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Abstract: We construct open sets of Ck (k ≥ 2) vector fields with singularities that
have robust exponential decay of correlations with respect to the unique physical mea-
sure. In particular we prove that the geometric Lorenz attractor has exponential decay
of correlations with respect to the unique physical measure.
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1. Introduction

The ongoing interest in the mixing properties of deterministic dynamical systems was
strongly inspired by the relevance of the subject in statistical mechanics. Moreover, the
mixing properties of any given equilibrium state usually require deep knowledge of the
system’s chaotic features given for instance by its Lyapunov exponents.

Thermodynamical formalism was brought into the realm of dynamical systems by
works of Sinai, Ruelle and Bowen [12,43,45]. In fact, since uniformly hyperbolic maps
are semi-conjugated to subshifts of finite type (via Markov partitions), any transitive uni-
formly hyperbolic map has a unique equilibrium state μφ for every Hölder continuous
potential φ with good mixing conditions: the correlation function

Cn(ϕ, ψ) =
∣
∣
∣

∫

ϕ · (ψ ◦ f n) dμφ −
∫

ϕ dμφ

∫

ψ dμφ
∣
∣
∣ (1)

decays exponentially fast among Hölder continuous observables. Roughly, the robust
chaotic features of uniformly hyperbolic dynamics are responsible by the very strong
mixing properties. An extension of the thermodynamical formalism for uniformly hyper-
bolic (Axiom A) flows was also possible by the construction of finite Markov partitions
obtained by Bowen and Ruelle in [13].

Even though uniformly hyperbolic (Axiom A) flows are semi-conjugated to suspen-
sion semiflows over subshifts of finite type, the mixing properties for time-continuous
dynamical systems turned out to be much more subtle than the discrete time setting.
On the one hand, hyperbolic suspension flows by a constant roof function are never
topologically mixing despite the exponential mixing rate of the base transformation.
On the other hand, the general feeling that topologically mixing uniformly hyperbolic
flows should enjoy exponential decay of correlations was promptly put down by the
counterexample of Ruelle [44], showing that there are topologically mixing Axiom A
flows without exponential decay of correlations. In fact, examples of hyperbolic flows
with an arbitrary slow rate of decay of correlations were given by Pollicott [36]. Hence,
despite several recent contributions, a complete understanding of the mixing properties
for uniformly hyperbolic flows is still far from complete.

For a more detailed description of the state of the art let us mention that the proof of
exponential decay of correlations for geodesic flows on manifolds of constant negative
curvature was first obtained in two dimensions by Collet-Epstein-Gallavotti [16] and
then in three dimensions by Pollicott [37] through group theoretical arguments.

Much more recently, Chernov [15] and Dolgopyat [18] studied Anosov flows and
Liverani [28] extended such results for contact flows. Still in the uniformly hyperbolic
context, Pollicott [38] extended the results in [18] to study the decay rate of equilibrium
states associated to Hölder continuous potentials and Anosov flows. We should also note
that Dolgopyat [19] proved that typical Axiom A flows (in a probabilistic sense) have
superpolynomial decay of correlations. In a more recent contribution, Field, Melbourne
and Törok [21] proved that in fact a C2-open and C∞-dense set of Axiom A flows have
superpolynomial decay of correlations. Hence, Axiom A flows have robust fast mixing.
This raises the following natural question.
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Question 1. Is there some hyperbolic (non-singular) flow with robust exponential decay
of correlations?

Rather surprisingly, there are some recent evidences that the presence of singularities
appears as one important mechanism to obtain topologically and measure theoretical
mixing. Roughly, orbits that approach singularities accelerate differently causing dis-
placements of different orders in the flow direction.

One of the most emblematic examples of flows where singular and regular behavior
coexist are Lorenz attractors. In the mid-seventies Afraimovich, Bykov and Shil’nikov
[1] and Guckenheimer and Williams [24] introduced independently the geometric Lor-
enz attractors to model the original Lorenz attractors. The rigorous proof for the existence
of the non-uniform hyperbolic Lorenz attractor for the parameter values originally sug-
gested by E. Lorenz was obtained by Tucker [46] in the end of the 1990’s. In addition,
there was a general feeling that the Lorenz attractor should have a unique physical
measure with exponential decay of correlations.

In more recent works there were several advances in that direction. First Luzzatto,
Melbourne, Paccaut [30] proved that the geometric models for the Lorenz attractor are
topologically mixing with respect to the unique physical measure. Then Araújo, Pacíf-
ico, Pujals, Viana [8] guarantee that every singular hyperbolic attractor (a class which
contains the Lorenz and geometrical Lorenz attractors) carries a unique physical mea-
sure whose basin of attraction covers Lebesgue almost every point. Recently, in [22,5],
exponential decay of correlation for the Poincaré return map to suitably chosen cross-
sections of geometric Lorenz flows and for the general case of singular-hyperbolic flows
has been obtained. However the question about the exponential decay rate of the flow
on this class of attractors remained open.

More recent developments include a criterium given by Baladi, Vallée [10] and Ávila,
Goüezel, Yoccoz [9] to deduce exponential decay of correlations for suspension flows
over C2 Markov maps. The fact that here Markov partition may admit countably many
elements implies that those classes of systems contain many important examples in non-
uniformly hyperbolic dynamics as the suspension semiflows of the Maneville-Pommeau
map, the Hénon maps, and other classes of flows as singular-hyperbolic attractors (e.g.
the Lorenz or geometrical Lorenz attractor). A similar approach was pursued in [14] by
Bufetov to obtain stretched exponential decay of correlations for the Teichmüller flow
on the space of Abelian differentials.

Our purpose here is to contribute to the ergodic theory of singular flows and to con-
struct a nonempty open subset of singular flows with exponential decay of correlations.
Let us mention that Question 1 is not answered in the uniformly hyperbolic context. Such
class of flows, including the geometric Lorenz attractor, combine hyperbolic behavior
with the existence of singularities.

Our strategy is to construct Lorenz attractors whose associated one-dimensional
piecewise expanding transformation is twice differentiable and, hence, admits a count-
able Markov partition as in the above setting. Then, we prove that these flows are con-
jugated to suspension flows over a base with an hyperbolic structure and such that
the height function satisfies a uniform non-integrability condition as introduced by
Dolgopyat. Then we use a criteria from [9,10] to deduce that such flows have expo-
nential decay of correlations. Moreover, using [27,32] we are also able to prove that
these flows satisfy the central limit theorem.

Two final comments are in order. First let us mention that the Lorenz attractors
associated to the original parameters obtained by E. Lorenz in [29] do not verify our
assumption, and so the question of exponential decay of correlations for the original
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Lorenz attractor and small perturbations of it remains open. The second comment is that
we expect that a similar approach may be applied to other equilibrium states.

Question 2. Do the equilibrium states constructed by Pacífico and Todd [35] for the
contracting Lorenz attractor have exponential decay of correlations?

We finish with the following conjectures on the decay of correlations for general
robustly transitive flows.

Conjecture 1. Non-hyperbolic robustly mixing flows in three-dimensional manifolds
have robust exponential decay of correlations.

It is known that robustly transitive flows in dimension three are singular-hyperbolic,
that is, are partially hyperbolic with a one-dimensional contracting direction and a two-
dimensional volume expanding direction; see e.g. [34]. Moreover, if there are no sin-
gularities then the flow is uniformly hyperbolic and the decay of correlations of the
SRB measure can be arbitrarily slow. See e.g. [7] for a rather complete description of
the state of the art. However, it is not yet known whether all singular-hyperbolic flows
are topologically mixing. Therefore the previous conjecture states that singularities are
a mechanism to generate robust exponential decay of correlations in dimension three.
Indeed we believe that it is possible to remove the regularity assumption.

Conjecture 2. C1+α Lorenz attractors have robust exponential decay of correlations.

The reduction to a suspension semiflow over a non-uniformly expanding base trans-
formation can also be performed in a higher dimensional class of examples; see [11].
These are just a particular example of a sectional-hyperbolic attractor; see [33]. The
notion of sectional-hyperbolicity generalizes the notion of hyperbolicity for singular
flows in any dimension and contains, in particular, the class of singular hyperbolic
attractors in 3-manifolds.

Conjecture 3. Smooth singular flows in higher dimensions which are sectionally-hyper-
bolic exhibit robust exponential decay of correlations.

We believe our main result and its proof can be adapted to establish limit theorems
for the distribution of random variables generated by the geometric Lorenz system. On
the one hand, in a recent work, Holland and Melbourne [27] used that the geometric
Lorenz attractor is a suspension flow to prove that all Lorenz attractors satisfy the cen-
tral limit theorem and invariance principles, where no condition on the speed of decay
of correlations was necessary. On the other hand, limit theorems for diffeomorphisms
given as time-t maps of flows are harder to obtain. Notice that even for uniformly hyper-
bolic flows the time-one maps are partially hyperbolic diffeomorphisms. A very general
result was obtained by Melbourne and Törok [31] under some assumptions on the decay
of correlations for the flow. We expect these ideas can be adapted to prove that the
strong mixing properties for the C2-open subset of geometric Lorenz attractors imply
(robust) limit theorems for the corresponding time-one maps. More precisely we pose
the following:

Conjecture 4. Let U ⊂ Xs(M) be the open family of vector fields for which we prove
exponential decay of correlations, and denote by (Xt )t the flow generated by X ∈ U . For
all but countably many values of t ∈ R the time-t map Xt the following Central Limit
Theorem holds: for any ϕ : �r → R in L∞(�r ) there exists σ = σ(ϕ) > 0 such that
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1

σ
√

n

[ n−1
∑

j=0

ϕ(Xtn)−
∫

ϕ dμ

]

D−→ N (0, 1).

Exploring the same ideas from [31], we believe an Almost Sure Invariance Principle
can also be obtained for the physical measure of this open set of geometric Lorenz flows
with respect to the time-1 map.

The paper is organized as follows. In Sect. 2 we introduce some preliminary def-
initions and give the precise statements of our main results. In Sect. 3 we construct
C2-open sets of Lorenz attractors with smooth Lorenz one dimensional transformation.
Finally, we prove that these attractors are conjugated to suspension semiflows with a
good hyperbolic structure and, hence, have exponential decay of correlations.

2. Setting and Statement of Results

Throughout, let M be a compact Riemannian manifold, let d denote the induced Rie-
mannian distance in M, ‖ · ‖ the Riemannian norm and Leb the induced normalized
Riemannian volume form.

We will introduce the setting of induced maps and some concepts from the thermo-
dynamical formalism of suspension semiflows. Our main results will be stated by the
end of the section. In what follows we write ‖ · ‖0 for the sup-norm in various functional
spaces.

2.1. Uniformly expanding Markov map. We assume that ∪	∈L�
(	) is an at most count-

able partition (Lebesgue modulo zero) of an open domain � ⊂ M by open subsets and
let F : ∪	∈L�

(	) → � be a Cr uniformly expanding Markov map, r ≥ 2, that is

(1) F : �	 → � is a Cr diffeomorphism for every 	;
(2) there are C > 0 and 0 < λ < 1 such that

(a) for every inverse branch hn of Fn , with n ≥ 1, d(hn(x), hn(y)) ≤
Cλnd(x, y);

(b) if J F is the Jacobian of F with respect to the Lebesgue measure, then log J F
is a C1 function and sup |D((log J F) ◦ h)| ≤ C for every inverse branch h
of F .

We denote by Hn the family of inverse branches of Fn . In many applications we have
that� is a finite dimensional topological disk. It is well known that F admits an invariant
probability measure ν which is absolutely continuous with respect to Lebesgue.

2.2. Hyperbolic skew-product structure. We recall some notions previously used by
[10] and [9]. We say that the roof function r : � → R

+ has exponential tail if there
exists σ0 > 0 such that

∫

eσ0r dν < ∞.

Definition 2.1. We say that the roof function r is good if

(1) r is bounded from below by some positive constant r0;
(2) there exists C > 0 such that suph∈H1

‖D(r ◦ h)‖0 ≤ C < ∞;
(3) it is not possible to write r = v + u ◦ F − u on�, where v : �→ R is constant on

each �	 and u : �→ R is a C1-function.
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Remark 2.2. The last condition in Definition 2.1 above corresponds to the uniform non-
integrability, or aperiodicity, condition defined by Baladi-Vallée in [10]. There are a
number of equivalent conditions to this, as proved in [9, Prop. 7.5].

Now we define the hyperbolic skew-product structure with which Lorenz-like flows
are endowed.

Definition 2.3. Let F : ⋃l �
(l) → � be a uniformly expanding Markov map, preserv-

ing an absolutely continuous probability measure ν. A hyperbolic skew-product over F
is a map F̂ from a dense open subset of an open domain �̂ of a compact Riemannian
manifold M, to �̂, satisfying the following properties:

(1) there exists a continuous map π : �̂ → � such that F ◦π = π ◦ F̂ whenever both
members of the equality are defined;

(2) there is a F̂-invariant probability measure η on �̂, giving full mass to �̂;
(3) there exists a family of probability measures {ηx }x∈� on �̂which is a disintegration

of η over ν, that is, x �→ ηx is measurable, ηx is supported on π−1(x) and, for
each measurable subset A of �̂ we have η(A) = ∫

ηx (A) dν(x). Moreover, this
disintegration is smooth: we can find a constant C > 0 such that, for any open
subset V ⊂ ⋃

�(l) and for each u ∈ C1(π−1(V )), the function ū : V → R, x �→
ū(x) := ∫

u(y) dηx (y) belongs to C1(V ) and satisfies

sup
x∈V

‖Dū(x)‖ ≤ C sup
y∈π−1(V )

‖Du(y)‖.

(4) there is κ > 1 such that, for all w1, w2 ∈ �̂ in the same leaf, i.e. π(w1) = π(w2),
we have d(F̂w1, F̂w2) ≤ κ−1d(w1, w2).

2.3. Good hyperbolic skew-product semiflow. Now we introduce suspension semiflows
over the class of dynamical systems presented above. Given a function r : ∪	∈L�

(	) →
[r0,+∞) for some r0 > 0 we define

�̂r = {(w, t) : w ∈ �̂, 0 ≤ t ≤ r(π(w))}/ ∼,
where ∼ is an equivalence relation that identifies the pairs (w, r(π(w))) and (F(w), 0).
For any 	 ∈ L , let �̂(	)r be defined accordingly using�(	)r . In this way it is natural to con-
sider the suspension semiflow (Yt )t given by Yt (w, s) = (w, s + t). In these coordinates
it coincides with the flow which consists in the displacement along the “vertical” direc-
tion. Moreover, we will say that r is the roof function of the suspension skew-product
semi-flow (Yt )t over the map F̂ .

If Yt is a semiflow over a hyperbolic skew-product with a good roof function which,
moreover, has exponential tail, then we say that Yt is a good hyperbolic skew-product
semi-flow. If η is an F̂-invariant probability measure so that

∫

rdη < ∞, then (Yt )t
preserves the probability measure η given by η = (η ⊗ Leb)/

∫

r dη.

2.4. Statement of results. Let C1(�̂r ) be the space of bounded observables g : �̂r → R

that are piecewise C1 continuous (i.e. C1 in each element �̂(	)r ) endowed with the norm
‖g‖1 := supw∈�̂ |g(w)|+supw∈�̂ ‖Dg(w)‖.The following was proved in [9, Thm. 2.7].

Theorem 2.4. Let Yt be a good hyperbolic skew-product semi-flow on a space �̂r , pre-
serving the probability measure η. There exist constants C > 0 and δ > 0 such that, for
each pair of functions ϕ,ψ ∈ C1(�̂r ) and t ≥ 0,
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∣
∣
∣
∣

∫

ϕ · ψ ◦ Yt dη −
(∫

ϕ dη

)(∫

ψ dη

)∣
∣
∣
∣
≤ C‖ϕ‖1‖ψ‖1e−δt .

The main arguments in this paper prove the following.

Theorem A. Given any compact 3-manifold M, for each s ≥ 2 we can find an open
subset U of Xs(M) such that each X ∈ U exhibits a geometric Lorenz flow which is
Cs-smoothly semi-conjugated to a good hyperbolic skew-product semi-flow.

The meaning of the smooth semi-conjugacy above is: if U is an open neighborhood
such that Xt (U ) ⊂ U for all t > 0 and the attractor is given by�X := ∩t≥0 Xt (U ), there
exists a semi-flow Yt on �̂r as stated above, together with a Cs local diffeomorphism
φ = φX : �̂r → M , whose image contains an open neighborhood of the geometric
Lorenz attractor �X , for X ∈ U , satisfying φX ◦ Yt = Xt ◦ φX at all points where both
sides of the equality are defined. Moreover φ∗η̄ = μ, where μ is the physical measure
supported on �X , see e.g. [7,8].

Corollary A. The geometric Lorenz attractors given in Theorem A have exponential
decay of correlations for C1 observables.

Indeed, if we take ϕ,ψ a pair of C1 functions on �X , for some X ∈ U , then these
maps are restrictions of C1 maps on an open neighborhood W of �X in M , which we
denote by the same letters. We can assume that W contains the image φ(�̂r ) of φ,
for otherwise we can extend ϕ,ψ to this neighborhood using bump functions without
changing their values over �X . Hence ϕ̄ := ϕ ◦ φ, ψ̄ := ψ ◦ φ are C1 functions on �̂r
and

∫

ϕ̄ · ψ̄ ◦ Yt dη =
∫

(ϕ ◦ φ) · (ψ ◦ φ ◦ Yt ) dη =
∫

(ϕ ◦ φ) · (ψ ◦ Xt ◦ φ)d η

=
∫

ϕ · (ψ ◦ Xt ) d(φ∗(η)) =
∫

ϕ · (ψ ◦ Xt ) dμ,

so the exponential decay of correlations follows from Theorem 2.4.

2.5. Strategy of the proof. The proof of the exponential decay of correlations for sin-
gular flows stated in Corollary A for the class of Lorenz attractors associated to vector
fields in the open sets of Theorem A consists of three main steps.

First we prove that every three-dimensional manifold admits Lorenz-like attractors
whose one-dimensional stable foliation is C2. Moreover, such a contruction is robust in
the sense that it holds for every C2 close vector field. In fact we get that the restriction of
the flows to the Lorenz-like attractors are smoothly semi-conjugated to suspension over
a C2 non-uniformly hyperbolic Poincaré map, that is, a partially hyperbolic transforma-
tion with one-dimensional stable direction and one-dimensional central direction with
positive Lyapunov exponent with respect to an absolutely continuous invariant mea-
sure. The crucial regularity of the stable foliation is a consequence of a strong partially
hyperbolicity of the Poincaré transformation requires a condition on the eigenvalues of
the singularity, which is a C1-open condition in a neighborhood of the original vector
field.

The second ingredient is to prove that such flows are semi-conjugated to suspension
flows whose roof function is constant along stable leaves. Such a property is obtained
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first for the geometric Lorenz attractor by construction. Although all sufficiently close
vector fields still preserve the global cross-section for the original flow, it is most likely
that the Poincaré return time to the original cross-section of those flows is not constant
along the stable leaves. So, for every sufficiently close flow we consider adapted sections,
that is, sections that are foliated by the one-dimensional strong-stable leaves (see e.g.
[8]). Hence, the invariance of the strong stable foliation guarantees that the first return
time function is constant on stable leaves.

Finally we show that these flows satisfy the assumptions of [9,10] on a criterium
for exponential decay of correlations. Namely, the flow is conjugated to a suspension
flow over a hyperbolic skew-product that admits a unique SRB measure with a smooth
disintegration along the strong-stable foliation, and whose induced roof function satis-
fies a non-integrability condition and has exponential tail. For the later we revisit the
construction of the SRB measure for Lorenz attractors and obtain a disintegration of the
measure as fixed points associated to suitable transfer operators.

3. The Geometric Lorenz Flow with Smooth Lorenz Map

Here we describe the construction of geometric Lorenz flows with Ck smooth strong-
stable foliation, for each integer k ≥ 2, following [7, Chap. 3, Sect. 3.3] and taking
advantage of the idea of k-domination from [26]. The proof of the next proposition will
be given through the rest of this section.

Proposition 3.1. Given k ∈ Z
+ there exists a Ck vector field X on R

3 and a Ck neigh-
borhood U of X in Xk(R3) such that

• there exists a trapping region U containing a surface cross-section S for the flow of
every Y ∈ U;

• the maximal positively invariant subset �Y inside U for the flow of Y is a transitive
attractor containing a hyperbolic singularity σ ;

• the first return map PY from S∗ ⊂ S to S admits a Ck smooth uniformly contracting
foliation FY , where S∗ = S\W s

loc(σ );
• the induced one-dimensional quotient map fY = PY /FY is a piecewise Ck smooth

expanding map with two branches defined on intervals I ±, where |D fY | > √
2 has

a common boundary point 0, in a neighborhood of which the derivative D fY grows
as the logarithm of the distance to 0;

• the map fY is locally eventually onto: every interval J in the domain of fY admits a
subinterval J0 and some iterate n > 2 such that f n(J0) contains either I − or I +.

A similar idea in the flow setting was used in [42] to obtain a C2 strong-stable foliation
on a singular attractor.

3.1. Near the singularity. In a neighborhood of the origin we consider the linear system
(ẋ, ẏ, ż) = (λ1x, λ2 y, λ3z), thus

Xt (x0, y0, z0) = (eλ1t x0, e
λ2t y0, e

λ3t z0), (2)

where λ2 < λ3 < 0 < −λ3 < λ1 and (x0, y0, z0) ∈ R
3 is an arbitrary initial point near

the origin.
To ensure that arbitrarily small C2 perturbation of this flow are still smoothly lineariz-

able near the continuation of the hyperbolic singularity σ , we use a smooth linearization
result which can be found in Hartman [25, Thm. 12.1, p. 257].
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Theorem 3.2. Let n ∈ Z
+ be given. Then there exists an integer N = N (n) ≥ 2 such

that: if � is a real non-singular d × d matrix with eigenvalues γ1, . . . , γd satisfying

d
∑

i=1

miγi �= γk for all k = 1, . . . , d and 2 ≤
d
∑

j=1

m j ≤ N (3)

and if ξ̇ = �ξ + �(ξ) and ζ̇ = �ζ , where ξ, ζ ∈ R
d and � is of class C N for small

‖ξ‖ with �(0) = 0, ∂ξ�(0) = 0; then there exists a Cn diffeomorphism R from a
neighborhood of ξ = 0 to a neighborhood of ζ = 0 such that Rξt R−1 = ζt for all t ∈ R

and initial conditions for which the flows ζt and ξt are defined in the corresponding
neighborhood of the origin.

Hence it is enough for us to choose the eigenvalues (λ1, λ2, λ3) ∈ R
3 satisfying

a finite set of non-resonance relations (3) for a certain N = N (2). For this condition
defines an open set in R

3 and so all small C1 perturbations Y of the vector field X will
have a singularity whose eigenvalues (λ1(Y ), λ2(Y ), λ3(Y )) are still in the C2 linearizing
region.

We consider the set S = {(x, y, 1) : |x | ≤ 1/2, |y| ≤ 1/2} and

S− = {

(x, y, 1) ∈ S : x < 0
}

, S+ = {

(x, y, 1) ∈ S : x > 0
}

and

S∗ = S− ∪ S+ = S\�, where � = {

(x, y, 1) ∈ S : x = 0
}

.

We assume without loss of generality that S is a transverse section to the flow so that every
trajectory eventually crosses S in the direction of the negative z axis as in Fig. 1. Note
that � is the intersection of S with the local stable manifold W s

loc(σ ) of the equilibrium
σ = (0, 0, 0): S∗ = S\W s

loc(σ ).
Hence we get

X τ (x0, y0, 1) = (

sgn(x0), y0eλ2τ(x0), eλ3τ(x0)
) = (

sgn(x0), y0|x0|−
λ2
λ1 , |x0|−

λ3
λ1
)

,

where sgn(x) = x/|x | for x �= 0, and 0 < α = −λ3
λ1
< 1 < β = −λ2

λ1
by the choice of

the eigenvalues.
Consider also � = {(x, y, z) : |x | = 1} = �− ∪ �+ with �± = {(x, y, z) : x =

±1}. For each (x0, y0, 1) ∈ S∗ the time τ̃ such that X τ̃ (x0, y0, 1) ∈ � is given by
τ̃ (x0) = − 1

λ1
log |x0|, which depends on x0 ∈ S∗ only and is integrable with respect to

Lebesgue measure on any bounded interval J of the real line: 0 <
∫

J τ̃ (x0) dλ(x0) < ∞;
see [7,35]. Moreover we also have that τ̃ is bounded from below by τ0 := log 2/λ1 > 0.
Let L : S∗ → � be given by

L(x, y, 1) = (

sgn(x), y|x |β, |x |α). (4)

Clearly each line segment S∗ ∩ {x = x0} is taken to another line segment � ∩ {z = z0}
as sketched in Fig. 1.

3.2. The rotating effect. To imitate the random turns of a regular orbit around the origin
and obtain a butterfly shape for our flow, as in the original Lorenz flow, the sets �±
should return to the cross-section S through a flow described by a suitable composition
of a rotation R±, an expansion E±θ and a translation T±.
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Fig. 1. Behavior near the origin

Fig. 2. R takes �± to S

We assume that the “triangles” L(S±) are compressed in the y-direction and stretched
on the other transverse direction and that this return map takes line segments�∩{z = z0}
into line segments S ∩ {x = x1}, as sketched in Fig. 2.

The choice of R±, T±, E±θ can be seen in [7, Chap. 3, Sect. 3] of [22].
These transformations R±, E±θ , T± take line segments �± ∩ {z = z0} into line

segments S ∩ {x = x1} as shown in Fig. 2, and so does the composition T± ◦ E±θ ◦ R±.
This composition of linear maps describes a vector field in a region outside [−1, 1]3,

in the sense that one can use the above linear maps to define a vector field X such that the
first return map to S of the associated flow realizes T± ◦ E±θ ◦ R± as a map �± → S.

We note that the flow on the attractor we are constructing will pass through the region
between �± and S in a relatively small time with respect to the linearized region. The
linearized regions will then dominate all estimates of expansion/contraction.

More precisely, the time a point (x0, y0, 1) ∈ S∗ takes to return to S is given by
τX (x0, y0) = τ(x0) = τ̃ (x0) + s0 = −(1/λ1) log |x0| + s0, where s0 > 0 is the constant
time “lateral triangles”�± take to flow until S. Hence the return time to S is clearly dom-
inated by the behavior of τ̃ and the behavior of the derivative of the flow is dominated
by the behavior of the flow in the linearized region.

3.3. The first return map to S. The above combined effects imply that the foliation of
S given by the lines S ∩ {x = x0} is invariant under the Poincaré first return map P :
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S∗ → S, meaning that, for any given leaf γ of this foliation, its image P(γ ) is contained
in a leaf of the same foliation. Hence P must have the form P(x, y) = (

f (x), g(x, y)
)

for some functions f : I\{0} → I and g : (I\{0})× I → I , where I = [−1/2, 1/2].
Taking into account the definition of L from the linearized region we see that

f (x) =
{

f1(xα), if x < 0
f0(xα), if x > 0 ; with fi = (−1)i a · x + bi i = 0, 1;

for constants a > 0 and b0, b1 ∈ (−1/2, 1/2), and

g(x, y) =
{

g1(xα, y · xβ), if x < 0
g0(xα, y · xβ), if x > 0

,

where g1|I − × I → I and g0|I + × I → I are suitable affine maps, with I − =
[−1/2, 0), I + = (0, 1/2].

3.4. Properties of the one-dimensional map f . Now we specify the properties of the
one-dimensional map f that follow from the previous construction. On the one hand

(f1) to imitate the symmetry of the Lorenz equations we take f (−x) = − f (x). This is
not essential in what follows and is not preserved under perturbation of the flow;

(f2) f is discontinuous at x = 0 with lateral limits f (0−) = + 1
2 and f (0+) = − 1

2 .

Hence

f (0+) = b1 = −1

2
, f (0−) = b0 = 1

2
and f

(
1

2

)

= a

2α
+ b1 ≤ 1

2
,

thus 0 < a ≤ 2α . Since D f (x) = aα|x |α−1, its minimum is DF(1/2) = aα21−α and
to get D f > 1 we must have aα21−α > 1.

(f3) The map f is differentiable on I\{0} and D f (x) >
√

2;

to get this all we need is to choose

2α−1/2

α
< a < 2α so that 21/2α > 1 or α > 1/

√
2. (5)

This imposes a restriction on α = −λ3/λ1, thus the eigenvalue λ3 cannot be too small
with respect to the eigenvalue λ1 at the singularity.

(f4) the lateral limits of D f at x = 0 are D f (0−) = +∞ and D f (0+) = −∞.

On the other hand g : S∗ → I is defined in such a way that it contracts the second
coordinate: g′

y(w) ≤ μ < 1 for all w ∈ S∗, and the rate of contraction of g on the
second coordinate should be much higher than the expansion rate of f . In addition the
expansion rate is big enough to obtain a strong mixing property for f .

Remark 3.3. The expression of D f ensures that the map f satisfies

| log D f (x)− log D f (y)| = (1 − α) log
∣
∣
∣

y

x

∣
∣
∣=(1−α) log

∣
∣
∣
∣

y − x

y
+ 1

∣
∣
∣
∣
≤ 1 − α

|x | |y − x |;

and also that D f (x) = aα|x |α−1 which shows that f behaves like a power of the distance
to the singular set {0}.
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Fig. 3. On the left: projection on I through the stable leaves and a sketch of the image of one leaf under the
return map. On the right: the Lorenz map f

3.5. Properties of the map g. We note that by its definition the map g is piecewise C2

and we can obtain the following bounds on its partial derivatives:

(1) For all (x, y) ∈ S∗ with x �= 0, we have |∂y g(x, y)| = |x |β . As β > 1 and
|x | ≤ 1/2 there is 0 < λ < 1 such that

|∂y g| < λ. (6)

(2) For (x, y) ∈ S∗ with x �= 0, we have ∂x g(x, y) = βxβ−α . Since β > α and
|x | ≤ 1/2 we get |∂x g| < ∞.

We note that from the first item above we have, first, a very strong domination of the
contraction along the y-direction over the expansion along the x-direction, that is

|∂y g(x, y)|
|D f (x)| ≈ |x |β−α+1 ≈ |x |β

|D f (x)| with β − α + 1 > 1. (7)

Secondly, from this there follows the uniform contraction of the foliation FX given by
the lines S ∩ {x = constant}, that is: there exists a constant C > 0 such that, for any
given leaf γ of the foliation and for y1, y2 ∈ γ , then

dist
(

Pn(y1), Pn(y2)
) ≤ Cλn dist(y1, y2) when n → ∞.

Thus the study of the maximal invariant set � inside the trapping region

U := {Xt (x, y, 1) : (x, y, 1) ∈ S, 0 ≤ t ≤ τX (x, y)} ∪ {(0, 0, 0)} (8)

for this 3-flow can be reduced to the study of a bi-dimensional map, where τX is the first
return time of the orbit of (x, y, 1) ∈ S under Xt to S. Moreover, the dynamics of this
map can be further reduced to a one-dimensional map, because the invariant contracting
foliation FX enables us to identify two points on the same leaf, since their orbits remain
forever on the same leaf and the distance of their images tends to zero under iteration.
See Fig. 3 for a sketch of this identification.

The quotient map f : S∗/FX → S/FX obtained through the identification π : S →
S/FX will be called the (one-dimensional) Lorenz map. It satisfies f ◦ π = π ◦ P
by construction and we note that S∗/FX is naturally identified with I\{0} through a
diffeomorphism, so that we obtain in fact the first component of the Poincaré return map
P to S. Figure 3 shows the graph of this one-dimensional transformation.
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3.6. Persistence and smoothness of the contracting foliation. The following persistence
property is a consequence of the domination of the contraction along the y-direction
over the expansion along the x-direction (see e.g. [7]).

Theorem 3.4. Let X be the vector field obtained in the construction of the geometric
Lorenz model and FX the invariant contracting foliation of the cross-section S. Then
any vector field Y which is sufficiently C1-close to X admits an invariant contracting
continuous foliation FY on the cross-section S with C1 leaves.

It can be shown that the holonomies along the leaves are in fact Hölder-C1 (see e.g
[7]). Moreover, under a strong dissipative condition on the eigenvalues of the equilib-
rium σ , that is, β > α + k for some k ∈ Z

+ (recall Eq. (4)) it can be proved, following
[26] and [42], that FY is then a Ck smooth foliation and so the holonomies along its
leaves are Ck maps. This is just an application of k-normal hyperbolicity to flows. We
deduce the following.

Theorem 3.5. For strongly dissipative Lorenz attractors, with β > α+k, the one-dimen-
sional quotient map f is Ck smooth away from the singularity. Moreover, this smoothness
property is also persistent for all nearby Ck flows, since the condition β > α + k is open
in the C1 topology.

In what follows we fix k ≥ 2, which guarantees that the foliation FY is C2 for all Y
in a C2 neighborhood U of X . Moreover the one-dimensional piecewise expanding map
fY is given as the quotient map of the corresponding Poincaré map PY over the leaves
of the foliation FY associated to Y ∈ U .

3.7. Robust transitivity properties. Here we show that the Lorenz flows constructed are
suspension flows with a roof function that is constant along the stable foliation on the
cross-section S. First we discuss the case of the geometric Lorenz flow Xt constructed
in the previous section and then complete the proof of Proposition 3.1.

First, we observe that S is, for the geometric Lorenz flow Xt constructed in the
previous sections, a collection of strong-stable leafs of the flow. Indeed, we can write

S =
⋃

−1/2≤x≤1/2

W ss
X,1/2(x, 0, 1)

as a family of local strong-stable leaves for the vector field X with radius 1/2 through
the points in I × {0} × {1}, the orthogonal segment to � in S; see the left hand side
of Fig. 3. Since the strong-stable foliation FY for C2 close vector fields Y is also a C2

foliation, then we can repeat the construction with respect to every close vector field Y
and obtain a smooth surface

SY :=
⋃

−1/2≤x≤1/2

W ss
Y,1/2+ε(x, 0, 1)

which is a cross-section for the flow Y t , and contains the continuation of the points P1, P0
as the first visits of the branches of the unstable manifold W u

Y (σY ) of the singularity to
the cross-section, for small enough ε > 0; see Fig. 3.

Moreover we can, by the C2 change of coordinates which linearizes the flow around
σY , assume first that the new singularity σY is still at the origin, and that on SY we have
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coordinates (x, y) such that x = const represents a curve on SY which is uniformly
contracted by the Poincaré return map associated to Y ; in fact, x = const is precisely
the strong-stable manifold through (x, 0, 1). In particular, this ensures that the Poincaré
return time of points on SY to SY in the same leaf of FY is constant, for all Y sufficiently
C2 close to X . This extends a very useful property of X to all nearby vector fields.

In what follows |x | still represents the distance of the curve x = const to �Y :=
SY ∩ W s

loc(σY ), the intersection of the local stable manifold of the singularity with SY .
The Poincaré return time of a point (x0, y0) in S∗

Y := SY \�Y equals

τY (x0, y0) = − 1

λ1(Y )
log |x0| + sY (x0), (9)

where sY : S∗
Y → R is C2 close to sX = const .

Let fY be the one-dimensional map as the quotient map of the corresponding Poin-
caré map PY over the leaves of the foliation FY for all flows Y close to X in the C1

topology as above. Since the leaves of FY are C1 close to those of F , it follows that fY
is C1 close to f and thus there exists c ∈ [−1/2, 1/2] which plays for fY the same role
of the singular point at 0, so that, after a linear change of coordinates, we can assume
that c = 0 and properties (f2)–(f4) from Subsect. 3.4 are still valid, albeit with different
constants, for fY on a subinterval [−b0, b1] for some 0 < b0, b1 < 1/2 close to 1/2. In
particular

D fY (x) ≈ |x |α−1 i.e.
1

C
≤ D fY (x)

|x |α−1 ≤ C (10)

for some C > 1 uniformly on a C2 neighborhood of X , where α = α(Y ) =
−λ3(Y )/λ1(Y ) depends smoothly on vector field. Finally, the condition (f3) ensures
that fY has enough expansion to easily prove that every fY is locally eventually onto for
all Y close to X . More precisely,

Lemma 3.6 [7, Lem. 3.16]. For any interval J ⊂ (−b0, b1) there exists an iterate
n ≥ 1 such that f n

Y (J ) = (0, b1) or f n
Y (J ) = (−b0, 0); and the next iterate covers

( f (−b0), f (b1)).

In particular, this implies that fY is transitive and, as well known,�Y turns out to be
transitive also. So we have a robust transitive attractor on a C2 neighborhood of X.

Remark 3.7. Lemma 3.6 implies also that every given point q of (−b0, b1) belongs to
some positive image f n(J ) of any given interval J �� 0, for some n > 0. Hence every

q ∈ (−b0, b1) has a dense set of pre-images, that is ∪k≥0 f −k
Y ({q}) = [−b0, b1].

Taken together with the results in the previous subsections we proved Proposition 3.1.

Remark 3.8. Given δ > 0 there exists an integer N such that ON (Y ) := ∪N
i=1( f i

Y )
−1({0})

is 2δ-dense in (−b0, b1). Moreover, by slightly modifying the return to S from �± (see
Sect. 3.2) during the construction of X , we can assume that the singular point 0 of fY
does not belong to ON (Y ) and ON (Y ) is δ-dense in I , for each vector field Y in a C2

neighborhood U of the original geometric Lorenz flow X .

We can, by another smooth change of coordinates, assume without loss of generality
that both b0, b1 equal 1/2 in what follows.
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4. The Geometric Lorenz Flow is a Good Hyperbolic Skew-product

Now we explain step by step how to obtain all the required properties to conclude that
the geometric Lorenz flows constructed in Sect. 3 are good hyperbolic skew-products.

We fix Y a vector field in a C2 neighborhood U of X , with a geometric Lorenz attrac-
tor � in a trapping region U , which contains the image of the cross-section S under the
flow Y t until its points first return to S. We denote by PY : S∗

Y → SY the associated
Poincaré first return map, and by fY : I\{0} → I , with I = [−1/2, 1/2], the corre-
sponding Lorenz map obtained by the action of PY on the leaves FY of the contracting
foliation on S∗ = S∗

Y . We also set τ = τY : S∗ → [τ0,+∞) the first return time function
associated to P = PY so that P(w) = Y τ(w)(w),w ∈ S∗.

4.1. The uniformly expanding Markov map. We show that a Lorenz map f = fY admits
an induced map F on a small interval � ⊂ I which is a uniformly expanding Markov
map. Induced Markov transformations for C1+α Lorenz transformations were obtained
first by [17] but that construction is not suitable for our estimates. Indeed, a crucial
property, the uniform non-integrability, is obtained in Subsect. 4.2.3 using essentially
that Dr(x) ≈ |x |−1 while D f (x) ≈ |x |α−1 for x near the zero, so their growth rates are
significantly different near the singularity. To take advantage of this we build an induced
map on an interval� which is an open neighborhood of the singular point at the origin.
To the best of our knowledge this type of construction is not available in the literature,
but can be obtained using a number of other results as follows.

We assume that f satisfies the properties given in Sect. 3.4 and follow the exposition
in [3,23]. Let b be a fixed constant satisfying 0 < b < min{1/2, 1/(4|1 − α|)}.

We start by observing that f is a local diffeomorphism away from 0 and behaves like
a power of the distance to the singular set; see Remark 3.3. This says that 0 is a “non-
degenerate singularity” according to [2], a concept generalized from one-dimensional
dynamics.

Given ξ, σ ∈ (0, 1) and δ > 0, we say that n is a (σ, δ)-hyperbolic time for a point
x ∈ I if, for all 1 ≤ k ≤ n,

n−1
∏

j=n−k

‖D f ( f j (x))−1‖ ≤ σ k and | f n−k(x)|δ ≥ σ bk,

where |z|δ = |z| if |z| < δ and |z|δ = 1 otherwise.
We present well-established results showing that (i) if n is a hyperbolic time for x ,

the map f n is a diffeomorphism with uniformly bounded distortion on a neighborhood
of x that is mapped to a disk of uniform radius; (ii) Lebesgue almost every point has
many hyperbolic times for the one-dimensional Lorenz transformation f . We say that
f n has bounded distortion by a factor D on a set V if, for every x, y ∈ V ,

1

D
≤ |D f n(x)|

|D f n(y)| ≤ D.

Lemma 4.1. Given σ ∈ (0, 1) and δ > 0, there exist δ1, D1, κ > 0 (depending only on
σ, δ and on the map f ) such that for any x ∈ M and n ≥ 1 a (σ, δ)-hyperbolic time for
x, there exists a neighborhood Vn(x) of x with the following properties:

(1) f n maps Vn(x) diffeomorphically onto the ball B( f n(x), δ1);
(2) for 1 ≤ k < n and y, z ∈ Vn(x), | f n−k(y)− f n−k(z)| ≤ σ k | f n(y)− f n(z)|;
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(3) f n has distortion bounded by D1 on Vn(x);
(4) Vn(x) ⊂ B(x, 2δ1σ n).

Proof. For the proofs of Items 1, 2, 3 see Lemma 5.2 and Corollary 5.3 in [2]. Item 4 is
an immediate consequence of the backward contraction property at Item 2. ��

We say that the sets Vn(x) are hyperbolic pre-balls and their images f n(Vn(x)) are
hyperbolic balls; the latter are indeed balls of radius δ1. For the existence of hyperbolic
times, we observe that

• f is a C2 piecewise expanding map since |D f | > √
2 > 1;

• It follows from [17] that C2 Lorenz transformations have an unique absolutely con-
tinuous invariant measure ν0 with Lyapunov exponent λ(ν0) = ∫

log | f ′| dν0 > 0
whose basin B(ν0) covers Lebesgue almost every point;

• Since |D f (x)| ≈ |x |α−1 behaves like a power of the distance to the singular point
then log |x | is ν0-integrable and, by the Ergodic Theorem, for every ε > 0 we can
find δ > 0 such that

lim
n→+∞

1

n

n−1
∑

i=0

− log | f i (x)|δ =
∫ δ

−δ
− log |x | dν0(x) < ε (11)

for every x ∈ B(μ), thus for Lebesgue almost every x .

Condition (11) is known as a slow recurrence condition on the singular set {0} of f .
Under these conditions, together with the non-degeneracy property given by Remark 3.3,
we have

Lemma 4.2. There exists θ > 0 and 0 < δ < 1 (depending only on f and the expanding
rate

√
2) such that, for Lebesgue almost every x ∈ I , we can find n0 ≥ 1 satisfying:

for each n > n0 there are (σ, δ)-hyperbolic times 1 ≤ n1 < · · · < nl ≤ n for x with
l ≥ θn.

Proof. See Lemma 5.4 of [2]. Let us remark that here we have σ = 1/
√

2 ≈ 0.707. ��
Notice that the constants α, β and the lower bound for the expansion rate

√
2 vary

slightly in a C2 neighborhood U of the geometric Lorenz flow X . Likewise, the value of
δ1 from Lemma 4.1 depends continuously on α, β and inf |D f |, and so we can assume
that δ1 = δ1(Y ) > δ1 for some uniform constant δ1 > 0 for all Y ∈ U .

Hence, from Remark 3.8 and Sect. 3.6, we obtain a neighborhood U of the geometric
Lorenz flow X in X2(M) such that, for all Y ∈ U , the set ON (Y ) of N-pre-images of {0}
under fY is δ1/3-dense in I and does not contain the singular point. Thus the point 0 and
the map f satisfy all the conditions needed to perform the construction of an induced
uniformly expanding Markov map F from a neighborhood � = (−a, a) of 0 to itself,
as presented in [3,23]. More precisely,

Theorem 4.3. There exists a neighborhood� := (−a, a), for some 0 < a < 1/2, of the
singular point 0; a countable Lebesgue modulo zero partition Q of� into sub-intervals;
a function R : � → Z

+ defined almost everywhere, constant on elements of the parti-
tion Q; and constants c > 0, κ > 1 such that, for all ω ∈ Q and R = R(ω), the map
F := f R : ω → � is a C2 diffeomorphism, satisfies the bounded distortion property
and is uniformly expanding: for each x, y ∈ ω,

∣
∣
∣
∣

D f R(x)

D f R(y)
− 1

∣
∣
∣
∣
≤ c| f R(x)− f R(y)| and | f R(x)− f R(y)| > κ|x − y|.
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Moreover, for each ω ∈ Q there exists 0 < k ≤ N such that n := R(ω) − k is a
(σ, δ1)-hyperbolic time for each x ∈ ω; ω ⊂ Vn(x) and, in addition, f j (ω) ⊂ I \� for
all n ≤ j < R(ω).

It was proved in [4] that the one-dimensional Lorenz transformation has exponen-
tially slow recurrence to the singular set, that is, for every ε > 0 there exists δ > 0 such
that

lim sup
n→+∞

1

n
log λ

({

x ∈ I : 1

n

n−1
∑

i=0

− log | f i (x))|δ > ε
})

< 0. (12)

Following [23] this ensures the following result.

Theorem 4.4. In the same setting of the previous Theorem 4.3, the inducing time function
R has exponential tail, that is, there exists positive constants c and γ such that

λ({x ∈ I : R(x) > n}) < ce−γ n .

This Markov map F is obtained by inducing the interval map f on the interval �,
using an inducing time that is given by the sum of a hyperbolic time with a non-neg-
ative integer bounded by the number N defined in (3.8), and has exponential tail with
respect to the Lebesgue measure. Therefore, R is Lebesgue integrable and the following
is well-known.

Proposition 4.5. There exists an absolutely continuous invariant probability measure ν
for F whose density φ = dν/dλ is a C1 strictly positive and bounded function on �.
Moreover, ν0 = 1∫

Rdν
· ∑∞

k=0( f k)∗(ν | R > k).

4.1.1. Renyi condition and C1 invariant density. The previous induced map F satisfies a
stronger property than the expression above for bounded distortion, the Renyi condition
from [40]. Indeed, by a simple computation

|D2 F |
|DF |2 (x) ≤

R(x)−1
∑

j=0

1

|DF(x)|
|D2 f ( f j (x)|
|D f ( f j (x)| .

Therefore we can obtain the uniform upper bound

|D2 F |
|DF |2 (x) ≤

R−1
∑

i=0

1

|D f R−i ( f i (x))| · |D2 f ( f i (x))|
|D f ( f i (x))|2 �

R−1
∑

i=0

σ R−i | f i (x)|α−2

(| f i (x)|α−1)2

=
R−1
∑

i=0

σ R−i

| f i (x)|α ≤
R−1
∑

i=0

σ R−i

σαb(R−i)
≤ B = 1 − α

aα

∑

i≥0

σ (1−bα)i < ∞,

for every x ∈ ω and ω ∈ Q, where R = R(ω). This implies that, for x, y ∈ ω,

∣
∣
∣
∣

1

DF
(x)− 1

DF
(y)

∣
∣
∣
∣
≤ |x − y| |D

2 F |
|DF |2 (z) ≤ B|x − y|
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for some z ∈ ω given by the Mean Value Theorem. Moreover, given n > 1,

∣
∣
∣
∣

D2 Fn(x)

(DFn(x))2

∣
∣
∣
∣
= 1

|DFn(x)|2

∣
∣
∣
∣
∣
∣
∣

n−1
∑

i=0

D2 F(Fi (x))

⎛

⎜
⎝

∏

j=0,...,n−1
j �=i

DF(F j (x))

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

= 1

|DFn(x)|
n−1
∑

i=0

|D2 F(Fi (x))|
|DF(Fi (x))| ≤ B

|DFn(x)|
n−1
∑

i=0

|DF(Fi (x))|

= B
n−1
∑

i=0

|DF(Fi (x))|
|DFn(x)| ≤ B · n · σ n−1 (13)

which is an infinitesimal when n → +∞.
So, we get that there exists a C2 uniformly expanding Markov map F satisfying the

Renyi condition from the previous remark. In this setting the arguments of Baladi-Vallée
from [10] provide an invariant density for F in the space of C1 functions.

Lemma 4.6. The density φ = dν/dλ of the F-invariant probability measure ν is a C1

function φ : [−1/2, 1/2] → [0,+∞).

4.1.2. Uniform bounded distortion for powers of the induced map We need this technical
result in the final arguments and we are ready to prove it here.

Proposition 4.7. There exists B0 > 0 such that for all n ∈ Z
+, h ∈ Hn and x, y ∈ I ,

∣
∣
∣
∣

DFn(h(x))

DFn(h(y))

∣
∣
∣
∣
≤ B0|x − y|.

Proof. We use the properties of hyperbolic times and the last part of the statement of
Theorem 4.3 to explicitly estimate this bound. First, we fix n ∈ Z

+ and set Ri :=
R(ωi ) where ωi = Q(Fi (h(y))) is the element of the partition Q containing both
Fi (h(y)), Fi (h(x)), i = 0, . . . , n − 1. Secondly, we set ni := Ri − ki to be the hyper-
bolic time of Fi (h(x)) given by Theorem 4.3. Then we write x̄ := h(x), ȳ = h(y)
and

log

∣
∣
∣
∣

DFn(x̄)

DFn(ȳ)

∣
∣
∣
∣
=

n−1
∑

i=0

Ri −1
∑

j=0

log

∣
∣
∣
∣

D f ( f j (Fi (x̄)))

D f ( f j (Fi (ȳ)))

∣
∣
∣
∣
,

where on hyperbolic times the summand can be bounded as follows:

log

∣
∣
∣
∣

D f ( f j (Fi (x̄)))

D f ( f j (Fi (ȳ)))

∣
∣
∣
∣
≈ log

∣
∣
∣
∣

f j (Fi (x̄))

f j (Fi (ȳ))

∣
∣
∣
∣
≤ | f j (Fi (x̄))− f j (Fi (ȳ))|

| f j (Fi (ȳ))|
≤ σ ni − j | f ni (Fi (x̄))− f ni (Fi (ȳ))|

σ b(ni − j)

≤ σ b(Ri − j)|Fi+1(x̄)− Fi+1(ȳ)|,
since f expands distances by at least σ−1 on both branches. Putting this inequality in
the summation above we get
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log

∣
∣
∣
∣

DFn(x̄)

DFn(ȳ)

∣
∣
∣
∣
≤ σ b

1 − σ b

n−1
∑

i=0

|Fi+1(x̄)− Fi+1(ȳ)|.

But F also expands distances inside each partition element, thus

log

∣
∣
∣
∣

DFn(x̄)

DFn(ȳ)

∣
∣
∣
∣
≤ σ b

1 − σ b
|x − y|

n−1
∑

i=0

κ−(n−i) ≤ σ b

1 − σ b

κ−1

1 − κ−1 |x − y|.

To complete the proof it is enough to define B0 := σ b(1 − σ b)−1(κ − 1)−1. ��

4.2. The good roof function. Here we show that the associated flow return time function
r : ∪ω∈Qω → (r0,+∞), where r0 > 0 depends only on f , induced from τ and associ-
ated to the induced map F , is a good roof function. Note that the function r is defined
from the Poincaré return time function for every x ∈ ⋃

ω∈Q ω as

r(x) = SR�(x) :=
R(x)−1
∑

j=0

�( f j (x)),

where �(x) := inf
{

τ(z) : z ∈ π−1({x})} = τ(x, 0, 1), for x ∈ I\{0}, since τ does
not depend of the point we choose on some strong-stable leaf in S∗. Clearly r is still
bounded from below by the same value τ0 that bounds τ on each linearized flow box
near the origin; see Sect. 3.1. This is property (1) of a good roof function.

Furthermore, as a consequence of our construction in Sect. 3 and expressed in (9),
there exists a function sY , constant on strong-stable leafs, which is C2 close to a constant
function on S∗

Y such that for every Y C2-close to

�Y (x) = − 1

λ1(Y )
log |x | + sY (x). (14)

As a consequence we obtain that

|D�Y (x) + (λ1(Y )x)
−1| = |DsY (x)|, x ∈ I\{0}

is uniformly C1 close to the zero function. In particular, we can find ξ > 0 so that
|Ds(x)| ≤ ξ |x |−1, and hence there are ξ1, ξ2 > 0 such that

ξ1 ≤ −x · D�(x) ≤ ξ2. (15)

Notice also that one can take |ξi − 1/λ1(X)| as small as needed, for i = 1, 2, by taking
Y sufficiently C2 close to X .

4.2.1. Exponential tail. We split the estimates into three cases depending on how large
the tail constant is. Consider the positive real ξ = (2ν(ρ))−1 = (2

∫

ρ dν)−1 and take
a positive integer L .

Case R big enough. If R > ξL , then

Leb{r > L & R > ξL} ≤ Leb{R > ξL} = Leb
( ⋃

ω∈P, R(ω)>ξL

ω
)

≤ ce−γ ξL ,

(16)

since R has exponential tail.
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Case R not so big. If R ≤ ξL , then SR� > L implies that SR� − ν(�) > L − ν(�)
and

1

R

R−1
∑

i=0

(� ◦ f i − ν(�)) > L − ν(�)
R

>
L

R
− ν(�) > 1

ξ
− ν(�) = ν(�) > 0

and also ν(� ◦ f i − ν(�)) = ∫ (

� ◦ f i − ∫

� dν
)

dν = 0.

At this point we recall a large deviations result for non-uniformly expanding maps (see
e.g. [4,6,47]) which guarantees that

lim sup
n→+∞

1

n
log Leb

{

x : 1

n

n−1
∑

i=0

� ◦ f i (x) > 2ν(�) > 0

}

< 0

so that the measure Leb{x : 1
R

∑R−1
i=0 � ◦ f i (x) > 2ν(�)} is exponentially small in R

(thus in ξL also), but only for R ≥ R0, for some integer R0. We remark that R0 does
not depend on the value of L . Thus we have achieved an exponential tail for

Leb{x ∈ � : R0 ≤ R(x) ≤ ξL & r > L}. (17)

Case R small (R < R0). It is enough to consider the case L � R0 since we are only
interested in the measure of the tail set of r . Hence r > L ⇐⇒ ∑R−1

i=0 � ◦ f i > L
implies � ◦ f i > L/R0 for some i ∈ {0, . . . , R0}. Hence

Leb{r > L & R ≤ R0} ≤ Leb{� ◦ f i > L/R0} = ( f i∗Leb)
{

� > L/R0}.
Since |D f | > √

2, f has two C2 monotonous branches and 0 ≤ i ≤ R0, we have
that the density of f i∗Leb is smaller than 2i/2: for each branch f | I ± we have
( f | I ±)∗Leb with density smaller than 2−1/2; f is not Markov and f i has 2i

branches whose images might intersect, so that the maximum density would be, in
the worst case where the image of every branch intersects at some region, smaller
than 2i · 2−i/2 = 2i/2. We conclude

Leb{r > L & R ≤ R0} ≤ 2i/2Leb{� > L/R0)

≤ 2R0 Leb{� > L/R0} ≤ 2R0 · e−λ1 L/R0 .

At this point we use (14) and conclude that the measure Leb{r > L & R ≤ R0}
decays exponentially fast with L .

This estimate together with (16) and (17) shows that r has exponential tail.

4.2.2. The uniform bound of the derivative. For property (2) of a good roof function, let
h ∈ H1, h : � → ω be an inverse branch of F = f R with inducing time l = R(ω) ≥ 1
and let us fix x ∈ ω. Then

|D(r ◦ h)(x)|=|Dr(h(x))| · |Dh(x)| = |Dr(h(x))|
|DF(h(x))| =

∣
∣
∣
∣
∣

l−1
∑

i=0

(D� ◦ f i ) · D f i

DF
◦ h(x)

∣
∣
∣
∣
∣
.

In addition, from the construction of the inducing partition using hyperbolic times,
we have l = (l − n)+ n, where l − n is a (σ, δ1)-hyperbolic time for x0 and 0 < n ≤ N .
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Thus |xi | ≥ σ b(l−i) for xi = f i (h(x)) by definition of hyperbolic times, and so, by (15)
we get |D�(xi )| ≤ ξ2σ−b(l−i), i = 0, . . . , l − n, where σ = 1/

√
2. Moreover

∣
∣
∣
∣

D f i

DF

∣
∣
∣
∣
◦ h(x) = 1

|D f l−i ◦ f i | ◦ h(x) ≤ σ (l−i), i = 0, . . . , l − 1;

and |xi | ≥ δ and D f (xi ) > σ
−1 for l − n < i < R(ω). Altogether this implies, because

0 < b < 1/2, that |D(r ◦h)(x)| ≤ (ξ2/δ)∑l−1
i=0 σ

(1−b)i which is bounded by a constant.
Thus we have proved that suph∈H1

‖D(r ◦ h)‖0 is finite.

4.2.3. Uniform non-integrability. We prove that r satisfies the aperiodicity condition, the
third item in Definition 2.1, arguing by contradiction. We essentially use that D�(x) ≈
|x |−1, while D f (x) ≈ |x |α−1 for x near zero, and so have different growth rates.

Let us assume that there exist a C1 function u : � → R and a measurable function
v : � → R constant on each element ω of Q satisfying r = u ◦ F − u + v. Then we
also have

r + r ◦ F = v + v ◦ F + u ◦ F2 − u (18)

so that the function v+v ◦ F is constant on every element of Q∨ F−1(Q) and u ◦ F2 −u
is a bounded function. Since F is a diffeomorphim on every element ω of Q, then F2 is
a diffeomorphism on every element of Q ∨ F−1(Q). Hence, given an element ω ∈ Q
the relation (18) implies the following relation between derivatives for Lebesgue almost
every point of ω:

Dr + Dr ◦ F · DF = Du ◦ F2 · DF ◦ F · DF − Du. (19)

Using that F : ω → � is a diffeomorphism, we pick a sequence xn in ω\ ∪ ∂Q con-
verging to a point q ∈ ω such that F(xn) → 0+ when n → +∞ and each term of (19)
is well defined for all n ≥ 1. Since ω ⊂ I\{0} we have by continuity of Dr , Du and
DF = D f R(ω) on the closure of ω,

Dr(xn)→ Dr(q), Du(xn)→ Du(q) and DF(xn)→ DF(q) > 0.

After rearranging (19) we obtain

Dr(F(xn))− Du(F2(xn)) · DF(F(xn)) = Dr(xn) + Du(zn)

DF(xn)
, (20)

where the right-hand side converges to a finite limit. Thus the left-hand side should
also converge. However, since |Du(F2(xn))| is a bounded sequence, the behavior of the
expression in the left hand side of (20) is dominated by Dr(F(xn)) and DF(F(xn)),
both unbounded sequences.

On the one hand, we have Dr(F(xn)) = ∑R(ωn)−1
i=0 D�( f i (F(xn)) · D f i (F(xn)).

From (15) and the expression that |D f (x)| ≈ |x |α−1, we see that

|D�( f i (F(xn)) · D f i (F(xn))| ≈ |F(xn)|α−2 D f i−1( f (F(xn))
)

, i > 0 (21)

when F(xn) → 0+. For i = 0 we have |D�(F(xn))| ≈ |F(xn)|−1. The common factor
|F(xn)|α−2 in each summand of Dr(F(xn)) for i > 0 has a coefficient whose modulus
grows exponentially with i ; and this factor grows without bound when F(xn) → 0+
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faster than |F(xn)|−1. The highest coefficient is D f R(ωn)−1
(

f (F(xn))
)

corresponding
to i = R(ωn) − 1, whose term dominates the overall sum for all n big enough, where
ωn := Q(F(xn)) is the interval of Q which contains F(xn).

On the other hand, DF(F(xn)) = D f R(ωn)(F(xn)) = ∏R(ωn)−1
i=0 D f

(

f i (F(xn))
)

,
and so

DF(F(xn)) ≈ |F(xn)|α−1 D f R(ωn)−1( f (F(xn))
)

. (22)

Thus on DF(F(xn)) there is a factor proportional to the highest coefficient of the expres-
sion for Dr(F(xn)). Since 0 < α < 1, comparing (21) and (22) we obtain (where we
use the convention D f 0 ≡ 1)

∣
∣
∣
∣

Dr(F(xn))

DF(F(xn))

∣
∣
∣
∣
≈ 1

|F(xn)|
R(ωn)−1
∑

i=0

D f i−1( f (F(xn)))

D f R(ωn)−1( f (F(xn)))

= 1

|F(xn)|
R(ωn)−1
∑

i=0

1

D f R(ωn)−i ( f i (F(xn)))
<

1

|F(xn)|
R(ωn)−1
∑

i=0

σ i .

It follows that |DF(F(xn))| grows faster than |Dr(F(xn))|. This implies that the left-
hand side of (20) grows without bound, contradicting the identity (18).

4.3. The hyperbolic skew-product structure. Now we explain how the existence of the
previously constructed induced map F , together with the existence of the contracting
foliation on the cross-section S of the geometric Lorenz flow, ensures the existence of
the good hyperbolic skew-product structure for the flow.

We start with a useful consequence of Lemma 3.6 and Remark 3.7: the images of �
cover I with the exception of a set of points of zero Lebesgue measure, i.e.

⋃

ω∈Q

R(ω)−1
⋃

j=0

f j (ω) = I, λ mod 0. (23)

In fact, we have that�Q := ∪ω∈Qω = �\N with λ(N ) = 0 by construction, and every
point of the domain of f has some pre-image in�. Since f R(ω)(ω) = � for eachω ∈ Q
we have that

(−1/2, 1/2) ⊂
⋃

j≥0

f j (�) =
⋃

j≥0

f j (N ) ∪
⋃

ω∈Q

R(ω)−1
⋃

j=0

f j (ω)

and λ( f j (N )) = 0 for all j ≥ 1 because f is piecewise C2, which proves (23).

4.3.1. The induced Poincaré return map. We define the following induced map F̂ :=
P R◦π : π−1(�Q) → π−1(�), where π : S → I is the projection onto the quo-
tient I = S/F of S over the stable leaves. We set for future use �̂ = π−1(�) and
�̂Q := π−1(�Q) = ∪ω∈Qπ−1(ω).

We note that on each element π−1(ω) of the Leb mod 0 partition �̂Q we have an
inducing time given by R(ω) (we write Leb for a normalized area measure on S). More-
over by construction π ◦ F̂ = F ◦ π . The uniform contraction along the leaves of F
ensures that F̂ contracts distances between points in the same leaf. This shows that
properties (1) and (4) in Definition 2.3 hold for F̂ on �̂. Properties (2) and (3) will be
proven in Subsects. 4.3.3 and 4.4, respectively.
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4.3.2. The existence of smooth conjugation. Here we explain how to obtain the smooth
semi-conjugacy between the original geometric Lorenz flow model and the hyperbolic
skew-product model.

We can define the semiflow F̂t over �̂ with base map F̂ and height function r ◦ π as
usual, whose phase space is �̂r defined in Sect. 2.3. The suspension semiflow Zt with
base map P : S∗ → S and phase space

�τ := {(w, t) : w ∈ S∗, 0 ≤ t < τ(w)}
can be easily seen to be conjugated to the geometric Lorenz flow Y t in a neighborhood
of � through the smooth transformation � : �τ → U given by �(w, t) = Y t (w),
where U is a neighborhood of the attractor � defined in (8). This is a diffeomorphism
on an open subset of U with full volume on M .

We need to conjugate Zt with F̂t . Since the first return time function τ is constant
on strong-stable leaves, the main diferences between Zt and F̂t are the base maps and
the roof functions. But F : �Q → � and r are induced from f and � with the same
number of iterates on each ω ∈ Q. In fact, since the roof function r associated to F̂t is
an ergodic sum of the roof function � associated to Zt with a locally constant number
of summands, which precisely equals R(ω) on each ω ∈ Q, it follows, by the definition
of the equivalence relation ∼ defining �τ :

(i) �̂r can be naturally identified with an open subset of �τ ;
(ii) from (23), �̂r has in fact full bidimensional Lebesgue measure in �τ ; and

(iii) F̂t (w, s) = Zt (w, s) for all (w, s) ∈ �̂r and t ≥ 0.

This shows that we can smoothly conjugate F̂t with Zt over an open subset with full
Lebesgue measure; then smoothly conjugate Zt with the original geometric Lorenz flow
Y t on an open subset with full volume in a neighborhood of the attractor �.

4.3.3. The F̂-invariant probability. In this subsection we use that every invariant mea-
sure associated to a quotient map over a stable foliation lifts in a unique way to an
invariant measure for the original dynamics to prove item (2) of Definition 2.3.

Let (S, d) be a compact metric space, � ⊂ S and let P : S\� → S be a measurable
map. We assume that there exists a partition F of S into measurable subsets, having �
as an at most countable collection of elements of F , which is

• invariant: the image by P of any ξ ∈ F distinct from � is contained in some element
η of F ;

• contracting: the diameter of Pn(ξ) goes to zero when n → ∞, uniformly over all
the ξ ∈ F for which Pn(ξ) is defined.

Set π : S → F to be the canonical projection. Hence, A ⊂ F is Borel measurable if
and only if π−1(A) is a Borel measurable subset of S, since A is open if, and only if,
π−1(A) is open in S. The invariance condition ensures that there is a uniquely defined
map

f : (F\{�})→ F such that f ◦ π = π ◦ P,

which is measurable. We assume that the leaves are sufficiently regular so that �/F is
a metric space with the topology induced by π .

Let μ f be any probability measure on F invariant under the transformation f .
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For any bounded function ψ : S →R, let ψ− : F →R and ψ+ : F →R be defined
by

ψ−(ξ) = inf
x∈ξ ψ(x) and ψ+(ξ) = sup

x∈ξ
ψ(x).

Proposition 4.8. There exists a unique measure μP on S such that
∫

ψ dμP = lim
n→∞

∫

(ψ ◦ Pn)− dμ f = lim
n→∞

∫

(ψ ◦ Pn)+ dμ f

for every continuous function ψ : S → R. Besides, μP is invariant under P. Moreover
the correspondence μ f �→ μP is injective, π∗μP = μ f and μP is ergodic if μ f is
ergodic.

This follows from standard arguments which can be found in, e.g. Sect. 7.3.5 of [7].
Hence we just have to take μ f = ν0 to obtain the corresponding η0 = μP ergodic
P-invariant probability measure which lifts ν0, where P and f are the Poincaré return
map to the cross-section S of the geometric Lorenz flow, f the Lorenz transformation
associated to P; and F is the family of stable leaves on S for P .

Analogously, we consider the measurable map F̂ : �̂Q → �̂ on the space �̂ with
the same foliation F of S restricted to �̂, together with the quotient map F : �Q → �.
Then we start with the F-invariant ergodic measure ν and obtain an F̂-invariant ergodic
measure η on �̂.

4.4. The disintegration property. Here we show that the previous measure η admits a
smooth disintegration as stated at item (3) of Definition 2.3 under the following assump-
tions on F and f , besides invariance and contraction as in the previous subsection:

• S/F is the compact closure of an open domain of a finite dimensional smooth man-
ifold;

• f : F\� → F is a uniformly expanding Markov map, according to Sect. 2.1;
• The invariant density φ = dμ f /dLeb is a C1 function.

We note that the assumption of denumerability of � ensures that S\� is σ -compact.
The general strategy of the argument is to obtain the disintegration of η as a fixed

point of a certain transfer operator whose action from fiber to fiber varies differentiably.
To avoid the introduction of extra notation and to focus on the geometric Lorenz

attractor case, from now on we take F̂ : �̂Q → �̂ on the space �̂ with the foliation F
of S restricted to �̂, together with the quotient map F : �Q → �, as our main maps.
Let us consider the set  of measurable families of probability measures ω = (ωx )x∈I
supported on the strong-stable leaves {π−1(x) ∩ �}x∈I inside the geometric Lorenz
attractor �. We note that I � x �→ ωx is measurable if the real function x �→ ∫

ψ dωx

is measurable for every continuous function ψ : �̂Q → R with compact support. Each
such family defines a probability measure ν̃ω through the linear functional

C0
0 (�̂Q,R) � ψ �→

∫ ∫

ψ dωx dν(x),

where C0
0 (�̂Q,R) is the set of all continuous functions on �̂Q with compact support;

see e.g. [20] for the definition and properties of Radon measures. We define the operator
L :  →  such that

∫ ∫

ψ dL(ω)x dν(x) =
∫ ∫

ψ ◦ F̂ dωx dν(x), ψ ∈ C0
0 (�̂Q,R).
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This is the dual of the usual Koopman operator U : C0
0 (�̂Q,R) → C0

0 (�̂Q,R) given by
U (ψ) = ψ ◦ F̂ . Moreover, it defines an operator using the disintegration of the measure
ν̃ω defined by the linear functional

C0
0 (�̂Q,R) � ψ �→

∫ ∫

ψ ◦ F̂ dωx dν(x)

with respect to the measurable partition of �̂ given by the restriction of F to this set.
This defines the family

(L(ω))x for ν-almost every x ∈ I in a unique way; see e.g. [41]
for more on disintegration with respect to measurable partitions of Lebesgue spaces.
The next lemma establishes that invariant measures arise as fixed points for L. More
precisely,

Lemma 4.9. Given ω ∈  and ψ ∈ C0
0 (�̂Q,R) there exists the limit

νω̄(ψ) := lim
n
(Lnω)ψ = lim

n

∫ ∫

ψ ◦ F̂n dωx dν(x). (24)

Moreover, the probability measure νω̄ is F̂-invariant and the family ω̄ does not depend
on ω on ν-almost every point; in fact νω̄ = η.

Proof. Let ψ ∈ C0
0 (�̂Q,R) and ω ∈  be fixed. Given ε > 0, let δ > 0 be such that

|ψ(A)−ψ(B)| ≤ ε for all A, B ⊂ S with dist(A, B) ≤ δ, where dist denotes the euclid-
ean distance. Since the partition F is assumed to be contracting, there exists n0 ≥ 0 such
that diam(F̂n(ξ)) ≤ δ for every ξ ∈ F and any n ≥ n0. Let n+k ≥ n ≥ n0, A ⊂ π−1{x}
and B ⊂ π−1{ f k(x)}. Then

|ψ ◦ F̂n+k(A)− ψ ◦ F̂n(B)| ≤ sup(ψ | F̂n+k(π−1{x}))− inf(ψ | F̂n(π−1{Fk(x)}))
≤ ε, (25)

since F̂n+k(π−1{x}) ⊂ F̂n(π−1{Fk(x)}). Thus, using the Fk-invariance of ν we get
from the previous estimate that

|(Ln+kω)ψ − (Lnω)ψ | =
∣
∣
∣
∣

∫ ∫

ψ ◦ F̂n+k dωx dν(x)−
∫ ∫

ψ ◦ F̂n dωx dν(x)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ ∫

ψ ◦ F̂n+k dωx dν(x)−
∫ ∫

ψ ◦ F̂n dωFk (x) dν(x)

∣
∣
∣
∣

≤
∫ ∣

∣
∣
∣

∫

ψ ◦ F̂n+k dωx −
∫

ψ ◦ F̂n dωFk (x)

∣
∣
∣
∣
dν(x) ≤ ε.

This shows that the sequence (Lnω)ψ is a Cauchy sequence and so it converges in the
Banach space C0

0 (�̂Q,R). It is straightforward to check that, since each element of the
sequence is a normalized positive linear functional, the limit is a family ω̄ ∈  such
that νω̄ has the same functional properties, and so represents a probability measure. We
remark that for any compact subset K of �̂ we can rewrite the last inequality above as
follows:

∫ ∣
∣
∣
∣

∫

K
ψ ◦ F̂n+k dωx −

∫

K
ψ ◦ F̂n dωFk (x)

∣
∣
∣
∣
dν(x) ≤ ε. (26)
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This shows that the convergence does not depend on the support ofψ ◦ F̂n for arbitrarily
large n. Note also that given ϕ ∈ C0

0 (�Q,R) the function ϕ ◦ π belongs to C0
0 (�̂Q,R)

and is constant on each leaf of F through �̂, which yields

νω̄(ϕ ◦ π) = lim
n

∫ ∫

ϕ ◦ π ◦ F̂n dωx dν(x) = lim
n

∫

ϕ(Fn(x)) dν(x) =
∫

ϕ dν,

that is π∗(νω̄) = ν. Hence, if we show that νω̄ is F̂-invariant, we can use Proposition 4.8
to conclude that η = νω̄ independently of the starting familyω ∈  . To prove invariance,
we observe that

(Ln+1ω)ψ = L(Lnω)ψ =
∫ ∫

ψ ◦ F̂ d(Ln(ω)x ) dν(x)

but ψ ◦ F̂ is not continuous with compact support for ψ ∈ C0
0 (�̂Q,R). From (26) we

have that, using the σ -compactness of �̂Q and choosing a nested increasing sequence
Kl of compact sets growing to �̂ and a non-negative ψ ∈ C0

0 (�̂Q,R), we get for
n ≥ n0,m ≥ 1, l ≥ 1,

∣
∣
∣
∣

∫ ∫

Kl

ψ ◦ F̂ d(Lnω)x dν(x)−
∫ ∫

Kl

ψ ◦ F̂ d(Ln+mω)x dν(x)

∣
∣
∣
∣
≤ ε. (27)

To ensure that ψ ◦ F̂ | Kl is continuous with compact support, we observe that

supp(ψ ◦ F̂) = F̂−1(suppψ) =
⋃

ω∈Q

(

P R(ω))−1
(suppψ)

is a denumerable union of compacts in �̂, because suppψ is compact and P : S∗ → S
is a diffeomorphism onto its image. Thus we can choose an enumeration {ωn}n≥1 of Q
and define

Kl :=
l
⋃

i=1

(

P R(ωi )
)−1
(suppψ)

to obtain a sequence such that ψ ◦ F̂ | Kl ↗ ψ ◦ F̂ is a monotonous sequence of
continuous functions of compact support. Hence, letting m grow without bound in (27)
we arrive at

∣
∣
∣
∣

∫ ∫

Kl

ψ ◦ F̂ d(Lnω)x dν(x)−
∫ ∫

Kl

ψ ◦ F̂ dω̄x dν(x)

∣
∣
∣
∣
≤ ε.

Making l grow we finally obtain |Ln+1ψ − L(ω̄)ψ | ≤ ε for n ≥ n0. These arguments
assumed thatψ is non-negative; but for a continuous function with compact support, we
can write ψ = ψ+ −ψ− with ψ± non-negative and still continuous, and then apply the
same argument to each summand using linearity.

Finally, ε > 0 can be arbitrarily chosen at the start, so we have proved that

ω̄ = lim
n

Lnω = L(ω̄) which implies νω̄ = F̂∗(νω̄)

as needed to complete the uniqueness part of the statement. ��
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4.4.1. Conditional measures as uniform limits To prove that ū(x) := ∫

u(x, y) dω̄x (y)
is a C1 map with bounded derivative, for each C1 function u : �̂Q → R with compact
support, we need some preliminary results. We can be more precise about the operator
L in the next proposition, whose proof will be given later in this section.

Proposition 4.10. For every bounded measurable function ψ : �̂Q → R and for the
constant family υ = (υx ) ∈  with υx = λ |π−1({x}) for each x ∈ I , we have for
λ-almost every x ∈ I ,

∫

ψ d(Lnυ)x =
∑

h∈Hn

∫
φ · ψ ◦ F̂n

t

φ ◦ Fn · DFn
(h(x)) dλ(t), for each n ≥ 1,

where φ := dν/dλ is the Hölder-continuous density of ν with respect to λ; and we write,
to simplify the notation, F̂n

t (z) := F̂n(z, t) for (z, t) ∈ �̂Q.

Remark 4.11. Note that DF > 0 and so it is useful to write the transfer or Ruelle-Per-
ron-Frobenius operator associated to F and the potential − log |DF | as

P(ϕ)(x) :=
∑

h∈H1

1

DF(h(x))
ϕ(h(x)).

Hence, Pφ = φ and

∑

h∈Hn

φ · ψ ◦ F̂n
t

φ ◦ Fn · DFn
◦ h = 1

φ

∑

h∈Hn

φ · ψ ◦ F̂n
t

DFn
◦ h = 1

φ
Pn(φ · ψ ◦ F̂n

t ).

From Lemma 4.9 we can obtain the invariant family ω̄ as the limit of (Lnυ)n≥1, so
Proposition 4.10 provides an explicit expression to approximate the elements of ω̄. The
proof of this proposition becomes simpler if we use the following lemmas.

Lemma 4.12. For every fixed n ∈ Z
+, every t ∈ [− 1

2 ,
1
2 ] and each bounded measurable

function ψ : �̂Q → R, the series given by 1
φ
Pn(φ · ψ ◦ F̂n

t ) is absolutely convergent
Lebesgue almost everywhere.

Proof. Indeed, since φ is a C1 function bounded from above and below (see Sub-
sect. 4.1.1 and Lemma 4.6) there exists C > 0, depending only on φ, such that for
λ-almost every x ∈ I

∣
∣
∣
∣
∣
∣

∑

h∈Hn

φ · ψ ◦ F̂n
t

φ ◦ Fn · DFn
(h(x))

∣
∣
∣
∣
∣
∣

≤
∑

h∈Hn

C · ‖ψ‖∞
DFn(h(x))

≤
∑

h∈Hn

C · λ(h(�))
λ(�)

<∞

since ψ is essentially bounded, {h(�)}h∈Hn = Q is a partition of � Lebesgue mod-
ulo zero, and by the bounded distortion property combined with the mean value the-
orem. Indeed, from Proposition 4.7 we have for every h ∈ Hn, x ∈ � and some
z = z(h) ∈ h(�),

λ(�) = λ(h(�))DFn(h(z)) ≤ B0 · λ(h(�))DFn(h(x)), (28)

and B0 does not depend on n ≥ 1. ��
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From the previous argument we obtain a useful property for the transfer operator P
for the expanding map F , to be used in what follows.

Lemma 4.13. The spectral radius of the operator P : L∞(I, λ) → L∞(I, λ) is equal
to 1.

Proof. We note that the operator is well defined on essentially bounded functions by
the previous lemma. Since P(φ) = φ the spectral radius is at least 1. Taking a bounded
measurable function ψ : �̂Q → R we can write

|Pn(ψ)(x)| =
∣
∣
∣
∣
∣
∣

∑

h∈Hn

1

DFn(h(x))
ψ(h(x))

∣
∣
∣
∣
∣
∣

≤ ‖ψ‖∞Pn(1) ≤ B0 · ‖ψ‖∞

for Lebesgue almost every x ∈ I and every n ≥ 1, using the relation (28). Hence the
spectral radius verifies sp(P) = lim sup n

√‖Pn‖ ≤ lim n
√

B0 = 1. ��
Lemma 4.14. The sequence

( 1
φ
Pn(φ ·ψ ◦ F̂n

t )
)

n≥1 is uniformly convergent in (x, t) ∈
�× I for each continuous function ψ : �̂Q → R with compact support.

Proof. We show that the sequence is a uniform Cauchy sequence. Let us fix ε > 0, then
ψ as in the statement and take n0 as in (25) and n + k > n ≥ n0. If we fix (x, t) ∈ �× I ,
then

∑

h∈Hn

φ · ψ ◦ F̂n
t

DFn
◦ h −

∑

h∈Hn+k

φ · ψ ◦ F̂n+k
t

DFn+k
◦ h

=
∑

h∈Hn

⎛

⎝
φ · ψ ◦ F̂n

t

DFn
−
∑

	∈Hk

φ · ψ ◦ F̂n+k
t

DFn+k
◦ 	

⎞

⎠ ◦ h

=
∑

h∈Hn

⎛

⎝
φ · ψ ◦ F̂n

t

DFn
−
∑

	∈Hk

φ · ψ ◦ F̂n+k
t

DFn ◦ Fk · DFk
◦ 	

⎞

⎠ ◦ h

=
∑

h∈Hn

1

DFn

⎛

⎝φ · ψ ◦ F̂n
t −

∑

	∈Hk

φ · ψ ◦ F̂n+k
t

DFk
◦ 	

⎞

⎠ ◦ h.

Defining �n
	 := ψ ◦ F̂n

t − ψ ◦ F̂n+k
t ◦ 	 we can rewrite the above as

∑

h∈Hn

1

DFn

⎛

⎝φ · ψ ◦ F̂n
t −

∑

	∈Hk

φ · ψ ◦ F̂n
t

DFk
◦ 	 +

∑

	∈Hk

φ

DFk
◦ 	 ·�n

	

⎞

⎠ ◦ h

=
∑

h∈Hn

1

DFn

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ψ ◦ F̂n
t

⎛

⎝φ −
∑

	∈Hk

φ

DFk
◦ 	

⎞

⎠

︸ ︷︷ ︸

φ−P(φ)=0

+
∑

	∈Hk

φ

DFk
◦ 	 ·�n

	

⎤

⎥
⎥
⎥
⎥
⎥
⎦

◦ h
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=
∑

h∈Hn

1

DFn
◦ h ·

⎛

⎝
∑

	∈Hk

φ

DFk
◦ 	 ·�n

	

⎞

⎠ ◦ h

=
∑

h∈Hn+k

(
φ

DFn+k
◦ h

)

·
(

�n
	 ◦ Fk ◦ h

)

.

Using φ > 0 and (25) it follows that absolute value of the last expression is bounded by

∑

h∈Hn+k

∣
∣
∣�

n
	 ◦ Fk ◦ h

∣
∣
∣ ·
(

φ

DFn+k
◦ h

)

≤ ε
∑

h∈Hn+k

φ

DFn+k
◦ h = εφ.

Finally, since ε>0 and (x, t)∈�× I were arbitrarily chosen the proof is complete. ��
Proof of Proposition 4.10. We fix n = 1 for definiteness since the general case of n > 1
is completely analogous. From Lemma 4.12 the series 1

φ
Pn(φ · ψ ◦ F̂n

t ) is absolutely
convergent. Hence we can exchange the integral and the summation and apply a change
of variables
∫ ∫

ψ d(Lυ)x (t) dν(x) =
∫

�

∫

ψ ◦ F̂ dυx dν

=
∑

h∈H1

∫

h(�)

∫

ψ ◦ F̂t (x) d(υx )(t) dν(x)

=
∑

h∈H1

∫

h(�)

∫

φ(x) · ψ ◦ F̂t (x) dλ(t) dλ(x)

=
∑

h∈H1

∫

h(�)

(∫
φ · ψ ◦ F̂t

φ ◦ F · DF
(h(F(x))) dλ(t)

)

× DF(x)φ(F(x)) dλ(x)

=
∑

h∈H1

∫

F(h(�))

(∫
φ · ψ ◦ F̂t

φ ◦ F · DF
(h(x)) dλ(t)

)

φ(x) dλ(x)

=
∫

∑

h∈H1

∫
φ · ψ ◦ F̂t

φ ◦ F · DF
◦ h dλ(t) dν(x),

and the statement of the lemma follows from the uniqueness of the disintegration. ��
At this point we note that L(ψ)x := limn→+∞

∫

ψ d(Lnυ)x is clearly a normalized,
positive and bounded linear functional on C0

0 (�Q,R), thus there exists a probability
measure ω̃x such that L(ψ)x = ∫

ψ dω̃x . Hence, since we have uniform convergence
in Lemma 4.14,

lim
n→+∞

∫ ∫

ψ d(Lnυ)x dν(x) =
∫

lim
n→+∞

∫

ψ d(Lnυ)x dν(x) =
∫ ∫

ψ dω̃x dν(x),

and because from Lemma 4.9 we also have

lim
n→+∞

∫ ∫

ψ d(Lnυ)x dν(x) =
∫ ∫

ψ dω̄x dν(x)
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for each continuous function with compact support, the uniqueness of disintegration
ensures that ω̄x = ω̃x = limn→+∞(Lnυ)x for ν-almost every point x . Since we need to
establish the smoothness of the disintegration we define

ω̄x := lim
n→+∞(L

nυ)x for all x ∈ �
and study in more detail this limit process.

4.4.2. Disintegration is smooth. We fix u ∈ C1
0(�Q,R). From Proposition 4.10 we

have

ū(x) =
∫

u(x, t) dω̄x (t) =
∫

lim
n→+∞

1

φ
Pn(φ · u ◦ F̂n

t )(x) dλ(t).

We shall prove that there is a well defined limit for the expression of the derivative

D
[

1
φ
Pn(φ · u ◦ F̂n

t )
]

as n → ∞ with uniform bounds independent of t . In fact, by

a straightforward computation using the chain rule and |h′(x)| = |DFn(h(x))|−1 for
every h ∈ Hn we get, for every x ∈ �,

D

[
1

φ(x)
Pn(φ · u ◦ F̂n

t )(x)

]

= − Dφ(x)

φ(x)2
Pn(φ · u ◦ F̂n

t )(x) (29)

− 1

φ(x)

∑

h∈Hn

(
D2 Fn

(DFn)2
· φ · u ◦ F̂n

t

DFn

)

◦ h(x) (30)

+
1

φ(x)

∑

h∈Hn

(
1

DFn
· D(φ · u ◦ F̂n

t )

DFn

)

◦ h(x). (31)

Since |DFn| ≥ σ−n = (
√

2)n and P is a positive operator with spectral radius equal to
one from Lemma 4.13, we see that the absolute value of (31) is bounded from above by

1
inf φ σ

n‖Pn(1)‖∞ ‖φ · u‖C1 , and so converges to zero.
Moreover, using the consequence (13) of the Renyi condition from Subsect. 4.1.1,

we deduce that the absolute value of (30) is bounded from above by Bnσ n−1 1
φ(x)Pn(φ ·

u ◦ F̂n
t )(x) and so, using Lemma 4.14, it converges uniformly to zero as n → ∞. Hence,

we get that

Dū(x) = − Dφ(x)

φ(x)

∫

lim
n→+∞

1

φ
Pn(φ · u ◦ F̂n

t ) dλ(t) = − Dφ(x)

φ(x)
ū(x),

and so Dū exists, hence ū is continuous; thus by the last identity Dū is also continuous.
This proves that the disintegration (ω̄x )x is smooth.

Remark 4.15. The differential equation above has a solution ū(x) = 1
φ(x) + c(t). But

since
∫

u dη =
∫

ū dν =
∫

(1 + c(t)φ(x)) dλ(x) = 1 + c(t),

we see that c(t) ≡ c(u) = ∫

u dη − 1.
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