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Abstract We examine Galilei-invariant linear wave equations in a non-commutative phase
space. Specifically, we establish and solve the Galilean covariant Duffin-Kemmer-Petiau
equation for spin-0 fields in a harmonic oscillator potential. We obtain these wave equations
with a Galilean covariant approach, based on a (4+1)-dimensional manifold with light-cone
coordinates followed by a reduction to a (3 + 1)-dimensional spacetime. We find the exact
wave functions and their energy levels, and we examine the effects of non-commutativity.

Keywords Galilean covariance · Non-commutative phase space · Duffin-Kemmer-Petiau
equations

1 Introduction

In this paper, we exploit a higher-dimensional formulation of Galilean covariance to study
the non-relativistic Duffin-Kemmer-Petiau (DKP) oscillator for a spin-zero field in a non-
commutative phase space; that is, where both coordinates and momenta are non commuting.
The DKP wave equation, which is of first order, can be seen as a counterpart of the Dirac
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equation for spin-zero and spin-one fields. Its form is similar to the Dirac equation with
the gamma matrices replaced by matrices which satisfy the so-called DKP algebra [1–5].
The fact that the DKP equation has not received much attention in the literature might be
explained by the equivalence between the Klein-Gordon equation and the DKP equation,
and the more complex algebraic structure of the latter [6, 7]. Over the years, that equivalence
has been challenged; some of these claims have allegedly been put to rest in Ref. [8]. The
relativistic DKP oscillator is discussed, for instance, in Ref. [9, 10].

As far as we know, the first paper on the idea that configuration-space coordinates do not
commute was published by Snyder in 1947 [11, 12]. According to Ref. [13–16], the idea
first came to Heisenberg in the late 1930s as a possible cure for short-distance singularities.
Heisenberg mentioned his idea to Peierls, who relayed it to Pauli, who in turn mentioned it
to Oppenheimer, who asked his student H Snyder to develop this idea. The recent interest in
non-commutative quantum mechanics was motivated by studies of the low-energy effective
theory of D-branes in the background of a Neveu-Schwarz B-field in a non-commutative
space [17–20]. Among recent applications, let us mention the quantum Hall effect on non-
commutative spaces [21–24], the Landau problem on the non-commutative plane [25–28],
planar quantum systems with central potentials [29, 30], and studies of the relativistic DKP
oscillator in a non-commutative space [31–35]. Papers investigating Galilei-invariant sys-
tems with non-commutative geometry are in Refs. [36–41].

Our main interest in the present problem stems from the connection between non-
commutative coordinates and discrete space-time, following the original paper by Sny-
der [11, 12]. We expect that a Galilean version should be of interest in condensed matter
physics for the study of non-relativistic lattice models. Particle physics and condensed mat-
ter physics share many tools of quantum field theory, for instance: gauge invariance, spon-
taneous symmetry breaking, Goldstone bosons, and so on. The Galilean covariance with a
metric in an extended manifold is but one further unifying feature. It consists in enforcing
Lorentz-like covariance (ubiquitous in high-energy physics) in a (4 + 1)-dimensional man-
ifold in such a way that the resulting theory is Galilean invariant (encountered in condensed
matter physics and low-energy physics). Note that in this paper, a (4 + 1) manifold refers to
a (3,1) space-time augmented by 1 space-like coordinate.

A Galilean covariant theory is obtained by the addition of an extra coordinate, s or x5,
embedded in a (4 + 1) Minkowski manifold [42–44]. This extended manifold consists of
five-vectors with coordinates

xμ = (
x1, x2, x3, x4, x5

) = (r, t, s),

which transform under Galilean boosts as

r′ = r − vt,

t ′ = t,

s ′ = s − r · v + 1

2
v2t.

This transformation leaves invariant the scalar product

(r, t, s) · (r′, t ′, s ′) ≡ r · r′ − ts ′ − t ′s,

defined by the following metric,

gμν =

⎛

⎜⎜
⎜⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 −1 0

⎞

⎟⎟
⎟⎟
⎠

. (1)
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Hereafter we shall refer to this as the Galilean metric, even though this is equivalent to the
Lorentz metric in (4 + 1) space-time. The term “Galilean” describes the procedure which
consists in projecting down to four space-time dimensions, thereby obtaining a Galilean
theory. We note that the extra coordinate, s, appears to be related to the quasi-invariance
of the free particle Lagrangian under Galilean transformations, since it transforms like the
phase of the quantum wavefunction that ensures the invariance of the Schrödinger equation
under Galilean transformations [42–44]. If we consider “energy-mass eigenstates” � that
satisfy i�∂4� = E� and, in an analogous manner, i�∂5� = m� , then we obtain

pμ = −i�∂μ = (p,−E,−m), (2)

so that p4 = −p5 = m is the mass, and p5 = −p4 = E is the energy. Thus, it suggests that x5

could be seen as being conjugate to m, similarly to time-energy conjugation relation. (The
consequences of this interpretation—including a “mass-x5 uncertainty principle”—remain
to be explored.)

The relativistic analogue of the present work is described in Ref. [31], and we shall
compare our results with it. Let us consider the usual position and momentum operators, ri

and pi , which satisfy the canonical commutations relations:

[ri, rj ] = 0, [pi,pj ] = 0, [ri,pj ] = i�δij .

Following Ref. [31], we consider a non-commutative space described by the operators r̂i

and p̂i :

r̂i = ri − �ij

2�
pj = ri + (� × p)i

2�
, (3)

p̂i = pi + �ij

2�
rj = pi − (� × r)i

2�
. (4)

They satisfy the following commutation relations:

[r̂i , r̂j ] = i�ij , [p̂i , p̂j ] = i�ij , [r̂i , p̂j ] = i��ij , (5)

with �ij = εijk�k , �ij = εijk�k , where �i and �i (i = 1,2,3) are real parameters. As men-
tioned in Ref. [32] (see also Ref. [20, 45]), the bounds on the non-commutativity parameters
are currently given by

� < 4 × 10−40 m2, � < 1.76 × 10−61 kg2 m2/s2.

The matrix �ij is given by

�ij =
(

1 + � · �
4�2

)
δij − �i�j

4�2
.

From the experimental bounds on � and �, we see that the second term in the parenthesis
is less than 10−33.

Our purpose is to apply the (4 + 1)-dimensional Galilean covariant formalism to define
the non-relativistic non-commutative DKP oscillator for spinless fields. In Sect. 2, we begin
by outlining the commutative version of the Galilean covariant DKP equation. Then we
write its non-commutative version and solve it. In both commutative and non-commutative
cases, we can use projection operators, developed for the Galilean covariant DKP equation
in Ref. [46].
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2 Galilean DKP Oscillator in a Commutative Space

We begin this section by reviewing the Galilean DKP formulation in the commutative
phase space. In Sect. 2.1, we recall from Refs. [47–49] the spinless field representation.
In Sect. 2.2, we apply the projection operators of the Galilean DKP fields and focus on the
spin-zero field [46]. We shall establish and discuss solutions of the DKP equations for the
non-commutative Galilean covariant oscillator in Sect. 3.

The Lagrangian density for the Galilean covariant free DKP field � in (4 + 1) dimen-
sions is given by

L = 1

2
�βμ∂μ� − 1

2
∂μ�βμ� − k��, μ = 1, . . . ,5. (6)

The adjoint of the spinor field � is denoted � . It is defined by � = �†η where

η = (
β4 + β5

)2 + 1. (7)

In Eq. (6), k is a constant, and βμ are matrices that satisfy the DKP algebra [1–5, 50]

βμβνβρ + βρβνβμ = gμνβρ + gρνβμ,

with the metric gμν given by Eq. (1). The Lagrangian in Eq. (6) leads to the Galilean DKP
wave equation and its adjoint:

(
βμ∂μ + k

)
� = 0,

�
(
βμ

←
∂ μ −k

) = 0.
(8)

With appropriate representations of the β-matrices, these equations describe spinless and
spin-one fields (see detail in Refs. [47–49]). The β-matrices are given by representations of
the Lie algebra so(5,1); this is analogous to the representations of so(4,1) in a 4-dimensional
space-time. For the Galilean DKP wave equations, the relevant representations are six-
dimensional for spinless fields (in Sect. 2.1), and 15-dimensional for spin-one fields. We
will examine the spin-one field with an oscillator in a separate paper.

2.1 DKP-Oscillator Wave Equation

In Ref. [49], we utilized the following 6-by-6 representation for the spin-zero DKP field:

β1 = e1,6 + e6,1,

β2 = e2,6 + e6,2,

β3 = e3,6 + e6,3,

β4 = e4,6 − e6,5,

β5 = e5,6 − e6,4.

The notation ejk is a shorthand for square matrices whose only non-zero entry is jk; that is,
(ejk)mn ≡ δjmδkn.

The spin-zero oscillator in described by substituting these matrices into Eq. (8), acting of
the 6-vector � = (ψ1, . . . ,ψ6)

t , where t denotes transpose. The momentum representation
of Eq. (8) is

(
βμpμ − ik

)
� = 0,
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into which we insert the non-minimal coupling,

p → p + imωηr. (9)

The explicit form becomes
[
β · (p + imωηr) + β4p4 + β5p5 − ik

]
� = 0,

which leads to the equations

−ikψj + (pj − imωrj )ψ6 = 0, j = 1,2,3,

−ikψ4 + p4ψ6 = 0, (10)

−ikψ5 + p5ψ6 = 0.

If we proceed as in Refs. [47–49]), we obtain

Eψ6 =
(

p2

2m
+ 1

2
mω2r2 + 3

2
�ω

)
ψ6. (11)

This result was obtained in Ref. [49] with the 5-dimensional Galilean covariant formalism,
and through a low-velocity limit process from the relativistic DKP equation, in Ref. [51].

2.2 DKP Projectors

Given a general representation of the DKP matrices βμ, the selection of the scalar or vector
sector can be done through projection operators [46]. The spinless sector can be selected by
the operator P :

P = −1

2

(
β4 + β5

)2(
β1

)2(
β2

)2(
β3

)2
,

which satisfies the properties

P 2 = P,

P μ = Pβμ, (12)

P μβν = Pgμν, P iη = P i, Pη = −P.

This operator allows us to write Eq. (8) as
(
βμ∂μ + k

)
(P�) = 0,

where P� transforms like a scalar under Galilean boosts. Note that P μ� transforms like a
pseudo-vector [46].

Instead of Eq. (9), we can consider general non-minimal couplings, that allow us to de-
scribe interactions between scalar bosons and a external vector potential C(r):

p → p + Cη.

From this coupling, if we consider the action of the operator P on the DKP equation as in
Eq. (8), and pμ as in Eq. (2) and Refs. [47–49], we obtain the wave equation

EP� = 1

2m

(
p2 − C2 − i∇ · C

)
P�.

Clearly, the oscillator described in Sect. 2.1 corresponds to the special case

C = imωr. (13)
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This leads to the following equation [46]:

E(P�) =
(

p2

2m
+ 1

2
mω2r2 + 3

2
�ω

)
(P�),

in agreement with Eq. (11).
In Sect. 3.3, we shall need the counterpart of Eq. (12),

μP = βμP, (14)

such that the wave equations for � and � lead to

P μ� = − 1

�k
∂μP� (15)

and

�μP = 1

�k
∂μ�P. (16)

We shall use these relations, as well as

βμ = μP + P μ, (17)

when we normalize the DKP wave functions.

3 DKP Oscillator in a Non-commutative Space

In this section, we turn to the DKP wave equation in a non-commutative phase space. We
formulate these equation by substituting into the DKP equation (8) the non-commutative
coordinates and momenta, r̂i and p̂i , given by Eqs. (3) and (4). In Sect. 3.1, we consider
a general DKP wave equation and utilize the projector approach to obtain the spin-zero
equation. We determine the energy spectrum in Sect. 3.2 via the separation of variables, and
describe the normalized wave functions in Sect. 3.3.

3.1 DKP Wave Equation in a Non-commutative Space

The DKP equation with a non-minimal coupling C, in a non-commutative space, is written
as

(
βμπμ − i�k

)
� = 0, (18)

where πμ = (p̂ + Cη,p4,p5) with C = C(r̂). If we apply the operators P and P μ to each
term in Eq. (18), we obtain

i�kP j� = (
p̂j − Cj

)
P�,

i�kP 4� = −mP�,

i�kP 5� = −EP�,

i�kP� = (
(p̂i + Ci)P

i + EP 4 + mP 5
)
�,

so that Eq. (18) becomes

EP� = 1

2m

(
p̂2 − C2 + [p̂i , Ci]

)
P�. (19)
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This is the wave equation for the scalar field P� in a non-commutative space with a general
non-minimal coupling. In other words, if we have the functional dependence for the vector
potential C(r̂) in a non-commutative space, then it is possible to write down the complete
wave equation that describes the interaction.

For instance, the free field corresponds to C = 0. Then we can recast Eq. (19) as

EP� = 1

2m

(
p2 − 1

�
� · L + 1

4�2
(r × �)2 + �

2k2

)
P�.

This equation can be interpreted as a non-relativistic free particle in a commutative space
with spin-orbit coupling in the presence of a constant magnetic field, given in terms of the
non-commutative parameter vector �.

Now let us couple the scalar field to the three-dimensional harmonic oscillator in a non-
commutative space. From Eq. (19) with the potential given in Eq. (13), we find that Eq. (19)
reduces to

EP� = 1

2m

[
p2 + m2ω2r2 − 3m�ω − 1

�

(
� + m2ω2�

) · L

+ 1

4�2

(
(r × �)2 + m2ω2(p × �)2

) − mω

2�
� · � + �

2k2

]
P�. (20)

Let us denote the field simply by ψ ≡ P� . From now on, we choose the non-commutativity
vectors to point in the z-direction,

� = (0,0,�), � = (0,0,�).

3.2 Energy Spectrum

Hereafter, we substitute the previous expressions into the explicit representation utilized to
obtain Eq. (10), and reduce these equations into a single equation for ψ6. Equivalently, we
can use Eq. (20) and substitute the values of � and �. With cylindrical coordinates (ρ,φ, z),
we obtain

Eψ =
[
−

(
�

2

2m
+ mω2�2

8�2

)(
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂φ2

)
+

(
1

2
mω2 + �2

8m�2

)
ρ2

]
ψ

+
[
− �

2

2m

∂2

∂z2
+ 1

2
mω2z2 − 3

2
�ω

]
ψ

−
[

1

2m�

(
� + m2ω2�

)
L3 + ω

4�
�� − �

2k2

2m

]
ψ.

We perform the separation of variables as follows:

ψ(ρ,φ, z) = χ(ρ)�(φ)�(z). (21)

The function �(φ) is given by

�(φ) = exp(i|ml |φ), (22)

with ml given by

L3ψ = ml�ψ.

After dividing each term of Eq. (21) by χ(ρ)�(φ)�(z), it becomes
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E = − �
2

2m

1

ρ

d

dρ

(
ρ

dχ

dρ

)
1

χ
+

(
�

2

2m
+ mω2�2

8

)
m2

l

ρ2

+
(

1

2
mω2 + �2

8m�2

)
ρ2 − mω2�2

8

1

ρ

d

dρ

(
ρ

dχ

dρ

)
1

χ

− �
2

2m

d2�

dz2

1

�
+ 1

2
mω2z2

−3

2
�ω − ml

2m

(
� + m2ω2�

) − ω

4�
�� + �

2k2

2m
. (23)

Note that the terms of the first two lines on the right-hand side of Eq. (23) depend on ρ

only; we set their sum equal to the constant Eρ . The third line depends on z only; we set it
equal to the constant Enz . The remaining terms (E from the left-hand side, and the fourth
line of Eq. (23)) are independent of the coordinates. Thus each set of terms is equal to a
constant, and when we separate the variables, the third line of Eq. (23) gives

�
2

2m

d2�

dz2
+

(
Enz − 1

2
mω2z2

)
�(z) = 0, (24)

and the first two lines of Eq. (23) lead to
(

�
2

2m
+ mω2�2

8

)
1

ρ

d

dρ

(
ρ

dχ

dρ

)
+

(
Eρ −

(
�

2

2m
+ mω2�2

8

)
m2

l

ρ2

−
(

1

2
mω2 + �2

8m�2

)
ρ2

)
χ(ρ) = 0. (25)

The constants Enz and Eρ are related to the fourth line of Eq. (23) as follows:

Enz + Eρ = E + 3

2
�ω + ml

2m

(
� + m2ω2�

) + ω

4�
�� − �

2k2

2m
. (26)

Of course, Eq. (24) is the one-dimensional Schrödinger equation for the simple harmonic
oscillator, whose solution is (for instance, see Chap. 5 of Ref. [52])

�(z) = 2−nz/2(nz!)−1/2

(
mω

�π

)1/4

exp

(
−mω

2�
z2

)
Hnz

(√
mω

�
z

)
, (27)

where Hnz denotes the Hermite polynomial of degree nz, with the corresponding energy
eigenvalue given by

Enz =
(

nz + 1

2

)
�ω. (28)

Let us return to the radial, or ρ-dependent, part of Eq. (25) by first rewriting it as
[

�
2

2M

(
d2

dρ2
+ 1

ρ

d

dρ
− m2

l

ρ2

)
+ Eρ − 1

2
Mω2

�,�ρ2

]
χ(ρ) = 0, (29)

where

M = 4m�
2

4�2 + m2ω2�2
,

ω�,� = 1

4m�2

√
(4m2�2ω2 + �2)(4�2 + m2ω2�2).

(30)

We notice that M becomes equal to m as the non-commutativity parameter � approaches
zero.
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If we change the variable from ρ to

y = Mω�,�

2�
ρ2, (31)

then Eq. (29) can be cast into the form
(

y
d2

dy2
+ d

dy
− m2

l

4y
− y + β

)
χ(y) = 0, (32)

where

β = Eρ

�ω�,�

.

This equation is the same as in the relativistic DKP equation (see Eq. (22) in Ref. [31]).
Let us introduce the function ϕ(y), given by

χ(y) = e−yy |ml |/2ϕ(y). (33)

If we substitute this into Eq. (32), we obtain the following differential equation for ϕ(y):
[
y

d2

dy2
+ (γ − 2y)

d

dy
+ β − γ

]
ϕ(y) = 0,

where γ ≡ |ml | + 1. By taking w ≡ 2y and −2α ≡ β − γ , we finally obtain

w
d2ϕ

dw2
+ (γ − w)

dϕ

dw
− αϕ = 0.

This is Kummer’s differential equation, whose solution is given by the confluent hyper-
geometric function (see Sect. 13.1.1 in Ref. [53]), so that

ϕ(w) = N
[

1F1(α;γ ;w)
]
, (34)

where N is a normalization constant, and

1F1(α;γ ;w) = 1 + αw

γ
+ (α)2w

2

(γ )22! + · · · + (α)nw
n

(γ )nn! + · · · ,

with the Pocchammer symbol defined as

(a)n ≡ a(a + 1)(a + 2) · · · (a + n − 1), (a)0 ≡ 1. (35)

From the boundary condition, w → ∞ (which follows from ρ → ∞), which implies
ϕ(w) → 0 (so that ψ → 0), we obtain

α = 1

2

(
|ml | + 1 − Eρ

�ω�,�

)
= −nρ, nρ = 0,1,2, . . .

so that

Eρ = (2nρ + |ml | + 1)�ω�,�. (36)

To summarize, the energy eigenvalue, Enρmlnz , of the DKP oscillator is obtained by sub-
stituting Eqs. (28) and (36) into Eq. (26) and solving for E. If we absorb k within the energy,
we find that

Enρmlnz = (nz − 1)�ω + (2nρ + |ml | + 1)�ω�,� − ml

2m

(
� + m2ω2�

) − ω

4�
��, (37)

where ω�,� is given in Eq. (30). The resulting energy spectrum is non-degenerate.
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3.3 Normalized Wave Functions

The total wave function ψ(ρ,φ, z), given by Eq. (21) (with χ(ρ) obtained in Eqs. (33),
(31) and (34), �(φ) given in Eq. (22), and �(z) obtained in Eq. (27)), can be expressed as
follows:

ψ(ρ,φ, z) = N ρ |ml |ei|ml |φe− mω
2�

z2− Mω�,�
2�

ρ2

1F1

(
−nρ; |ml| + 1; Mω�,�

�
ρ2

)
Hnz

(√
mω

�
z

)
,

where N is given by

N = N 2−nz/2(nz!)−1/2

(
mω

�π

)1/4(
Mω�,�

2�

)|ml |/2

.

Our normalization follows from the fourth component, j 4, of the conserved current jμ =
i�k
2m

�βμ� , so that we have

i�k

2m

∫ ∞

0
�β4�ρdρdφ = 1.

If we use β4 = 4P + P 4 from Eq. (17), the previous equation becomes

i�k

2m

∫ ∞

0
�

(
4P + P 4

)
�ρdρdφ = 1,

so that when we substitute Eqs. (15) and (16), as well as Eq. (2), in the previous equation,
we obtain

i�k

2m

∫ ∞

0
�

(
im

�k
+ im

�k

)
P�ρdρdφ = −

∫ ∞

0
�P�ρdρdφ =

∫ ∞

0
ψ†ψρdρdφ = 1.

Note that the Hermite function, which describes the oscillating motion in z, is already
properly normalized. Likewise, the exponential in φ is already normalized. After integrating
over φ and ρ, we find

(2π)2−|ml |N2
∫ ∞

0

(
Mω�,�

�
ρ2

)|ml |
e− Mω�,�

�
ρ2

(

1F1

[
a;b; Mω�,�

�
ρ2

])2

ρdρ = 1.

(The factor 2π follows from the integration over φ.)
Let us define x = Mω�,�

�
ρ2, so that ρdρ = �

Mω�,�
dx. Then we find

N2
�

2|ml |Mω�,�

∞∑

i,j=0

(a)i(a)j

(b)i(b)j i!j !
∫ ∞

0
x |ml |+i+j e−xdx = 1,

where the sums are from the Kummer functions and (a)n is given in Eq. (35). Next, we
utilize the integral

∫ ∞
0 yα−1e−ydy = �(α), we have

N2
�

2|ml |Mω�,�

∞∑

i,j=0

(a)i(a)j

(b)i(b)j i!j !�(|ml | + i + j + 1) = 1.

This result can be written in the form

N2
��(|ml| + 1)

2|ml |Mω�,�

∞∑

i,j=0

(|ml | + 1)i+j (a)i(a)j

(b)i(b)j i!j ! = 1, (38)
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as well as

N2
��(|ml| + 1)

2|ml |Mω�,�

F2[|ml| + 1, a, a;b, b;1,1] = 1, (39)

where we have used the following expression for the Appell hypergeometric series:

F2

[
a, b, b′; c, c′;x, y

] =
∞∑

n,m=0

(a)m+n(b)m(b′)n

(c)m(c′)n

xm

m!
xn

n! .

On the other hand, the result in Eq. (38) can be rewritten in another way by redefining
the index as i + j = n; this leads to

N2
�

2|ml |Mω�,�

∞∑

n=0

n∑

i=0

(a)i(a)n−i

(b)i(b)n−i i!(n − i)! (|ml | + n)! = 1,

N2
�

2|ml |Mω�,�

∞∑

n=0

n∑

i=0

(|ml| + n)!(a)i(a)n−i

(b)i(b)n−i i!(n − i)! = 1,

(40)

which agrees with the coefficient obtained by Yang et al. [31]. Then, we can express the
constant N in two forms: first, with Eq. (39),

N2 = 2|ml |Mω�,�

��(|ml | + 1)F2[|ml | + 1, a, a;b, b;1,1] ,

or by using Eq. (40),

N2 = 2|ml |Mω�,�

�

1
∑∞

n=0

∑n

i=0
(|ml |+n)!(a)i (a)n−i

(b)i (b)n−i i!(n−i)!
.

Then N is given by

N =

√√√
√√

1√
π3

1
2nz/2+1nz ! (

Mω�,�

�
)|ml |+1(mω

�π
)1/2

∑∞
n=0

∑n

i=0
(|ml |+n)!(a)i (a)n−i

(b)i (b)n−i i!(n−i)!
.

Now let us return to the complete spinor � , given by Eq. (18),

� = 1

i�k
βμπμ�.

With the expressions (14) and (17), this spinor can be written as

� = 1

i�k

(μ
P + P μ

)
πμ�,

as well as

� = 1

i�k

[
iP (p̂i − Ci) + P i(p̂i + Ci) + (

4P + P 4
)
p4 + (

5P + P 5
)
p5

]
P�,

where the operator p̂i and Ci are written in terms of cylindrical coordinates. This expression
shows us that all we need is to obtain the wave function P� , so that all the other components
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of � are obtained by the derivatives with respect to the coordinates. Also, if we use the 6×6
representation presented at the beginning of Sect. 2.1, we can express the spinor as follows,

� = 1

i�k

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

p̂1 − C1

p̂2 − C2

p3 − C3

p4

p5

1

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

P�.

Next, if we apply

p̂1 − C1 = −i�∂x + �y

2�
− imω

(
x + i�

�∂y

2�

)

= −i�

(
cosφ∂ρ − sinφ

ρ
∂φ

)
+ �

2�
ρ sinφ

− imω

(
ρ cosφ + i�

�

2�

(
sinφ∂ρ + cosφ

ρ
∂φ

))
,

to P� = ψ , we find

(p̂1 − C1)ψ = −i�

(
cosφ + i

mω�

2�
sinφ

)
∂ρψ

+
(

−�|ml |
ρ

sinφ + i�|ml |
ρ

cosφ + �

2�
ρ sinφ − imωρ cosφ

)
ψ.

If we perform the same operation for p̂2 − C2, we find

p̂2 − C2 = −i�∂y − �x

2�
− imω

(
y − i�

�∂x

2�

)

= −i�

(
sinφ∂ρ + cosφ

ρ
∂φ

)
− �

2�
ρ cosφ

− imω

(
ρ sinφ − i�

�

2�

(
cosφ∂ρ − sinφ

ρ
∂φ

))
,

which, when applied to P� = ψ , gives

(p̂2 − C2)ψ = −i�

(
sinφ − i

mω�

2�
cosφ

)
∂ρψ

+
(

�|ml |
ρ

cosφ + i�|ml |
ρ

sinφ + �

2�
ρ sinφ − imωρ cosφ

)
ψ.

Note that

∂ρψ = N ρ |ml |−1ei|ml |φ
(

|ml | + Mω�,�

�
ρ2

)
e− mω

2�
z2− Mω�,�

2�
ρ2

× 1F1

(
−nρ; |ml| + 1; Mω�,�

�
ρ2

)
Hnz

(√
mω

�
z

)

+ 2
Mω�,�

�
ρN ρ |ml |ei|ml |φe− mω

2�
z2− Mω�,�

2�
ρ2

× 1F1

(
1 − nρ; |ml| + 2; Mω�,�

�
ρ2

)
Hnz

(√
mω

�
z

)
.
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Therefore, we can write

(p̂1 − C1)ψ = G11 1F1

(
−nρ; |ml | + 1; Mω�,�

�
ρ2

)

+G12 1F1

(
1 − nρ; |ml| + 2; Mω�,�

�
ρ2

)
Hnz

(√
mω

�
z

)
,

where

G11 = N

[
−i�

(
cosφ + i

mω�

2�
sinφ

)(
|ml | + Mω�,�

�
ρ2

)
ρ−1

+
(

−�|ml |
ρ

sinφ + i�|ml |
ρ

cosφ + �

2�
ρ sinφ − imωρ cosφ

)]
�Hnz

(√
mω

�
z

)
,

and

G12 = −2iNMω�,�

(
cosφ + i

mω�

2�
sinφ

)
ρ�Hnz

(√
mω

�
z

)
.

The symbol � is a short-hand for

� = ρ |ml |ei|ml |φe− mω
2�

z2− Mω�,�
2�

ρ2
.

For p̂2 − C2, we obtain

(p̂2 − C2)ψ = G21 1F1

(
−nρ; |ml | + 1; Mω�,�

�
ρ2

)

+G22 1F1

(
1 − nρ; |ml| + 2; Mω�,�

�
ρ2

)
,

where

G21 = N

[
−i�

(
sinφ − i

mω�

2�
cosφ

)(
|ml | + Mω�,�

�
ρ2

)
ρ−1

+
(

�|ml |
ρ

cosφ + i�|ml |
ρ

sinφ + �

2�
ρ sinφ − imωρ cosφ

)]
�Hnz

(√
mω

�
z

)
,

and

G22 = −2iNMω�,�

(
sinφ − i

mω�

2�
cosφ

)
�Hnz

(√
mω

�
z

)
.

If we proceed similarly for p̂3 − C3 = p3 − imωz, we find

(p3 − imωz)ψ = (−i�∂z − imωz)ψ = −i�∂zψ

= G3 1F1

(
−nρ; |ml | + 1; Mω�,�

�
ρ2

)
,

where

G3 = −2i

√
mω

�
N�Hnz−1

(√
mω

�
z

)
.

Therefore, we can rewrite the spinor � as
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i�k� =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

G11

G21

G3

E

m

1

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

1F1

(
−nρ; |ml| + 1; Mω�,�

�
ρ2

)

+

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

G12

G22

0
0
0
0

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

1F1

(
1 − nρ; |ml | + 2; Mω�,�

�
ρ2

)
.

4 Concluding Remarks

We have obtained and solved the Galilean DKP wave equation for spin-zero fields in the
oscillator potential for a non-commutative (both for coordinates and momenta) space. We
obtained the equation by a Lorentz-like approach called ‘Galilean covariance’ where we
begin with manifestly covariant equations in a (4 + 1)-dimensional manifold using light-
cone coordinates, and then reduce to the Newtonian 4-dimensional space-time. We have
determined the exact wave functions and the corresponding energy levels.

In order to discuss the effects of non-commutativity, notice that Eq. (30) leads to

ω�=0,�=0 = ω,

ω�=0,� = 1

2m�

√
4m2�2ω2 + �2,

ω�,�=0 = ω

2�

√
4�2 + m2ω2�2.

If we take � = 0 and � = 0 in Eq. (37), then the energy eigenvalues are given by

E = (2nρ + |ml | + nz)�ω, (� = 0,� = 0).

If we take only � = 0 in Eq. (37), this renders the momenta commuting among themselves
while keeping the coordinates mutually non-commuting, and the energy eigenvalues become

E = (nz − 1)�ω + (2nρ + |ml | + 1)�ω�=0,� − ml�

2m
, (� = 0).

Instead, if we take only � = 0 in Eq. (37), so that we have commuting coordinates and
non-commuting momenta in Eq. (5), then the energy is given by

E = (nz − 1)�ω + (2nρ + |ml | + 1)�ω�,�=0 − 1

2
mlmω2�, (� = 0).

We are currently extending the present work in two directions: to the non-commutative
Galilean covariant Dirac oscillator (or ‘Lévy-Leblond oscillator’) and the non-commutative
spin-one Galilean DKP oscillator. The commutative version of the Galilean Dirac-like equa-
tion was examined by Lévy-Leblond in Ref. [54]; its Galilean covariant version is discussed
in Ref. [55, 56]. The relativistic Dirac oscillator in a non-commutative phase space has been
investigated in Ref. [57]. Finally, it should be interesting to consider the analogy between
the oscillator in a non-commutative space and a constant magnetic field in a commutative
space, especially since there exist two Galilean limits (so-called ‘electric’ and ‘magnetic’)
of electromagnetism (see [58] and Santos et al. [55, 56]).
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