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Abstract For a group G, denote by w(G) the number of conjugacy classes of nor-
malizers of subgroups of G. Clearly, w(G) = 1 if and only if G is a Dedekind group.
Hence if G is a 2-group, then G is nilpotent of class < 2 and if G is a p-group, p > 2,
then G is abelian. We prove a generalization of this. Let G be a finite p-group with
w(G) < p+ 1.If p =2,then G is of class < 3;if p > 2, then G is of class < 2.

Keywords Conjugacy classes - Normalizers - Finite p-groups - p-Groups of
maximal class
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1 Introduction

The study of conjugacy classes of subgroups often plays an important role in deter-
mining the structure of the group. For example, let v(G) be the number of conjugacy
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classes of non-normal subgroups, Poland and Rhemtulla [8] have shown that for a
nilpotent group G which is not a Dedekind group, one has ¢(G) < v(G) + 1, thus
answering a question of the first-named author. In particular, v(G) bounds the nilpo-
tency class of G.

Here, for a group G, we consider its normalizers. Clearly, if U is a normalizer in G,
then all conjugates of U in G are normalizers. So every normalizer of G gives rise to
a full conjugacy class of such subgroups. By w (G) we shall denote the number of all
G-conjugacy classes of normalizers. Clearly, w(G) = 1 if and only if every subgroup
of G is normal. These groups are precisely the Dedekind groups. Similarly to what
happens for v(G), it has been proved in [3] that for a finite p-group G where p # 2,
one has ¢(G) < w(G).

In this paper we sharpen the latter bound considerably in the case where w(G) <
p + 1. Note that the bound on the class is quite uniform:

Theorem Let G be a finite p-group satisfying w(G) < p + 1.
Then c(G) < 3. If p # 2, then c(G) < 2.

For every odd prime p, we construct finite p-groups G of class three withw (G) = p+2
(see the examples in Sect. 6).

In a slightly different direction, La Haye and Rhemtulla [6] proved that if G is a
finite p-group with v(G) strictly greater than 1, then v(G) is at least p, and Brandl
(see [2] and Conjugacy classes of non-normal subgroups of finite p-groups, to appear
on Israel Journal of Mathematics) determined all finite p-groups with v(G) < p + 1.

There is no analogue of this for the parameter @ (G). In fact, consider the groups

2m

G ={x,y|xF" =y =1, x¥ =x""")y  m=>1, p#2).

Since (y,x?") is contained in the normalizer of each subgroup of G, and
Ng, (3P") = (y,xP") fori = 0, ..., m, we obtain w(G,) = m + 1 (see [7, .
1174]). Note that the groups G,, are nilpotent of class two, so that we wonder if there
is a similar bound when the nilpotency class is strictly greater than two.

All groups considered in this paper are finite. Moreover, p denotes a prime, I,
the field with p elements and ¢(G) is the class of a nilpotent group G. Moreover,
Norm(G) is the intersection of all normalizers of subgroups of G.

2 Preliminary results

We start looking for a lower bound for w(G), in terms of p, when ¢(G) > 2.

Proposition 2.1 Let G be a p-group satisfying w(G) < p + 1. Then one of the
Jfollowing holds:

1) ¢(G) =2;

(i) w(G) = p + 1. All proper normalizers are maximal subgroups of G. For every
S < G we have w(S) < p+ 1, and all normalizers of subgroups of S have index
<pinsé.
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p-Groups with few conjugacy classes of normalizers 153

Proof Let Hi, ..., H; be the maximal normalizers in G with respect to inclusion.
Then H; is normal in G for every i € {1,...,t}, since G satisfies the normalizer
condition. Let 7 = (G ~ (H{ U ---U Hy)).

Firstlet G = T. Forall g € G ~ (H; U ---U H;) we have (g) < G. Hence
G/Cg(g) can be embedded in Aut (g), and consequently this factor group is abelian.
Thus G’ < Cg(g) forallg e G~ (H{U---UH;).SoG' < Cs(T) = Z(G) and G
has class at most 2.

So we may assume that 7 is a proper subgroup of G. Then we can write G =
H{U-.-UH;UT as aunion of proper subgroups and

|Gl < [Hi| +---+ [H [+ |T].

Since |H| < |G|/p for all proper subgroups H of G, it is clear that + > p. Thus
w(G) > p+ 1. Hence w(G) = p+ 1. Thent = p and Hy, ..., H, are maximal
subgroups of G. In particular, Hy, ..., Hy, G are all normalizers of subgroups of G.
This proves the first statement of (ii).

Now let U < S§. Then Ng(U) = Ng(U)NS = H;NSor Ns(U) = S. This proves
the claim for S. O

The following proves the first part of our main theorem:
Proposition 2.2 Let G be a finite p-group. If o(G) < p + 1, then ¢(G) < 3.

Proof By Proposition 2.1, either ¢(G) < 2 or all normalizers of G have index < p.
In particular, G’ < Norm(G). By [9], we have Norm(G) < Z,(G), and so we get
c(G) <3. O

The upper bound for p = 2 cannot be improved upon, because the generalized
quaternion group G of order 2* and class three satisfies (G) = 3.

In the remainder of this paper, we sharpen the bound of Proposition 2.2 for p odd.
The first result deals with the structure of a possible minimal counterexample.

Lemma 2.3 Assume that there exists a p-group G, p # 2, such that o(G) < p + 1
and ¢(G) > 2. Choose such a group G of least possible order. Then:

(1) w(G) = p + 1 and all proper normalizers are maximal subgroups.
(i1) G has precisely one minimal normal subgroup M, say.
(iii) M| =p, M < Z(G), y3(G) = M.
(iv) ¢(G) =3 and Z(G) is cyclic.

Proof By Proposition 2.1, w(G) = p + 1 and all proper normalizers Hy, ..., H; are
maximal subgroups, so that (i) holds. In particular every subgroup of G has at most p
conjugates.

Moreover, if N is a non-trivial normal subgroup of G then we have w(G/N) <
w(G) < p+1,and ¢(G/N) < 2 by minimality. Hence, there exists a unique minimal
normal subgroup M of G, as stated in (ii). Note that |M | = p, M < Z(G),y3(G) = M,
¢(G) =3 and Z(G) is cyclic, so that (iii) and (iv) hold. O
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3 Metacyclic groups

We restrict to the metacyclic case and we will refer to the paper [5] where we find the
following result.

Lemma 3.1 (see [5, Theorem 3.2]) Let G be a finite metacyclic p-group, p odd. Then:
G=(a,b| a’" = 1, bl = al’"ﬁr,ab = a1+p’"*”>

wherem > s >0, n > 0, m > c and one of the following holds:

(1) Split case: 0=s <c <min{n+ 1, m}
(i) Nonm-split case: max{l,m —n+ 1} <s <min{c,m —c+ 1}

Proposition 3.2 Let G be a metacyclic p-group, p # 2.
Ifw(G) < p+1thenc(G) <2.

Proof Let G be a counterexample of least possible order. Then Lemma 2.3 applies.
In particular, ®(G) < Norm(G) and |y3(G)| = p.
By Lemma 3.1, we have to distinguish the following cases.
Case 1: Split case.
Then s = 0 and (b) N (a) = 1. By Proposition 2.1, a? € Ng({b)). Thus [a?, b] =1
and a? € Z(G). Hence G’ < (a”) < Z(G), and G is of class two, a contradiction.
Case 2: Non-split case.
Applying Lemma 3.1, we have 0 < s < c.
Now y3(G) = ([a?" ™", b]) = (aP™" ™). Since |y3(G)| = p, we get m = 2¢ — 1.
As above, we have a”? € Ng((b)). Thus b*" = ba=P" € (b). It follows that
a= " € (a)N(p) = (@) Thus ¢ > 2¢ — 1 — s which implies ¢ — 1 < s and
hence s = ¢ — 1. In particular, m — n + 1 < s implies n > ¢ + 1. We thus get:

2c—1 n c c—1
G={a,b|a’ =1,b" =a”,a’ =a'tP ).

Let H = (a—'bP" ). We shall show H # H"". We have

P c—=1yp
ab :a(1+” )

and

p—2
A+ p ™ =147+ > (f)) (P HP T+ pS=14p° (mod p* ).
i=1

Hence we obtain a®” = a'*7°. In particular, b” € Z,(G).
As |G : Ng(H)| = p, we must have b? € Ng(H), so that ((a~tpP"HP"y =

n—c

(a Py,
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p-Groups with few conjugacy classes of normalizers 155

Since (a~'p?"" )P’ = a=1H+PIpr"™ there exists A > 0 such that

n—c n—c

a PP = (@ P

). (1)

By [4, p. 253] and using that b? € Z»(G), we have:

y
@ 'bP" Y = a e " a‘]<2 .

But [b”",a=']=a”"", and note that a”" ' € Z(G).
By (1), we have:

n—I()“)
-p
a g 2) pP =D,

Thenb?"“*=D ¢ (a)N(b) = (bP"), and p¢ | (A —1). Thisimplies that . = ph+1,
for some positive integer i. By (1), we get

n—c n—c

_1_pC _ n—c_ ,c e noo_
a 1 [pr =(a ]bp )[)h+1:a hpbhpa lbp

As b?" € Z(G) we get a P = g p" = 1, a contradiction because we are
dealing with the non-split case. O

4 Some p-groups of maximal class

In this section, we recall some well-known results on normalizers in p-groups of
maximal class. mainly due to Blackburn [1].

Lemma 4.1 Let p be odd and let E = E, be the non-abelian group of order p3
and exponent p. Then w(G) = p + 2. Moreover, every maximal subgroup of E is a
normalizer.

Lemma 4.2 Let G be a p-group of maximal class. Then:

(i) The only normal subgroups of G are the y;(G) and the maximal subgroups of G.
More precisely, if N is a normal subgroup of G of index p* > p? then N = y;(G).
(i) If N is a normal subgroup of G of index > p? then also G/N has maximal class.

The next result is a particular case of Theorem 4 in [3]. For reasons of completeness,
we provide here a simple direct proof.

Proposition 4.3 Let G be a p-group of maximal class of order p", where p is odd and
n > 4. Then every maximal subgroup of G is anormalizer. In particular, o (G) > p+2.
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Proof Let M be a maximal subgroup of G. We start with n = 4, then |M| = p°.
Assume exp(M) > p?. Then M has a cyclic normal subgroup U of order p? and
M < Ng(U). On the other hand, G has an elementary abelian normal subgroup of
order p? which is the unique normal subgroup of G of order p2. Hence U cannot
be normal in G. It follows M = Ng(U). Now assume exp(M) = p. Then M has at
least two elementary abelian normal subgroup, Uy, Us, of order p? and they cannot
be both normal in G. Thus M = Ng(U;) for some i € {1,2}. Now let n > 4. Then
G contains a normal subgroup R such that G/R is of order p* and of maximal class.
Every maximal subgroup M of G contains R. So, by the first part of the proof, there
exists U/R < G/R such that M/R = Ng,r(U/R) and we obtain M = Ng(U). O

5 Proof of the main result

In this section, we shall prove our theorem for p # 2. Let G be a counterexample
of least possible order. Lemma 2.3 provides us with some information about G. In
particular, ¢(G) = 3 and Z(G) is cyclic.

We shall split the proof into two parts according to the existence or non-existence
of abelian normal subgroups of rank > 3. The following result of N. Blackburn is
crucial for the case of small ranks:

Lemma 5.1 (see [4, 12.4 and 12.5]) Let G be a p-group with p odd. If every abelian
normal subgroup of G is 2-generated, then one of the following holds:

(M G is metacyclic.
) G = (x,y,z|xP =y? =27 = 1,[x,2] = [y, 2l = 1, y* = yz?" ), for
n>3.
() G = (x,y,zxP =yP =" =1[y, 2l = 1,y" =y, 2" = y2), for
n>4ands =1 ors is a nonsquare mod p.
(IV) p =3 and G is of maximal class.

Lemma 5.2 Let G be a p-group with p odd and assume w(G) < p + 1. If every
abelian normal subgroup of G is 2-generated, then c(G) < 2.

Proof We consider the cases displayed in Lemma 5.1.

If G is as in Case (IV) then either ¢(G) < 2 and we are done or w(G) > p + 2,
by Proposition 4.3, and G does not satisfy our hypothesis. Let G be as in Case (I).
Then, the result follows by Proposition 3.2. The groups of Case (II) are nilpotent of
class two and we are also done. So let G be as in Case (III). Then G/(z”) is the non
abelian group of order p? and exponent p. Then, w(G/(z”)) = p + 2 and hence
w(G)>p+2. m]

We finally deal with the case when our minimal counterexample G contains abelian
normal subgroups of large rank:

Proof of Theorem Let G be as in Lemma 2.3. By Lemma 5.2, we may assume that G
contains an abelian normal subgroup A of rank > 3. Refining the normal series 1 <
©1(A) < G, we can choose an elementary abelian normal subgroup N of G of rank 3.
Let Q = G = G/Cg(N). Then Q embeds into a subgroup of Aut(N) = GL(3, p).
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p-Groups with few conjugacy classes of normalizers 157

As Q is a p-group, we can identify Q with a subgroup of the group UT (3, p) of
unitriangular matrices of the form

m(a, b, c) =

S O =
S = Q
i Y

where a, b, c € F),.

If there exists g such that |Cy(g)| = p then the theory of the Jordan canonic form
tells us that NV has a basis {n1, ny, n3} with ngl” =nino, ng = nons, n§ = n3. Consider
the subgroup S = (N, g) of G. As p # 2, the order of g is p, so that gP € Z(S).
Thus, (n3, g¥) < S and $* = S/(n3, g¥) is the group E, of Lemma 4.1. By Lemma
2.3, wemusthave (S) < p+1.Butp+2=w(E,) <w(§") <w(S)=p+1,a
contradiction.

Casel. Q0 =G contains an element g =m(a, b, c¢) with ab # 0. Then |Cy(g)| = p.

Case 2. Q contains elements g; = m(a;, bj,¢;), (i = 1,2) with a; = 0,b; #
Oand ap # 0,bp = 0. Then g := g1 g2 = m(az, b1, *). As axb; # 0, we are
in the case 1.

Case3. O < {m(a,0,c) | a,c € Fp}. Here (nz,n3) < Cn(Q) < Z(G).But Z(G)
is cyclic, a contradiction.

Cased. Q < {m(0,b,c) | b,ceF,}.If Q0 = G = (g) is cyclic. As Z(G) is cyclic,
we have |Cy (g)| = p, so that as above, we arrive at a contradiction. Thus, assume that
Q is anon-cyclic subgroup of UT (3, p). Then Q = {m(0, b, ¢) | b, c € IF,}. We shall
construct p + 2 pairwise non-conjugate normalizers arising as normalizers of cyclic
subgroups of N. Let {n, ny, n3} a basis of N and assume that N N Z(G) = (n3). Let
U. = (n1 — nyc) < N, the subgroup of N generated by the vector of components
(1, —c,0),and M, = Ng(U.), (0 < ¢ < p—1).Choose g, € G withg, = m(0, 1, ¢).
Then g. € M.. Suppose that M., and M., are conjugate for some c¢; # c2. By
Lemma 2.3, both M., and M., are maximal subgroups of G, so that M., = M,,.
This implies (g¢,, &¢,) < My = Me, = NG(UCI)._Clearly, Cc(N) < Ng(U,)),
so that H := (CG(N), gc¢;» 8c,) < Ng(Ucy). But H = (g, 8.) = 0, and so
H =G < Ng(U.,) = Cg(U,,). This, however, implies U,;, < Z(G) N N = (n3),
a contradiction. We thus have found p pairwise non-conjugate proper normalizers.
An analogous argument using Us, = ((0, 1, 0)) and g, = m(0, 0, 1) yields another
normalizer not encountered before. We arrive at the final contradiction w(G) > p+2.

6 Examples of finite p-groups G with ® (G) = p + 2

Finally, we list some examples for p-groups G of class 3 and w(G) = p + 2. We start
with an example which is already known.

Example 6.1 (see [7, p. 1173) Let G = (x,y | P’ = y7* = 1,x¥ = x!*P)
where p > 2. Then ¢(G) = 3 and G has p + 2 conjugacy classes of normalizers,
corresponding to the whole group, the subgroups (yx’,x?) fori = 0,...,p — 1,
which are maximal (and in particular normal) in G, and finally to (y, x? 2).
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Example 6.2 Assume p = 3 and let G = A(x), where A = (a1) X (a») is abelian,

2 — .
al” =af = 1,af = a1az, a§ = ara;”, xP = al. Then ¢(G) = 3, every maximal

subgroup of G is a normalizer and w (G) = p + 2.

Proof Note that |G| = p* and ¢(G) = 3 so that G is of maximal class. Then, by
Proposition 4.3, w(G) > p + 2. Let U be a non normal subgroup of G. If [U| = p
then U < Q1(G) < A and Ng(U) = Cg(U) = A is a maximal subgroup. Let
|U| = p?, by the normalizer condition its normalizer is a maximal subgroup. Hence
w(G)=p+2. O

Next we present an infinite series of examples.

Example 6.3 Let p be a prime and » > 1. Assume p > Sor p = 3 and r > 2.
Let G = A(x) where A = (ay, az, a3) is elementary abelian of order p3, and aj =
aj,a, = ajaz,ay = aas, xP = ai. Then w(G) = p + 2, and the normalizers are
precisely the maximal subgroups of G.

Proof We have G = (x, a3), and A is normal in G. The element x induces on A an
automorphism of order p, so that x” € Z(G). The relations imply that G/(x?) is the
non-abelian group of order p> and exponent p. In particular, G” = (x”). Moreover,
every maximal subgroup of G is a normalizer, and so w(G) > p + 2.

We show that (a>, x”) < Norm(G). Indeed, as x” € Z(G), we have x? €
Norm(G), so we need to prove a € Norm(G). For this, it suffices to show that
ap normalizes every cyclic subgroup U of G. Let N = (A, x?). Then N is abelian
and G/N = (xN) is of order p.

If U < N, then clearly a, normalizes U. So let U £ N. By the above, we may
assume U = (ax) for some a € A. We get

laz, U] = ([a2, ax]) = ([az, x]) = (a1). 2

If p > 5, then G is regular, so that we have |U| > pz. Thus 1 # U?P < GP = (xP).
As {(a1) is the unique subgroup of order p of (x?), we deduce that a; € U. From (2)
we deduce that [ap, U] < U whence a, € Ng(U). We arrive at {(ap, x”) < Norm(G).

Now let p = 3 and r > 2. Here we have (ax)? = ax? for some element @ € A. If
(a)c)3 = 1, then we would get x3 € A. But this contradicts r > 2. As before, we get
(az, xP) < Norm(G).

In all cases, we have shown [G : Norm(G)] < p2. Now Norm(G) is properly
contained in the abelian subgroup N, so that it clearly cannot be a normalizer. Hence
all normalizers are of index < p in G. The result follows. |

The list of the above examples is by no means complete. In fact, using GAP, among
the groups of order p> (p > 3) we found three groups G with w(G) = p + 2 and
class 3.

We do not know the answer to the following

Question Let G be a p-group with w(G) < p + 2. Do we have ¢(G) <3if p > 2
and ¢(G) <4 for p =27
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