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Abstract For a group G, denote by ω(G) the number of conjugacy classes of nor-
malizers of subgroups of G. Clearly, ω(G) = 1 if and only if G is a Dedekind group.
Hence if G is a 2-group, then G is nilpotent of class ≤ 2 and if G is a p-group, p > 2,
then G is abelian. We prove a generalization of this. Let G be a finite p-group with
ω(G) ≤ p + 1. If p = 2, then G is of class ≤ 3; if p > 2, then G is of class ≤ 2.

Keywords Conjugacy classes · Normalizers · Finite p-groups · p-Groups of
maximal class

Mathematics Subject Classification 20D15 · 20B05 · 20E45

1 Introduction

The study of conjugacy classes of subgroups often plays an important role in deter-
mining the structure of the group. For example, let ν(G) be the number of conjugacy
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classes of non-normal subgroups, Poland and Rhemtulla [8] have shown that for a
nilpotent group G which is not a Dedekind group, one has c(G) ≤ ν(G) + 1, thus
answering a question of the first-named author. In particular, ν(G) bounds the nilpo-
tency class of G.

Here, for a group G, we consider its normalizers. Clearly, if U is a normalizer in G,
then all conjugates of U in G are normalizers. So every normalizer of G gives rise to
a full conjugacy class of such subgroups. By ω(G) we shall denote the number of all
G-conjugacy classes of normalizers. Clearly, ω(G) = 1 if and only if every subgroup
of G is normal. These groups are precisely the Dedekind groups. Similarly to what
happens for ν(G), it has been proved in [3] that for a finite p-group G where p �= 2,
one has c(G) ≤ ω(G).

In this paper we sharpen the latter bound considerably in the case where ω(G) ≤
p + 1. Note that the bound on the class is quite uniform:

Theorem Let G be a finite p-group satisfying ω(G) ≤ p + 1.
Then c(G) ≤ 3. If p �= 2, then c(G) ≤ 2.

For every odd prime p, we construct finite p-groups G of class three with ω(G) = p+2
(see the examples in Sect. 6).

In a slightly different direction, La Haye and Rhemtulla [6] proved that if G is a
finite p-group with ν(G) strictly greater than 1, then ν(G) is at least p, and Brandl
(see [2] and Conjugacy classes of non-normal subgroups of finite p-groups, to appear
on Israel Journal of Mathematics) determined all finite p-groups with ν(G) ≤ p + 1.

There is no analogue of this for the parameter ω(G). In fact, consider the groups

Gm = 〈x, y | x p2m = y pm = 1, x y = x1+pm 〉 (m ≥ 1, p �= 2).

Since 〈y, x pm 〉 is contained in the normalizer of each subgroup of Gm and
NGm (y pm−i

) = 〈y, x pi 〉 for i = 0, . . . , m, we obtain ω(Gm) = m + 1 (see [7, p.
1174]). Note that the groups Gm are nilpotent of class two, so that we wonder if there
is a similar bound when the nilpotency class is strictly greater than two.

All groups considered in this paper are finite. Moreover, p denotes a prime, Fp

the field with p elements and c(G) is the class of a nilpotent group G. Moreover,
Norm(G) is the intersection of all normalizers of subgroups of G.

2 Preliminary results

We start looking for a lower bound for ω(G), in terms of p, when c(G) > 2.

Proposition 2.1 Let G be a p-group satisfying ω(G) ≤ p + 1. Then one of the
following holds:

(i) c(G) ≤ 2;
(ii) ω(G) = p + 1. All proper normalizers are maximal subgroups of G. For every

S ≤ G we have ω(S) ≤ p + 1, and all normalizers of subgroups of S have index
≤ p in S.
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p-Groups with few conjugacy classes of normalizers 153

Proof Let H1, . . . , Ht be the maximal normalizers in G with respect to inclusion.
Then Hi is normal in G for every i ∈ {1, . . . , t}, since G satisfies the normalizer
condition. Let T = 〈G � (H1 ∪ · · · ∪ Ht )〉.

First let G = T . For all g ∈ G � (H1 ∪ · · · ∪ Ht ) we have 〈g〉 � G. Hence
G/CG(g) can be embedded in Aut 〈g〉, and consequently this factor group is abelian.
Thus G ′ ≤ CG(g) for all g ∈ G � (H1 ∪ · · · ∪ Ht ). So G ′ ≤ CG(T ) = Z(G) and G
has class at most 2.

So we may assume that T is a proper subgroup of G. Then we can write G =
H1 ∪ · · · ∪ Ht ∪ T as a union of proper subgroups and

|G| < |H1| + · · · + |Ht | + |T |.

Since |H | ≤ |G|/p for all proper subgroups H of G, it is clear that t ≥ p. Thus
ω(G) ≥ p + 1. Hence ω(G) = p + 1. Then t = p and H1, . . . , Hp are maximal
subgroups of G. In particular, H1, . . . , Hp, G are all normalizers of subgroups of G.
This proves the first statement of (ii).

Now let U ≤ S. Then NS(U ) = NG(U )∩ S = Hi ∩ S or NS(U ) = S. This proves
the claim for S. ��

The following proves the first part of our main theorem:

Proposition 2.2 Let G be a finite p-group. If ω(G) ≤ p + 1, then c(G) ≤ 3.

Proof By Proposition 2.1, either c(G) ≤ 2 or all normalizers of G have index ≤ p.
In particular, G ′ ≤ Norm(G). By [9], we have Norm(G) ≤ Z2(G), and so we get
c(G) ≤ 3. ��

The upper bound for p = 2 cannot be improved upon, because the generalized
quaternion group G of order 24 and class three satisfies ω(G) = 3.

In the remainder of this paper, we sharpen the bound of Proposition 2.2 for p odd.
The first result deals with the structure of a possible minimal counterexample.

Lemma 2.3 Assume that there exists a p-group G, p �= 2, such that ω(G) ≤ p + 1
and c(G) > 2. Choose such a group G of least possible order. Then:

(i) ω(G) = p + 1 and all proper normalizers are maximal subgroups.
(ii) G has precisely one minimal normal subgroup M, say.

(iii) |M | = p, M ≤ Z(G), γ3(G) = M.
(iv) c(G) = 3 and Z(G) is cyclic.

Proof By Proposition 2.1, ω(G) = p + 1 and all proper normalizers H1, . . . , Ht are
maximal subgroups, so that (i) holds. In particular every subgroup of G has at most p
conjugates.

Moreover, if N is a non-trivial normal subgroup of G then we have ω(G/N ) ≤
ω(G) ≤ p +1, and c(G/N ) ≤ 2 by minimality. Hence, there exists a unique minimal
normal subgroup M of G, as stated in (ii). Note that |M | = p, M ≤ Z(G),γ3(G) = M ,
c(G) = 3 and Z(G) is cyclic, so that (iii) and (iv) hold. ��
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3 Metacyclic groups

We restrict to the metacyclic case and we will refer to the paper [5] where we find the
following result.

Lemma 3.1 (see [5, Theorem 3.2]) Let G be a finite metacyclic p-group, p odd. Then:

G ∼= 〈a, b | a pm = 1, bpn = a pm−s
, ab = a1+pm−c 〉

where m ≥ s ≥ 0, n > 0, m > c and one of the following holds:

(i) Split case: 0 = s ≤ c < min{n + 1, m}
(ii) Non-split case: max{1, m − n + 1} ≤ s < min{c, m − c + 1}
Proposition 3.2 Let G be a metacyclic p-group, p �= 2.

If ω(G) ≤ p + 1 then c(G) ≤ 2.

Proof Let G be a counterexample of least possible order. Then Lemma 2.3 applies.
In particular, �(G) ≤ Norm(G) and |γ3(G)| = p.

By Lemma 3.1, we have to distinguish the following cases.
Case 1: Split case.

Then s = 0 and 〈b〉 ∩ 〈a〉 = 1. By Proposition 2.1, a p ∈ NG(〈b〉). Thus [a p, b] = 1
and a p ∈ Z(G). Hence G ′ ≤ 〈a p〉 ≤ Z(G), and G is of class two, a contradiction.

Case 2: Non-split case.
Applying Lemma 3.1, we have 0 < s < c.
Now γ3(G) = 〈[a pm−c

, b]〉 = 〈a p2m−2c 〉. Since |γ3(G)| = p, we get m = 2c − 1.
As above, we have a p ∈ NG(〈b〉). Thus ba p = ba−pc ∈ 〈b〉. It follows that

a−pc ∈ 〈a〉 ∩ 〈b〉 = 〈a p2c−1−s 〉. Thus c ≥ 2c − 1 − s which implies c − 1 ≤ s and
hence s = c − 1. In particular, m − n + 1 ≤ s implies n ≥ c + 1. We thus get:

G = 〈a, b | a p2c−1 = 1, bpn = a pc
, ab = a1+pc−1〉.

Let H = 〈a−1bpn−c 〉. We shall show H �= Hbp
. We have

abp = a(1+pc−1)p

and

(1 + pc−1)p = 1 + (pc−1)p +
p−2∑

i=1

(
p
i

)
(pc−1)p−i + pc ≡ 1 + pc (mod p2c−1).

Hence we obtain abp = a1+pc
. In particular, bp ∈ Z2(G).

As |G : NG(H)| = p, we must have bp ∈ NG(H), so that 〈(a−1bpn−c
)bp 〉 =

〈a−1bpn−c 〉.
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p-Groups with few conjugacy classes of normalizers 155

Since (a−1bpn−c
)bp = a−(1+pc)bpn−c

, there exists λ > 0 such that

a−1−pc
bpn−c = (a−1bpn−c

)λ. (1)

By [4, p. 253] and using that bp ∈ Z2(G), we have:

(a−1bpn−c
)λ = a−λbλpn−c [bpn−c

, a−1]

(
λ

2

)

.

But [bpn−c
, a−1] = a pn−1

, and note that a pn−1 ∈ Z(G).
By (1), we have:

aλ−1a
−pn−1

(
λ

2

)

= bpn−c(λ−1).

Then bpn−c(λ−1) ∈ 〈a〉∩〈b〉 = 〈bpn 〉, and pc | (λ−1). This implies that λ = pch+1,
for some positive integer h. By (1), we get

a−1−pc
bpn−c = (a−1bpn−c

)pch+1 = a−hpc
bhpn

a−1bpn−c
.

As bpn ∈ Z(G) we get a−pc = a−hpc
bhpn = 1, a contradiction because we are

dealing with the non-split case. ��

4 Some p-groups of maximal class

In this section, we recall some well-known results on normalizers in p-groups of
maximal class. mainly due to Blackburn [1].

Lemma 4.1 Let p be odd and let E = E p be the non-abelian group of order p3

and exponent p. Then ω(G) = p + 2. Moreover, every maximal subgroup of E is a
normalizer.

Lemma 4.2 Let G be a p-group of maximal class. Then:

(i) The only normal subgroups of G are the γi (G) and the maximal subgroups of G.
More precisely, if N is a normal subgroup of G of index pi ≥ p2 then N = γi (G).

(ii) If N is a normal subgroup of G of index ≥ p2 then also G/N has maximal class.

The next result is a particular case of Theorem 4 in [3]. For reasons of completeness,
we provide here a simple direct proof.

Proposition 4.3 Let G be a p-group of maximal class of order pn, where p is odd and
n ≥ 4. Then every maximal subgroup of G is a normalizer. In particular, ω(G) ≥ p+2.
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Proof Let M be a maximal subgroup of G. We start with n = 4, then |M | = p3.
Assume exp(M) ≥ p2. Then M has a cyclic normal subgroup U of order p2 and
M ≤ NG(U ). On the other hand, G has an elementary abelian normal subgroup of
order p2 which is the unique normal subgroup of G of order p2. Hence U cannot
be normal in G. It follows M = NG(U ). Now assume exp(M) = p. Then M has at
least two elementary abelian normal subgroup, U1, U2, of order p2 and they cannot
be both normal in G. Thus M = NG(Ui ) for some i ∈ {1, 2}. Now let n > 4. Then
G contains a normal subgroup R such that G/R is of order p4 and of maximal class.
Every maximal subgroup M of G contains R. So, by the first part of the proof, there
exists U/R ≤ G/R such that M/R = NG/R(U/R) and we obtain M = NG(U ). ��

5 Proof of the main result

In this section, we shall prove our theorem for p �= 2. Let G be a counterexample
of least possible order. Lemma 2.3 provides us with some information about G. In
particular, c(G) = 3 and Z(G) is cyclic.

We shall split the proof into two parts according to the existence or non-existence
of abelian normal subgroups of rank ≥ 3. The following result of N. Blackburn is
crucial for the case of small ranks:

Lemma 5.1 (see [4, 12.4 and 12.5]) Let G be a p-group with p odd. If every abelian
normal subgroup of G is 2-generated, then one of the following holds:

(I) G is metacyclic.
(II) G ∼= 〈x, y, z | x p = y p = z pn−2 = 1, [x, z] = [y, z] = 1, yx = yz pn−3〉, for

n ≥ 3.
(III) G ∼= 〈x, y, z | x p = y p = z pn−2 = 1, [y, z] = 1, yx = yzspn−3

, zx = yz〉, for
n ≥ 4 and s = 1 or s is a nonsquare mod p.

(IV) p = 3 and G is of maximal class.

Lemma 5.2 Let G be a p-group with p odd and assume ω(G) ≤ p + 1. If every
abelian normal subgroup of G is 2-generated, then c(G) ≤ 2.

Proof We consider the cases displayed in Lemma 5.1.
If G is as in Case (IV) then either c(G) ≤ 2 and we are done or ω(G) ≥ p + 2,

by Proposition 4.3, and G does not satisfy our hypothesis. Let G be as in Case (I).
Then, the result follows by Proposition 3.2. The groups of Case (II) are nilpotent of
class two and we are also done. So let G be as in Case (III). Then G/〈z p〉 is the non
abelian group of order p3 and exponent p. Then, ω(G/〈z p〉) = p + 2 and hence
ω(G) ≥ p + 2. ��

We finally deal with the case when our minimal counterexample G contains abelian
normal subgroups of large rank:

Proof of Theorem Let G be as in Lemma 2.3. By Lemma 5.2, we may assume that G
contains an abelian normal subgroup A of rank ≥ 3. Refining the normal series 1 <

�1(A) < G, we can choose an elementary abelian normal subgroup N of G of rank 3.
Let Q = G = G/CG(N ). Then Q embeds into a subgroup of Aut(N ) = GL(3, p).
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p-Groups with few conjugacy classes of normalizers 157

As Q is a p-group, we can identify Q with a subgroup of the group U T (3, p) of
unitriangular matrices of the form

m(a, b, c) =
⎛

⎝
1 a c
0 1 b
0 0 1

⎞

⎠

where a, b, c ∈ Fp.
If there exists g such that |CN (g)| = p then the theory of the Jordan canonic form

tells us that N has a basis {n1, n2, n3} with ng
1 = n1n2, ng

2 = n2n3, ng
3 = n3. Consider

the subgroup S = 〈N , g〉 of G. As p �= 2, the order of g is p, so that g p ∈ Z(S).
Thus, 〈n3, g p〉 � S and S∗ = S/〈n3, g p〉 is the group E p of Lemma 4.1. By Lemma
2.3, we must have ω(S) ≤ p + 1. But p + 2 = ω(E p) ≤ ω(S∗) ≤ ω(S) = p + 1, a
contradiction.

Case 1. Q =G contains an element g =m(a, b, c) with ab �= 0. Then |CN (g)|= p.
Case 2. Q contains elements gi = m(ai , bi , ci ), (i = 1, 2) with a1 = 0, b1 �=

0 and a2 �= 0, b2 = 0. Then g := g1 g2 = m(a2, b1, ∗). As a2b1 �= 0, we are
in the case 1.

Case 3. Q ≤ {m(a, 0, c) | a, c ∈ Fp}. Here 〈n2, n3〉 ≤ CN (Q) ≤ Z(G). But Z(G)

is cyclic, a contradiction.
Case 4. Q ≤ {m(0, b, c) | b, c ∈ Fp}. If Q = G = 〈g〉 is cyclic. As Z(G) is cyclic,

we have |CN (g)| = p, so that as above, we arrive at a contradiction. Thus, assume that
Q is a non-cyclic subgroup of U T (3, p). Then Q = {m(0, b, c) | b, c ∈ Fp}. We shall
construct p + 2 pairwise non-conjugate normalizers arising as normalizers of cyclic
subgroups of N . Let {n1, n2, n3} a basis of N and assume that N ∩ Z(G) = 〈n3〉. Let
Uc = 〈n1 − n2c〉 ≤ N , the subgroup of N generated by the vector of components
(1,−c, 0), and Mc = NG(Uc), (0 ≤ c ≤ p−1). Choose gc ∈ G with gc = m(0, 1, c).
Then gc ∈ Mc. Suppose that Mc1 and Mc2 are conjugate for some c1 �= c2. By
Lemma 2.3, both Mc1 and Mc2 are maximal subgroups of G, so that Mc1 = Mc2 .
This implies 〈gc1, gc2〉 ≤ Mc1 = Mc2 = NG(Uc1). Clearly, CG(N ) ≤ NG(Uc1),
so that H := 〈CG(N ), gc1, gc2〉 ≤ NG(Uc1). But H = 〈gc1

, gc2
〉 = Q, and so

H = G ≤ NG(Uc1) = CG(Uc1). This, however, implies Uc1 ≤ Z(G) ∩ N = 〈n3〉,
a contradiction. We thus have found p pairwise non-conjugate proper normalizers.
An analogous argument using U∞ = 〈(0, 1, 0)〉 and g∞ = m(0, 0, 1) yields another
normalizer not encountered before. We arrive at the final contradiction ω(G) ≥ p +2.

6 Examples of finite p-groups G with ω(G) = p + 2

Finally, we list some examples for p-groups G of class 3 and ω(G) = p + 2. We start
with an example which is already known.

Example 6.1 (see [7, p. 1173]) Let G = 〈x, y | x p3 = y p2 = 1, x y = x1+p〉
where p > 2. Then c(G) = 3 and G has p + 2 conjugacy classes of normalizers,
corresponding to the whole group, the subgroups 〈yxi , x p〉 for i = 0, . . . , p − 1,
which are maximal (and in particular normal) in G, and finally to 〈y, x p2〉.
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Example 6.2 Assume p = 3 and let G = A〈x〉, where A = 〈a1〉 × 〈a2〉 is abelian,

a p2

1 = a p
2 = 1, ax

1 = a1a2, ax
2 = a2a−p

1 , x p = a p
1 . Then c(G) = 3, every maximal

subgroup of G is a normalizer and ω(G) = p + 2.

Proof Note that |G| = p4 and c(G) = 3 so that G is of maximal class. Then, by
Proposition 4.3, ω(G) ≥ p + 2. Let U be a non normal subgroup of G. If |U | = p
then U ≤ �1(G) ≤ A and NG(U ) = CG(U ) = A is a maximal subgroup. Let
|U | = p2, by the normalizer condition its normalizer is a maximal subgroup. Hence
ω(G) = p + 2. ��

Next we present an infinite series of examples.

Example 6.3 Let p be a prime and r ≥ 1. Assume p ≥ 5 or p = 3 and r ≥ 2.
Let G = A〈x〉 where A = 〈a1, a2, a3〉 is elementary abelian of order p3, and ax

1 =
a1, ax

2 = a1a2, ax
3 = a2a3, x pr = a1. Then ω(G) = p + 2, and the normalizers are

precisely the maximal subgroups of G.

Proof We have G = 〈x, a3〉, and A is normal in G. The element x induces on A an
automorphism of order p, so that x p ∈ Z(G). The relations imply that G/〈x p〉 is the
non-abelian group of order p3 and exponent p. In particular, G p = 〈x p〉. Moreover,
every maximal subgroup of G is a normalizer, and so ω(G) ≥ p + 2.

We show that 〈a2, x p〉 ≤ Norm(G). Indeed, as x p ∈ Z(G), we have x p ∈
Norm(G), so we need to prove a2 ∈ Norm(G). For this, it suffices to show that
a2 normalizes every cyclic subgroup U of G. Let N = 〈A, x p〉. Then N is abelian
and G/N = 〈x N 〉 is of order p.

If U ≤ N , then clearly a2 normalizes U . So let U �≤ N . By the above, we may
assume U = 〈ax〉 for some a ∈ A. We get

[a2, U ] = 〈[a2, ax]〉 = 〈[a2, x]〉 = 〈a1〉. (2)

If p ≥ 5, then G is regular, so that we have |U | ≥ p2. Thus 1 �= U p ≤ G p = 〈x p〉.
As 〈a1〉 is the unique subgroup of order p of 〈x p〉, we deduce that a1 ∈ U . From (2)
we deduce that [a2, U ] ≤ U whence a2 ∈ NG(U ). We arrive at 〈a2, x p〉 ≤ Norm(G).

Now let p = 3 and r ≥ 2. Here we have (ax)3 = ãx3 for some element ã ∈ A. If
(ax)3 = 1, then we would get x3 ∈ A. But this contradicts r ≥ 2. As before, we get
〈a2, x p〉 ≤ Norm(G).

In all cases, we have shown [G : Norm(G)] ≤ p2. Now Norm(G) is properly
contained in the abelian subgroup N , so that it clearly cannot be a normalizer. Hence
all normalizers are of index ≤ p in G. The result follows. ��

The list of the above examples is by no means complete. In fact, using GAP, among
the groups of order p5 (p ≥ 3) we found three groups G with ω(G) = p + 2 and
class 3.

We do not know the answer to the following

Question Let G be a p-group with ω(G) ≤ p + 2. Do we have c(G) ≤ 3 if p > 2
and c(G) ≤ 4 for p = 2?
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