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1. Introduction
The viscosity of a fluid expresses the facility of its 
constitutive species, i.e. atoms, molecules or mac-
romolecules, to move in the surroundings of their 
neighboring species. From this standpoint, viscosity 
clearly depends on the fluid’s interatomic or intermo-
lecular interactions and atomic density.

From a macroscopic standpoint, viscosity, η, is 
defined as the proportionality coefficient between a 
shearing stress σxy and the rate of deformation δεxy/δt 
when a linear relationship links these two measurable 
quantities, i.e.
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e
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xy´

´
=

t
	 (1)

leading η to be measured in Pas. Viscosity may vary 
over 26 orders of magnitude from 2×10-2 Pas (for air 
at room temperature) to an estimated value of 1024 
Pas in the continental mantle, at higher temperatures 
and pressures. At values exceeding 1013 Pas, the strain 
rate is hardly measurable on a human time scale and 
the material is considered to be a solid. Therefore, 
most of available viscosity data for oxide glasses are 
for viscosities below 1013 Pas.

In glass technology, viscosity determines melting 
conditions, raw material dissolution rates, removal 

of bubbles, working and annealing temperatures, 
and crystallization rates. The practical variation of 
viscosity with temperature of usual glass forming 
melts currently covers 13 orders of magnitude, 
from 101 to 1013 Pas. Due to the technological im-
portance of viscosity, many empirical and useful 
expressions have been proposed to predict viscos-
ity dependence on temperature or composition,(1,2) 
but in many cases, the correspondence with ex-
perimental data introduces interdependent fitting 
parameters whose physical meaning is not always 
clearly established.

This work focuses on a microscopic approach to 
viscosity. This approach allows some of the available 
parameters commonly involved in the expressions 
describing viscosity temperature dependence to be 
determined numerically, and thus, the total number 
of adjustable parameters to be minimized, enabling a 
more accurate physical interpretation of the remain-
ing ones. We have applied this approach to three 
alkali disilicates for which numerous viscosity data 
are available.(3)

The energy and steric barriers deduced from this 
approach are discussed considering similar barriers 
inferred in a previous study(4) on ionic transport, 
which were calculated using a similar approach and 
for the same compositions and temperature range as 
those investigated here for viscosity data. 
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2. Temperature dependence of experimental 
viscosity data
Viscosity is currently determined in a wide range 
of 101 to 1013 Pas. In a first approximation, the tem-
perature dependence of experimental viscosity data 
above the glass transition temperature, Tg, follows the 
empirical Vogel–Fulcher–Tammann–Hesse (VFTH) 
equation
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where η0, Cη and T0 are constants in a given tem-
perature range and depend on the composition of 
the glass forming melt. In this expression, Cη and T0 
have dimensions of Kelvin.

This relationship, designated here as the VFTH 
equation, was proposed independently between 1920 
and 1926 by Vogel(5) for the temperature dependence 
of the viscosity of greases, by Fulcher(6) for silicate 
glasses, and by Tammann & Hesse(7) for glass forming 
organic liquids. 

If Cη is substituted by Bη/kB where kB is the Boltz-
mann constant, the VFTH equation can be expressed 
as
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where Bη has units of energy.
Whether Equation (2) or (3) is chosen, the empirical 

VFTH equation is justified by either the “free volume 
theory” developed by Cohen & Turnbull(8) or the 
“entropic model” of Adams & Gibbs,(9) as will be 
discussed later herein.

An improvement of the VFTH equation was pro-
posed by Dienes(10) and later by Macedo & Litovitz(11) 
through the addition of an enthalpic term, Eη

A. This 
new equation, which we will call the DML equation, 
can be expressed as 
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This expression is also called a “hybrid equation” 
because it combines an Arrhenius exponent with a 
VFTH one. It has been found that the DML equation 
conveniently represents the temperature depend-
ence of the viscosity of liquids with very different 
molecular or atomic cohesive forces, from van der 
Waals and hydrogen bonds to metallic and covalent 
bonds, including polymers.(10,11)

Fitting experimental data with the VFTH Equation 
(3) leads to the assessment of three parameters: η0, Bη 
and T0. However, when experimental viscosity data 
are fitted to the DML Equation (4), a fourth parameter, 
Eη

A, can also be determined. Obviously, Equations (3) 
and (4) do not lead to the same numerical values for 
the three common parameters. Furthermore, they 
depend on the microscopic interpretation of the 
viscosity mechanism.

3. Microscopic aspects of viscosity

3.1 Basic formalism

From a microscopic standpoint, viscosity, η, is related 
to the relative displacement of a liquid’s constitu-
tive molecules or, in the case of a macromolecular 
network like a molten silicate, to the ability of chain 
segments to move in the supercooled liquid phase. 
These elementary displacements are characterized 
by a structural relaxation time, τη, which is the aver-
age time for a molecule or chain segment to move a 
distance λη comparable to its size. The dependence 
of viscosity on these microscopic parameters can 
be determined by identifying two different expres-
sions for the diffusion coefficient, Dη, of the moving 
specie(s), as detailed below. 

The first expression derives from the generalized 
Einstein relation, in which Dη is proportional to the 
temperature T, and the mobility µ of the moving 
species

Dη=µkBT	 (5)

The mobility µ is defined as the ratio of the particle’s 
terminal drift velocity νd to an applied force F, i.e.

m =
v
F
d 	 (6)

The mobility µ can also be written as a function of 
λη and η(12)

m
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thus leading to

D k T
h

hl h
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Equation (8) is similar, apart from a factor of 3π, to 
the Stokes–Einstein law which makes the additional 
hypothesis of a spherical shape for the different dif-
fusing species. This relation is always valid as long 
as diffusion and viscosity are controlled by the same 
atomic species and the same mechanism. 

Another expression for Dη derives from the Brown-
ian motion 

2
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and combining Equations (8) and (9) gives

h
t

l
h
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3 	 (10)

The structural relaxation time, τη, can, in turn, be 
expressed as the reciprocal product of the attempt 
frequency ν0 of the moving species by the probability 
Ω of a successful jump

t
nh =
1
0W

	 (11)
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Finally, the viscosity η can be written as

h
l nh

=
k TB
3

0W
	 (12)

Therefore, this equation links time and the elemen-
tary atomic displacements to the viscosity. Several 
microscopic models have been proposed to validate 
the behaviour of viscosity in response to temperature 
and are discussed below. These models differ from 
each other only by their different approaches to 
describing the jump probability, leading to different 
expressions for Ω, all of which are exponential func-
tions of temperature.

3.2 Free volume theory

The “free volume theory” developed by Cohen & 
Turnbull(5) to justify the VFTH equation supposes 
that a molecule, or a chain segment, rattles in the cage 
formed by its nearest neighbours until the random 
density fluctuations produce an adjoining cage large 
enough to enable a jump from one cage to another. 
These fluctuations involve the exchange of a so-called 
“free” volume between the two neighbouring cages. 
The term “free” means that this volume transfer oc-
curs without any enthalpic cost, since the enthalpy 
to increase the size of a cage is compensated locally 
by the enthalpy released from the contraction of 
the initial adjacent cage. In this case, the displace-
ment probability is an exponential function of the 
ratio between the smallest or critical free volume Vη

f* 
necessary for a jump and the mean free volume, Vη

f*, 
available to the moving species
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The available mean free volume is usually approxi-
mated by a linear function of T

Vη
f≈ V0η(αl−αc)(T−T0)	 (14)

where αl and αc are the thermal expansion coefficients 
of the liquid and corresponding crystal and V0η is 
the volume occupied by the moving species in the 
crystal at T0.

Equation (14) assumes that the free volume es-
sentially consists of the difference between the total 
liquid expansion (αlV0η) and the vibrational expansion 
(αcV0). Note that αc can be replaced by the thermal 
expansion coefficient of the glass, αg, since the am-
plitudes of the atomic vibrations are comparable in 
the crystalline and glassy states, i.e. αc≈αg.

Finally, substituting Equations (13) and (14) in 
Equations (11) and (12), shows that the structural 
relaxation time τη and viscosity η can be expressed, 
respectively, by
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Equation (16) corresponds to the VFTH Equation 
(3) with 

B
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in which T0 is no longer an empirical parameter but 
the extrapolated temperature at which the specific 
volume of the liquid would be the same as that of 
the crystal. Thus on cooling as TÆT0, τη and η tend 
towards infinity. T0, which can be determined by the 
extrapolation of these kinetic quantities, is called 
the ideal glass transition temperature. Using Equa-
tion (16) to fit viscosity data, Vη

f*/V0η ratios have been 
estimated for van der Waals liquids, liquid metals(8) 
and borates and silicates melts.(13)

3.3 Adam–Gibbs theory

A different approach to molecular rearrangements 
above Tg, which was developed by Adam & Gibbs,(9) 
suggests that the supercooled liquid relaxes by co-
operative, i.e. interdependent movements of several 
molecules or chain segments. The probability of a 
cooperative displacement involving a number z of 
neighbouring species can be written as 

W
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where Δµ is the free energy necessary for each el-
ementary displacement. This number z is given by the 
ratio of the entropy sc

* associated with an elementary 
displacement to the available configurational molar 
entropy Sc in the supercooled liquid, i.e.

z
N

s
SA

c

c
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*
	 (19)

where NA is Avogadro’s  number. According to 
Kauzmann,(14) this configurational entropy decreases 
with temperature and disappears at a temperature 
TK at which the entropy of the supercooled liquid 
would be the same as that of the crystal of the same 
composition. Since sc

* is a constant characteristic of 
an elementary displacement, when TÆTK, z increases 
and Ω tends to zero, while the viscosity tends to 
infinity. According to this model, viscosity can be 
expressed as

h
l n

m
h
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or assuming that all the microscopic characteristics 
are constants

h h= 0( ) expT
C
TSc

	 (21)
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The configurational entropy of the supercooled 
liquid is expressed as

S
C
T

TT
T

c
pk= Ú

D
d 	 (22)

where ΔCp is the difference between the heat capac-
ity of the liquid and the crystal. When ΔCp data are 
available as a function of T, Sc can be calculated as 
a function of temperature, and a linear variation of 
logη as a function of 1/(TSc) is effectively observed,(15) 
as expected from Equation (21).

When calorimetric data are not available, ΔCp can 
be approximated(16) by 

DC D
Tp ª 	 (23)

(with D constant); thus, Sc can be written as 

S D T T
TTc

K

K
ª

-( ) 	 (24)

This approach finally leads to an expression for 
the viscosity temperature dependence which is 
formally comparable to Equations (3) and (16), but 
with different interpretations for the parameters Bη 
and T0, namely

h
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where 
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m
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It has been shown that for most glass forming liquids 
for which kinetic and thermodynamic data are avail-
able, the extrapolated values of T0 (kinetic) as defined 
by Cohen & Turnbull,(8) and the Kauzmann tem-
perature, TK (thermodynamic), are often similar,(17) 
however there are some notable exceptions, e.g. for 
strong glasses.(18) At TK or T0, cooperative atomic dis-
placements that control viscous flow are supposed to 
cease, and consequently, viscosity diverges to infinity.

The divergence of viscosity due to the vanishing 
of configurational entropy at the Kauzmann tem-
perature has been questioned recently by Mauro et 
al.(19) To avoid such a possibility, the hypothesis that 
the configurational entropy completely vanishes 
at TK was replaced by a reasonably expected slow 
decrease down to 0 K.(19) However, all these consid-
erations concern non-equilibrium viscosity below Tg. 
Furthermore, in the absence of experimental data, 
Equation (25) cannot be tested in a wide temperature 
range below Tg, and it therefore remains a good ap-
proximation to describe the temperature dependence 
of the equilibrium viscosity (above Tg).

3.4 The Dienes–Macedo–Litovitz model

The DML equation, applied as an improvement 
over the free volume model, suggests that the jump 

probability Ω is the product of two independent 
probabilities, Ω1 and Ω2
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This equation introduces an enthalpic parameter, 
Eη

A, in an Arrhenius exponent, independent of the 
free volume term. According to Macedo & Litovitz,(11) 
this enthalpic parameter represents the activation 
energy necessary to separate the individual diffusing 
units from their neighbours. The second exponential 
is related to the transfer of these units by a free 
volume mechanism from one site to a neighbour-
ing one. Thus, more than merely a mathematical 
improvement, this expression formally dissociates 
a temperature-activated event from the rearrange-
ments of the surrounding liquid phase represented 
by the second exponent. Both the activated event and 
molecular rearrangements contribute to the glass 
relaxation. 

Combining Equation (27) for the jump probability 
with Equation (14) for the mean available free vol-
ume and Equation (12) for viscosity, one obtains the 
following relation for the temperature dependence 
of viscosity

h
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Depending on the relative importance of the two 
exponentials, the viscosity of a supercooled liquid 
may present an Arrhenius behaviour, as found in 
silica, or tend to a pure VFTH one.

In their original paper, Macedo & Litovitz(11) used 
the free volume model to justify the temperature 
dependence of the second exponent. Nevertheless, 
an identical expression could be derived using the 
Adam–Gibbs(9) model, replacing the ideal glass 
transition temperature, T0, with the Kauzmann tem-
perature, TK. In both approaches, Eη

A represents an 
activation energy closely associated to the relaxation 
of the neighbouring molecules or chain segments. 

3.5 Assessment of the pre-exponential term

We also point out that the pre-exponential term in 
Equation (28) is temperature-dependent. To eliminate 
this dependence, this expression can also be written 
as
h

h
h h

T
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E
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where 

A k
h

hl n
= B

3
0

	 (30)

is a temperature independent pre-exponential term, 
which can be estimated numerically. In fact, taking 
λη=5 Å, ν0=1013 Hz, results in Aη=10−8 Pas/K.
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In the classical VFTH expression

η0=AηT	 (31)

and is therefore temperature-dependent. However, 
in the temperature range in which experimental 
viscosity data are usually collected, the variation of 
Equation (31) is much lower than the variation of 
the exponential term of Equation (3). Thus, assum-
ing a mean value of 1000 K for the temperature T at 
which viscosity is measured, the pre-exponential 
term can be estimated to be η0=10−5 Pas. This value 
has been shown to give the best fit using a single 
VFTH equation for oxide melts with fixed η0.(20,21) 
Considerations related to the concept of strong and 
fragile supercooled liquids also lead to this η0 value.(22) 
However, it is worth noting that when experimental 
data are fitted using the VFTH equation with three 
adjustable parameters (η0, Bη, and T0), a great variation 
of η0 values is found, ranging from 1 to 10−5 Pas.(2,23,24)

Another estimation of η0 can be assessed using the 
Maxwell relation between the viscosity, η, the shear 
modulus at infinite frequency, G∞, and the structural 
relaxation time, τη, i.e. 

η=G∞τη	 (32)

At high temperature, τη should tend to 10−13 s and 
since G∞, which is associated with bond stiffness, is 
generally estimated between 1 and 10 GPa, η0 should 
be close to 10−4 to 10−3 Pas. 

Whatever the extrapolated value of η0 may be, 
this pre-exponential term is formally temperature-
dependent and justifies the choice of η/T coordinates 
rather than η when viscosity is plotted as a function of 
temperature. We will use Equation (29) to fit experi-
mental data on lithium, sodium and potassium disili-
cates. We will then propose a possible interpretation 
of the parameters Eη

A and Bη at a microscopic level.

4. Analysis of alkali disilicate viscosity data 

4.1 Determination of the DML equation 
parameters
We collected experimental data from different 
authors(25–59) on the alkali disilicates Li2O.2SiO2,(25–36) 
Na2O.2SiO2

(25,30,34,37–58) and K2O.2SiO2
(25,31,32,57)

 over the 
temperature range of 650 to 1800 K, covering twelve 
orders of magnitude of viscosity, from 10 to 1013 
Pas. These data are reported in Figures 1(a), (b) and 
(c), using log(η/T)=f(T) coordinates, and were fitted 
with DML Equation (29), which contains a priori four 
adjustable parameters, Aη, Bη, T0 and Eη

A. Generally, 
when fitting experimental data with four adjustable 
parameters, it is always possible to obtain a good fit. 
This is especially valid in the case of Equation (29), 
which contains the product of two temperature-
dependent exponents, and successive fits may lead 
to different sets of the floating parameters. We then 
restricted the number of adjustable parameters by fix-

ing the ideal glass transition temperature T0 and the 
pre-exponential term Aη at realistic values, as detailed 
below. The two remaining parameters, Bη, and Eη

A, for 
which we will propose a microscopic interpretation, 
were then determined by fitting.

The ideal glass transition temperature, T0, is esti-
mated from the experimental glass transition, Tg. In 
fact, using two semi-empirical laws which relate T0 
and Tg to the melting temperature, Tm, of the crys-
talline phase, i.e. Tg≈(2/3)Tm and T0≈(1/2)Tm, leads 
to T0≈(3/4)Tg.(1) For lithium, sodium and potassium 
disilicates, we then estimated T0=545 K, 551 K and 568 
K, respectively. Following section 3.5, Aη was fixed at 
a value of 10−8 Pa s/K.

All adjustments were performed using Leven-
berg–Marquardt nonlinear fitting and the Origin™ 
software package. Table 1 gives the number N of col-
lected experimental viscosity data and the respective 
χ2 results for each composition. The data are more nu-
merous for sodium disilicate, which leads to the worst 
χ2 results. However, from a statistical standpoint, the 
resulting viscosity fit is more reliable because it cor-
responds to an average value from different sources, 
authors, experimental procedures and possible slight 
compositional differences. The resulting values for 
the Bη and Eη

A parameters are also reported in Table 
1. Calculated curves using the DML parameters are 
shown as full lines in Figures 1(a) to (c).

Note that with Eη
A=0, Equation (29) reduces to a 

VFTH type equation 

h
h

h

T
A

B
k T T

=
-( )

È

Î
Í

˘

˚
˙exp

B 0
	 (33)

which cannot be fitted to experimental data when Aη 
and T0 are fixed at the values reported in Table 1. A 
good fit can be obtained only with very different and 
physically unrealistic Aη and T0 parameters.

4.2 Microscopic interpretation of viscosity 
parameters from the hybrid DML equation

4.2.1 The Arrhenius term
We suggest here that the activation energy Eη

A of the 
Arrhenius exponent in the DML Equation (29) may 
be associated with the molecular rearrangements that 
induce relaxation of the surrounding liquid phase, 
which, in turn, is described by the VFTH exponent. 
Numerical values of Eη

A found for the three disilicates 
and listed in Table 1 are close to 1·2 eV. This value 
is independent of the nature of the alkali cation, 
which suggests that this energy is not associated with 
chemical bonds involving the alkali cation. Thus, 
this energy may be related to a reorganization of the 
silicon–oxygen tetrahedra involving nonbridging 
oxygens. A model for this atomic rearrangement was 
proposed by Farnan & Stebbins,(60) which describes 
the switching of bridging oxygen and nonbridging 
oxygen involving two SiO4 tetrahedra. In fact, the rate 
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Figure 1c. 
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Figure 1a. 
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Figure 1. Experimental viscosity data(25–59) on binary lithium (a), sodium (b) and potassium (c) disilicate glass (symbols) 
fitted by the Dienes–Macedo–Litovitz Equation (29) (full line) using the parameters listed in Table 1. The dotted lines 
indicate the corresponding glass transition temperatures, Tg, and the disilicate melting temperatures, Tm
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of coordination change between two different silicon 
surroundings (Q3fiQ4) was determined using 29Si 
NMR in the K2O–4SiO2 composition and effectively 
found to be closely related on a time scale to the 
relaxation time measured from viscosity data.(60)

However, pure silica shows a different behaviour, 
since its macromolecular network has a higher cova-
lent character than that of alkali silicate. In this case, 
the DML equation reduces to the Arrhenius exponent 
with much higher corresponding activation energy, 
Eη

A of 6·1 eV,(61) than that found for alkali disilicates. 
The significant difference between the activation 
energies of silica and alkali silicates is consistent 
with the idea that, in the case of alkali disilicates, the 
presence of nonbridging oxygens reduces the energy 
required to initiate a local atomic reorganization. 

4.2.2 The VFTH term

The second exponent, or the VFTH term of Equation 
(29), can be discussed in terms of the free volume 
model proposed by Cohen & Turnbull or the entropic 
model proposed by Adam & Gibbs. However, as 
mentioned earlier, in the entropic model, it was found 
that Bη was given by Equation (26). In this equation, 
sc* and Δµ are not easily dissociable, making any 
quantitative interpretation of Bη too speculative. Thus, 
only the free volume model will be used to interpret 
results concerning Bη. 

According to the free volume model, the Bη param-
eter in Table 1 depends on the ratio of the critical free 
volume Vη

f* associated with the displacement of an 
entity whose volume would be V0η at the temperature 
T0 at which the free volume disappears. The Vη

f*/V0η 
ratio can be calculated using Equation (17), where αl 
and αg represent the volumetric thermal expansion of 
the liquid and corresponding glass. Table 2 lists the 
αl and αg values found for the three alkali disilicates 
under study and their calculated Vη

f*/V0η ratios.
In Table 2, the Vη

f*/V0η ratios are close to 0·3 for the 
three compositions, indicating that the displacement 
of silicate chains requires a three-fold lower free vol-

ume than that occupied by the chain segment itself 
at T0. This low Vη

f*/V0η ratio suggests that the viscous 
flow of alkali disilicates is governed by limited or 
low amplitude rotational or translational movements. 
Figure 2 depicts a possible oxygen atom switching 
mechanism correlated with local reorganization of 
the neighbouring SiO4 tetrahedra.

4.3 Comparison with ionic transport above Tg

Previously(4) we employed the DML equation

s s sT A E
k T

B
k T T

= -Ê
ËÁ

ˆ
¯̃

-
-( )

È

Î
Í

˘

˚
˙exp exp

A

B B 0
	 (34)

to interpret the dependence of ionic conductivity 
(σ) on temperature above Tg of lithium, sodium and 
potassium disilicates. In this expression, Eσ

A repre-
sents the energy required for the formation of the 
charge carrier, and Bσ is related to its migration in 
the macromolecular network.

Based on an interpretation similar to that devel-
oped here for viscosity, Bσ is also related to a free 
volume ratio Vσ

f*/V0σ by

Vσ
f*/V0σ=Bσ(αl−αg)/kB	 (35)

Using a similar mathematical procedure as the one 
described above for viscosity data, Eσ

A and Vσ
f*/V0σ 

were also determined using Equation (34) to fit exper-
imental data. The resulting values of Eη

A and Vσ
f*/V0σ, 

are listed in Table 3, together with the corresponding 
viscosity parameters for purposes of comparison. As 
can be seen from Table 3, the activation energy for 
ionic transport, Eσ

A, is close to 0·5 eV and the Vσ
f*/V0 

ratio is about 3×10−2.
As mentioned earlier, the proposed microscopic 

model for ionic transport(4) assumes that the activa-
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Table 2. Volumetric thermal expansion coefficients in the 
liquid (αl) and glassy (αg) states and calculated volume 
ratios Vη

f*/V0η.(62,63) (a) For potassium disilicate, αl was 
calculated from density data(2)

Melt composition	 αl (×10−7/K)	 αg (×10−7/K)	 Vη
f*/V0η

Li2O.2SiO2	 1119*	 361*	 0·29
Na2O.2SiO2	 1395**	 495**	 0·29
K2O.2SiO2	 1455a	 558**	 0·42

Figure 2. Schematic representation of a nonbridging 
oxygen (NBO) and bridging oxygen (BO) switching 
mechanism associated with a local reorganization of the 
neighbouring SiO4 tetrahedra. The red arrows indicate the 
atomic displacement from the initial position

Table 1. Numerical values for Eη
A (eV) and Bη (eV) obtained by the best fit of experimental data using the DML Equation 

(29). The pre-exponential terms Aη and T0 were fixed at 10−8 Pas/K and 0·75Tg, respectively. The corresponding number 
N of experimental data and χ2 values are also reported. The mathematical accuracy is of ±2×10−2 eV and ±5×10−3 eV for 
Eη

A and Bη, respectively
Melt composition	 Aη (Pas/K)	 Tg (K)	 T0 (K)	 Eη

A (eV)	 Bη (eV)	 N	 χ2

Li2O.2SiO2	 10−8	 727	 545	 1·13	 0·329	 76	 0·030
Na2O.2SiO2	 10−8	 735	 551	 1·27	 0·274	 137	 0·055
K2O.2SiO2	 10−8	 757	 568	 1·20	 0·404	 31	 0·021
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tion energy Eσ
A represents the energy required to 

create a charge carrier and Vσ
f*/V0σ represents the 

free volume ratio required for its migration in the 
electric field. 

From a microscopic standpoint, it has been pro-
posed that alkali transport occurs through an inter-
stitial cationic pair composed of two alkali cations 
sharing the same negatively charged nonbridging 
oxygen.(64–66) The formation of an interstitial cationic 
pair thus results from the dissociation of an alkali 
cation bound ionically to a nonbridging oxygen, al-
lowing it to jump to a neighbouring cationic site that 
is already occupied.(4) This site, occupied by two alkali 
cations, is positively charged and the excess cation 
may be transferred from one nonbridging oxygen to 
another, enabling the displacement of the positive 
charge along the macromolecular silicate chains. The 
formation of a cationic pair implies the reorganiza-
tion of ionic bonds, and a lower activation energy is 
expected than that required for the reorganization 
of the Si–O covalent bonds in the viscous flow, thus 
qualitatively justifying Eσ

A<Eη
A.

The free volume ratio related to conductivity, Vσ
f*/V0σ, 

represents the ratio of the critical free volume re-
quired for the transfer of an interstitial cationic pair 
from one nonbridging oxygen to another at a temper-
ature above Tg. This ratio is one order of magnitude 
lower than the equivalent viscosity ratio (Vη

f*/V0η). 
This lower ratio is consistent with the idea that 
viscous flows imply chain segment displacements, 
whereas ionic transport above Tg is assisted only 
by more localized movements of chain segments. 
These localized movements of low amplitude could 
be attributed tentatively to vibrations of nonbridg-
ing oxygen atoms which allow for the transfer of an 
alkali cation from one bridging oxygen to another. 
This transfer mechanism implies an exchange in the 
coordination number between two neighbouring 
nonbridging oxygens, and from this standpoint, it 
can be compared to the transfer of protons in water 
by the so-called “Grotthus mechanism”.(67)

Another approach to relate ionic transport and 
viscosity can be assessed by means of the correlation 
of the diffusion coefficient Dη as expressed by Equa-
tion (8) with the diffusion coefficient Dσ deduced from 
the Nernst–Einstein identity

D k T
nes

s
= B

2 	 (36)

where n is the total concentration of alkali cations by 

unit volume and e is the elementary charge.
If ionic transport and viscosity imply the same 

atomic transport mechanisms, Dη=Dσ=D, and a 
simple relation should link electrical conductivity 
and viscosity

s
h

T D T
µ µ 	 (37)

This relation suggests a slope of 1 between 1/σT 
and η/T in a log–log plot. Figure 2 shows such a 
representation for lithium, sodium and potassium 
disilicates. The three compositions in Figure 2 indi-
cate a relation with good linearity but with a slope 
far from unity. This ionic transport-viscosity rela-
tion can thus be described by a so-called “fractional 
Stokes–Einstein”(68,69) equation 

s
h

T T
µ

Ê
ËÁ

ˆ
¯̃

m

	 (38)

This fractional exponent depends on the ratio 
between the apparent activation energy involved in 
viscous flow and that for ionic transport at a given 
temperature. For all three compositions, the exponent 
m in Equation (38) is far from unity (m≈0·2), which 
confirms a significant difference in the transport 
mechanisms associated with ionic conductivity and 
viscous flow, as expected. 

These two mechanisms involving different move-
ments of chain segments leads to different relaxation 
processes, which might be identified as the α and 
β relaxations defined by Johari & Goldstein.(70) It is 
proposed that α relaxation is associated with long 
distance rearrangements with higher potential barri-
ers, while β relaxation is restricted to more localized 
movements,(71,72) comparable to the SiO4 tetrahedron 
vibrations. β relaxation remains an activated process 
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Figure 3. log(1/σT) versus log(η/T) in a log–log plot for 
lithium, sodium and potassium disilicates. The dashed 
line corresponds to an exponent of m=1 in Equation (38). 
Conductivity data were taken from several references cited 
in Ref. 4

Table 3. Viscous flow and ionic transport activation ener-
gies Eη

A and Eσ
A and corresponding free volume ratios Vη

f*/
V0η and Vσ

f*/V0σ. Es
A  and Vσ

f*/V0σ are taken from Ref. 4
Melt composition	 Eη

A (eV)	 Eη
A (eV)	 Vη

f*/V0η	 Vσ
f*/V0σ

Li2O.2SiO2	 1·13	 0·48	 0·29	 0·037
Na2O.2SiO2	 1·27	 0·51	 0·29	 0·034
K2O.2SiO2	 1·20	 0·55	 0·42	 0·039
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below the glass transition temperature. We suggest 
here that the activation energy involved in β relaxa-
tion, below Tg, might contribute to the activation en-
ergy for ionic conduction.

5. Conclusions

Experimental viscosity data of alkali disilicates were 
fitted by a DML equation containing two exponential 
terms, one of which is an Arrhenius type term while 
the other corresponds to a VFTH-like exponent. 
Introducing the free volume ratio (Vη

f*/V0η) into the 
VFTH exponential, we obtained an expression with 
four variables: a pre-exponential term (Aη), an activa-
tion energy related to the Arrhenius term (Eη

A), the 
free volume ratio (Vη

f*/V0η), and T0 related to the VFTH 
term. Fixing Aη and T0 at physically justifiable values, 
we obtained, by fitting, the two remaining terms, i.e. 
the Arrhenius activation energy and the Vη

f*/V0η ratio.
For the three alkali disilicates, the Arrhenius activa-

tion energy Eη
A was found to be 1·2 eV and the Vη

f*/V0η 
ratio close to 0·3. To discuss these results, we took 
into account previously determined activation energy 
(Eσ

A) and free volume ratio (Vσ
f*/V0σ) related to ionic 

transport above the glass transition temperature. 
These data were obtained by fitting experimental 
ionic conductivity data on the three alkali disilicates 
under study with a similar DML equation as the one 
employed here for viscosity. For the ionic transport, 
the Arrhenius activation energy was found to be 
close to 0·5 eV and the free volume ratio close to 0·03. 
These results suggest that either the viscous flow or 
the ionic transport involves two different steps, an 
activated one described by the Arrhenius exponent 
and a second one that follows a VFTH expression.

We propose that, in the case of viscous flow, the 
activation energy Eη

A is related to the reorganization of 
covalent bonds involving bridging and nonbridging 
oxygen in the silicon tetrahedrons. A lower activa-
tion energy Eσ

A (0·5 eV) found for ionic transport is 
consistent with the proposed model, which predicts 
that this activation energy is associated to the forma-
tion of ionic pairs, and therefore involves weaker 
ionic bonds.

It was also found that both free volume ratios 
related to viscous flow (Vη

f*/V0η) and to ionic transport 
(Vσ

f*/V0σ) are relatively low, with the second one lower 
than the first. These results are in agreement with 
the idea that both viscous flow and ionic transport 
above Tg are assisted by low amplitude but different 
chain segment displacements. These displacements 
are probably limited to rotational and translational 
movements of SiO4 tetrahedra in the case of viscous 
flow and to vibrations of nonbridging oxygens in 
the case of ionic transport. In the latter case, these 
vibrational movements would enable the transfer 
of the cationic pair from one nonbridging oxygen 
to another.

6. Acknowledgements 
This work was financially supported by the Brazil-
ian research funding agencies FAPESP (Process 
Nos. 2004/10703-0, 2007/08179-9, 2007/03563-5 
and 2010/08003-0) and CNPq (305373/2009-9 and 
479799/2010-5). JLS thanks the Vitreous Materials 
Laboratory (LaMaV-UFSCar) for its hospitality dur-
ing his contribution to this paper.

7. References
	 1.	 Gutzow, I. & Schmelzer, J. W. P. The Vitreous State, Springer-Verlag, 

Berlin Heidelberg, 1995. 
	 2.	 Kivelson, D., Tarjus, G., Zhao, X. & Kivelson, S. A. Phys. Rev. E, 1996, 

53 (1), 751.
	 3.	 Sciglass 6.5, SciGlass Dictionary 2000–2004, Scivision.
	 4.	 Souquet, J. L., Rodrigues, A. C. M. & Nascimento, M. L. F. J. Chem. 

Phys., 2010, 132, 034704.
	 5.	 Vogel, H. Phys. Z., 1921, 22, 645.
	 6.	 Fulcher, G. S. J. Am. Ceram. Soc., 1925, 8, 339.
	 7.	 Tamman, G. & Hesse, W. Z. Anorg Allg. Chem., 1926, 156, 245.
	 8.	 Cohen, M. H. & Turnbull, D. J. Chem. Phys., 1959, 31, 1164.
	 9.	 Adam G. & Gibbs, J. H. J. Chem. Phys., 1965, 43, 139.
	 10.	 Dienes, G. J. J. Appl. Phys., 1953, 24, 779.
	 11.	 Macedo, P. B. & Litovitz, T. A. J. Chem. Phys., 1965, 42, 245.
	 12.	 Egelstaff, P. A. An Introduction to the Liquid State, Academic Press, 

London & New York, 1967.
	 13.	 Kumar, S. Phys. Chem. Glasses, 1963, 4 (3), 106.
	 14.	 Kauzmann, W. Chem. Rev., 1948, 43, 219.
	 15.	 Richet, P. J. Non-Cryst Solids, 2009, 355, 628. 
	 16.	 Angell, C. A. & Sichina, W. Ann. N.Y. Acad. Sci., 1976, 53, 279.
	 17.	 Angell, C. A. J. Res. Natl. Inst. Stand. Technol., 1997, 102, 171.
	 18.	 Tanaka, H. Phys. Rev. Lett., 2003, 90 (5), 055701.
	 19.	 Mauro, J. C., Yue, Y., Ellison, A. J., Gupta, P. K. & Allana, D. C. PNAS, 

2009, 106 (47), 19780.
	 20.	 Nascimento, M. L. F. & Aparicio, C. Physica B, 2007, 398, 71.
	 21.	 Nemilov, S.V. Thermodynamic and Kinetics Aspects of the Vitreous State, 

CRC, Boca Raton, 1995.
	 22.	 Angell, C. A. Pure Appl. Chem., 1991, 63, 1387.
	 23.	 Avramov, I. J. Non-Cryst. Solids, 2005, 351, 3163.
	 24.	 Pfeiffer, T. Solid State Ionics, 1998, 105, 277.
	 25.	 Bockris, J. O’ M., Mackenzie, J. D. & Kitchener, J. A. Trans. Faraday Soc., 

1955, 51, 1734.
	 26.	 El-Badry, K., Ghoneim, N. A., El-Batal, H. A., Ammar, M. M. & Gharib, 

S. Sprechsaal, 1981, 114, 599.
	 27.	 Fokin, V. M., Kalinina, A. M. & Filipovich, V. N. J. Cryst. Growth, 1981, 

52, 115.
	 28.	 Gonzalez-Oliver, C. J. R. PhD Thesis, University of Sheffield, 1979.
	 29.	 Heslin, M. R. & Shelby, J. E. Boll. Soc. Espan. Ceram. Vidrio - Proc. XVI 

Intern. Congr. on Glass, Madrid, 1992, 31-C, 95.
	 30.	 Marcheschi, B. A. MsC Thesis, Alfred University, NY, 1985.
	 31.	 Ota, R., Tsuchiya, F., Kawamura, K., Nakanishi, S. & Fukunaga, J. J. 

Ceram. Soc. Jpn, 1991, 99, 168.
	 32.	 Shartsis, L., Spinner, S. & Capps, W. J. Am. Ceram. Soc. 35, 155 (1952).
	 33.	 Vasiliev, A. I. & Lisenenkov, A. A. In: Proizvodstvo i Issledovanie Stekla 

i Silikatnykh Materialov, 1978, Yaroslavl 6, 144.
	 34.	 Wright, B. M. & Shelby, J. E. Phys. Chem. Glasses, 2000, 41, 192.
	 35.	 Zanotto, E. D. PhD Thesis, University of Sheffield, 1982.
	 36.	 Zhenhua, Zeng J. Chin. Silic. Soc., 1986, 14, 347.
	 37.	 Coenen, M. Kolloid Z. Z. Polymere, 1964, 194, 136.
	 38.	 Ehrt, D., Leister, M., Matthai, A., Rüssel, C. & Breitbarth, F. Proc. Fourth 

Int. Conf. Fundamentals of Glass Science and Technology, Sweden, 1997, 
p204.

	 39.	 Fontana, E. H. & Plummer, W. A. J. Am. Ceram. Soc., 1979, 62, 367.
	 40.	 Grussaute, H., Montagne, L., Palavit, G. & Bernard, J.-L. Glastech. Ber. 

Glass Sci. Technol., 2000, 73, 380.
	 41.	 Hunold, K. & Bruckner, R. Glastech. Ber., 1980, 53, 149.
	 42.	 Komleva, G. P. Neorg. Mater., 1971, 7, 1285.
	 43.	 LaCourse, W. C. & Stevens, H. J. In: Materials Science Research 12, Borate 

Glasses, Eds. L. D. Pye, V. D. Frechette & N. J. Kreidl, Plenum Press, 
NY, 1978, p539.

	 44.	 Leontjeva, A. A. Zh. Fiz .Khim., 1941, 15, 134.
	 45.	 Lillie, H. R. J. Am. Ceram. Soc., 1939, 22, 367.
	 46.	 Meiling, G. S. & Uhlmann, D. R. Phys. Chem. Glasses, 1967, 8, 62.

M. L. F. Nascimento et al: Free volume and energy barriers to equilibrium viscosity and ionic transport



166 Physics and Chemistry of Glasses: European Journal of Glass Science and Technology Part B Volume 52 Number 4 August 2011

	 47.	 Ota, R., Wakasugi, T., Kawamura, W., Tuchiya, B. & Fukunaga, J. J. 
Non-Cryst. Solids, 1995, 188, 136.

	 48.	 Preston, E. J. Soc. Glass Technol., 1938, 22, 45.
	 49.	 Scarfe, C. M., Mysen, B. O. & Virgo, D. Carnegie Inst. Washington, Year 

Book, 1979, 78, 547.
	 50.	 Schnaus, U. E., Schroeder, J. & Haus, J. W. Phys. Lett. A, 1976, 57, 92.
	 51.	 Shiraishi, Y., Nagasaki, S. & Yamashiro, M. J. Non-Cryst. Solids, 2001, 

282, 86.
	 52.	 Shvaiko-Shvaikovskaya, T. P., Mazurin, O. V. & Bashun, Z. S. Neorg. 

Mater., 1971, 7, 143.
	 53.	 Skornyakov, M. M. In: Fiziko-Khimicheskie Svoistva Troinoi Sistemy 

Na2O-PbO-SiO2, Moskva, 1949, p39.
	 54.	 Sumita, S., Mimori, T., Morinaga, K. & Yanagase, T. J. Jpn. Inst. Metals, 

1980, 44, 94.
	 55.	 Suzuki, S., Kobayashi, T., Takahashi, M. & Imaoka, M. Ann. Rep. Ceram. 

Eng. Res. Lab., Nagoya Inst. Technol., 1980, 7, 15.
	 56.	 Suzuki, S., Kobayashi, T., Takahashi, M. & Imaoka, M. J. Ceram. Soc. 

Jpn., 1981, 89, 252.
	 57.	 Vasiliev, A. I., Lisenenkov, A. A. & Rashin, G. A. In: Tezisy IV Simp. po 

Elektricheskim Svoistvam i Stroeniyu Stekla, Erevan, 1977, p32.
	 58.	 Winter-Klein, A. In: Stekloobraznoe Sostoyanie, Moskva-Leningrad, 1965, 

p45.
	 59.	 Eipeltauer, E. & More, A. Radex-Rundsch., 1960, 4, 230.
	 60.	 Farnan, I. & Stebbins, J. F. Science, 1994, 265, 1206.
	 61.	 Doremus, R. H. J. Appl. Phys., 2002, 92 (12), 7619.
	 62.	 Klyuev, V. P. & Pevzner, B. Z. Phys. Chem. Glasses, 2004, 45, 146.
	 63.	 Mazurin, O. V., Streltsina, M. V. & Shvaiko-Shvaikovskaya, T. P. (Edi-

tors), Handbook of Glass Data, Physical Sciences Data No.1,5 Elsevier, 
Amsterdam, Vol. A, 1983, 249–250.

	 64.	 Charles, R. G. J. Appl. Phys., 1961, 32, 1115.
	 65.	 Haven, Y. Verkerk, B. Phys. Chem. Glasses, 1965, 6 (2), 38.
	 66.	 Ingram, M. D., Mackenzie, M. A. & Lesikar, A. V. J. Non-Cryst.Solids, 

1980, 38–39, 371.
	 65.	 von Grotthus, C. J. D. Ann.Chim., 1806, LVIII, 54. 
	 68.	 Voronel, A., Veliyulin, E., Machavariani, V. Sh., Kisliuk, A. & Quit-

mann, D. Phys. Rev. Lett., 1998, 80, 2630.
	 69.	 Grandjean, A., Malki, M., Simonnet, C., Manara, D. & Penelon, B. Phys. 

Rev. B, 2007, 75, 054112. 
	 70.	 Johari, G. P. & Goldstein, M. J. Chem. Phys., 1970, 53, 2372.
	 71.	 Prevosto, D., Capaccioli, S., Luchesi, M., Rolla, P. A. & Ngai, K. L. J. 

Non-Cryst. Solids, 2009, 355, 705.
	 72.	 Nemilov, S. V. J. Non-Cryst. Solids, 2011, 357, 1243.

M. L. F. Nascimento et al: Free volume and energy barriers to equilibrium viscosity and ionic transport


