

(v
an

de
rH

oe
k

et
al

.,
20

03
)

V
ar

ia
bi

lit
y

D
riv

en
Q

ua
lit

y
E

va
lu

at
io

n
in

So
ft

w
ar

e
Pr

od
uc

tL
in

es
(E

tx
eb

er
ri

a
an

d
Sa

ga
rd

ui
,2

00
8)

V
ul

ca
n:

A
rc

hi
te

ct
ur

e-
m

od
el

-b
as

ed
w

or
kb

en
ch

fo
rp

ro
du

ct
lin

e
en

gi
ne

er
in

g
(L

ee
et

al
.,

20
12

)

138

B
Exploratory Study

B.1 Notepad SPL Architecture Specification

Component: Fonts

Required Interface: Contents handler [GUI]
ActionListener();
JLabel(); *JDialog
JPanel();
JComboBox();

Provided Interface: Font setting [Actions]
setFont();
setVisible();
pack();
getOkjb();
getCajb();

Component: Files

Provided Interface: File handler [Actions]
addExtension(); *Filter
setDescription(); *Filter
setFileChooser(); *Chooser
PrintWriter(); *Write File
StringTokenizer(); *Tokens file content

139

B.1. NOTEPAD SPL ARCHITECTURE SPECIFICATION

Component: Notepad

Required Interface: Features [Actions]
newFile (textPane, Notepad);
open (textPane);
save_as (textPane);
save (textPane);
exit (textPane);
copy (textPane);
cut (textPane);
paste (textPane);
select_all (textPane);
find (textPane);
find_next (textPane);
select_found (textPane);
fonT (textPane);
undo (UndoManager);
redo (UndoManager);
about ();

Required Interface: Contents handler *textPane [GUI]
ActionListener();
getTextComponent();
getScreenSize(); *Dimension
getContentPane(); *Container

Required Interface: Undo/Redo manager [Undo/Redo]
undo();

Component: Undo/Redo

Provided Interface: Undo manager [Notepad]
undo();
redo();

Provided Interface: Undo manager [Actions]
undo();
redo();

140

B.1. NOTEPAD SPL ARCHITECTURE SPECIFICATION

Component: Actions

Required Interface: File Handler [Files]
addExtension(); * Filter
setDescription(); * Filter
setFileChooser(); * Chooser
PrintWriter(); * Write File
StringTokenizer(); *Tokens file content

Required Interface: Contents handler *textPane, JFrame, JLabel, Dimension [GUI]
getText();
frame.(config)(label);
Toolkit.getScreenSize() *Dimension
addActionListener(); *Action event

Required Interface: Font setting [Fonts]
setFont();
setVisible();
pack();
getOkjb();
getCajb();

Required Interface: Undo manager [Undo/Redo]
undo();
redo();

Provided Interface: Features [Notepad]
newFile (textPane, Notepad);
open (textPane);
save_as (textPane);
save (textPane);
exit (textPane);
copy (textPane);
cut (textPane);
paste (textPane);
select_all (textPane);
find (textPane);
find_next (textPane);
select_found (textPane);
fonT (textPane);
undo (UndoManager);
redo (UndoManager);
about ();

141

B.1. NOTEPAD SPL ARCHITECTURE SPECIFICATION

Component: GUI

Provided Interface: Contents handler [Font]
getText();
frame.(config)();
ActionListener();
getTextComponent();
getScreenSize(); *Dimension
getContentPane(); *Container
JLabel(); *JDialog
JPanel();
JComboBox();

Provided Interface: Contents handler *textPane [Notepad]
ActionListener();
getTextComponent();
getScreenSize(); *Dimension
getContentPane(); *Container

142

C
Replicated Study

C.1 RescueMe SPL Architecture Specification

C.1.1 Model

Component: Contact

Provided Interface: Contact Selection / Changes [Contact Manager]
getAllContacts();
contactAlreadyExists();
addContactWithName();
removeContact();
saveContact();
deleteContact();
persistenceCoordinator();
getAllPhones();
getAllEmails();
getAllTwitterIDs();
getAllFacebookIDs();
getAllDataOf: String();

Component: Location
Provided Interface: Position [Destination]
latitude;
longitude;
locationUpdate(CLLocation);
locationError();

143

C.1. RESCUEME SPL ARCHITECTURE SPECIFICATION

C.1.2 View

Component: GUI

Provided Interface: Contact Selection [Contact View Controller]
viewDidLoad();
viewDidUnload();
viewWillAppear();
shouldAutorotateToInterfaceOrientation();
viewAddContactScreen();
viewImportContactScreen();
numberOfSelectionsInTableView();
numberOfRowsInSelection();
cellForRowAtIndexPath();
buttonDeletePressed();
clickedButtonAtIndex();
didSelectRowAtIndexPath();

Provided Interface: Message Trigger [Destination]
redButtonPressed(UIButton);
viewDidLoad();
viewDidUnload();
didReceiveMemoryWarning();
messageComposeViewController();

144

C.1. RESCUEME SPL ARCHITECTURE SPECIFICATION

C.1.3 Controller

Component: Destination

Required Interface: Recipients [Contact Manager]
emailDestination; // NSArray *toRecipients
SMSDestination; //getAllPhones

Required Interface: Message Trigger [GUI]
redButtonPressed(UIButton);
viewDidLoad();
viewDidUnload();
didReceiveMemoryWarning();
messageComposeViewController();

Required Interface: Position [Location]
latitude;
longitude;
locationUpdate(CLLocation);
locationError();

Required Interface: Twitter Communication [Twitter API]
TwitterCommunicationController;

Required Interface: Facebook Communication [Facebook API]
FacebookCommunicationController;

Required Interface: Message [Message Composer]
emailDestination; // NSString *emailTitle
emailDestination; // NSString *messageBody
selectedLanguage;
getRescueMessage();
mailComposeController();

145

C.1. RESCUEME SPL ARCHITECTURE SPECIFICATION

Component: Contact View Controller

Required Interface: Contacts [Contact Manager]
contactsList;
managedObjectContext;
sortDescriptors;
namesInTheList;

Required Interface: Contact Selection [GUI]
viewDidLoad();
viewDidUnload();
viewWillAppear();
shouldAutorotateToInterfaceOrientation();
viewAddContactScreen();
viewImportContactScreen();
numberOfSelectionsInTableView();
numberOfRowsInSelection();
cellForRowAtIndexPath();
buttonDeletePressed();
clickedButtonAtIndex();
didSelectRowAtIndexPath();

Required Interface: Facebook Communication [Facebook API]
initWithContactManager();
facebookImport(id sender);
facebookViewControllerDoneWasPressed (id sender);
showAlertWithContactName();
peoplePickerNavigationController();
peoplePickerNavigationControllerDidCancel();
viewDidLoad();
viewDidUnload();

Required Interface: Twitter Communication [Twitter API]
initWithContactManager();
twitterImport(id sender);
showAlertWithContactName();
peoplePickerNavigationController();
peoplePickerNavigationControllerDidCancel();
viewDidLoad();
viewDidUnload();

Required Interface: iOS Communication [iOS API]
initWithContactManager();
phoneImport(id sender);
getContactInfo();

146

C.1. RESCUEME SPL ARCHITECTURE SPECIFICATION

Component: Contact Manager

Required Interface: Contact Selection / Changes [Contact]
getAllContacts();
contactAlreadyExists();
addContactWithName();
removeContact();
saveContact();
deleteContact();
persistenceCoordinator();
getAllPhones();
getAllEmails();
getAllTwitterIDs();
getAllFacebookIDs();
getAllDataOf: String();

Provided Interface: Contacts [Contact View Controller]
contactsList;
setVisiblemanagedObjectContext;
sortDescriptors;
namesInTheList;

Provided Interface: Recipients [Destination]
emailDestination; // NSArray *toRecipients
SMSDestination; // getAllPhones

Component: Message Composer

Required Interface: iOS Communication [iOS API]
emailDestination();
SMSDestination();

Provided Interface: Message [Destination]
emailDestination; // NSString *emailTitle
emailDestination; // NSString *messageBody
selectedLanguage;
getRescueMessage();
mailComposeController();

147

C.1. RESCUEME SPL ARCHITECTURE SPECIFICATION

C.1.4 3rd Party

Component: Facebook API

Provided Interface: Facebook Communication [Contact View Controller]
initWithContactManager();
facebookImport(id sender);
facebookViewControllerDoneWasPressed (id sender);
showAlertWithContactName();
peoplePickerNavigationController();
peoplePickerNavigationControllerDidCancel();
viewDidLoad();
viewDidUnload();

Provided Interface: Facebook Communication [Destination]
FacebookCommunicationController;

Component: Twitter API

Provided Interface: Twitter Communication [Contact View Controller]
initWithContactManager();
twitterImport(id sender);
showAlertWithContactName();
peoplePickerNavigationController();
peoplePickerNavigationControllerDidCancel();
viewDidLoad();
viewDidUnload();

Provided Interface: Twitter Communication [Destination]
TwitterCommunicationController;

148

C.1. RESCUEME SPL ARCHITECTURE SPECIFICATION

Component: iOS API

Provided Interface: iOS Communication [Contact View Controller]
initWithContactManager();
phoneImport(id sender);
getContactInfo();

Provided Interface: iOS Communication [Message Composer]
emailDestination();
SMSDestination();

149

	
	Sistema de Bibliotecas da UFBA

