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In this work we evaluate the B-meson drag and diffusion coefficients in a hot medium constituted of

light mesons (�, K, �K, and �). We treat the B-meson and B�-meson interactions with pseudo-Goldstone

bosons in chiral perturbation theory at next-to-leading order within the constraints from heavy quark

symmetry and employ standard unitarization techniques of next-to-leading order amplitudes in order to

account for dynamically generated resonances (leading to a more efficient heavy-flavor diffusion) and thus

reach higher temperatures. We estimate individual meson contributions from the gas to the transport

coefficients and perform a comparison with other findings in literature. We report a bottom relaxation

length of about 80 fm at a temperature of 150 MeV and for typical momenta of 1 GeV, at which our

approach is reliable. Compared to a charm relaxation length of 40 fm in the same conditions, we conclude

that the B mesons provide a cleaner probe of the early stages of a heavy-ion collision.
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I. INTRODUCTION

The features of matter formed in heavy ion collisions
have been a subject of great interest in the past decades. In
this scenario, heavy-flavored hadrons play an essential role
since they carry heavy quarks produced in the early stage
of the collisions. Therefore, heavy mesons are interesting
probes to understand the evolution of partonic matter since
its creation, unlike pions and kaons, which can be produced
in the thermal medium at later stages.

However, it is worth noticing that the momentum spectra
of charmed and bottomed mesons extracted from heavy ion
collisions undergo modifications because of their inter-
actions with the hadron medium, constituted of pions and
other particles. In this sense, the diffusion of heavy mesons
in an equilibrium hadronic gas must be taken into account
and may be properly studied in the framework of kinetic
theory to compute transport coefficients.

Different approaches have been used to study various
aspects of this topic [1–6]. In particular, in Ref. [1] heavy
quark effective theory and chiral perturbation theory
(ChPT) have been employed, focusing on the lowest pos-
sible temperatures. Attempts to reach higher temperatures
in the context of charmed mesons close to the crossover to
the quark and gluon plasma have been done in Refs. [2,3].
In addition, in Ref. [6] the transport coefficients of B
mesons have been obtained with the use of scattering
lengths as dynamical input.

In our recent work [4] the transport coefficients of
charmed mesons in a hot pion gas were computed, exploit-
ing ChPT at next-to-leading order (NLO) and employing
standard unitarization as guiding principle to reach higher
temperatures and account for the contribution of resonant
channels. Thus, a natural question arises about the appli-
cation of this approach to bottomed mesons, which would

allow a comparison with existing literature and, hence, a
better comprehension of this issue.
In the present work we extend the framework used in

Ref. [4] to evaluate the B-meson drag and diffusion coef-
ficients in a hot mesonic gas, including pions, kaons, and �
mesons, with special attention to the contribution of the
heavier states with respect to the pion gas. We perform
a detailed analysis of the temperature and momentum
dependence of these coefficients as well as their static limit
(vanishing heavy-meson momentum) and scaling proper-
ties with the heavy-meson mass.
The organization of this paper is as follows. In Sec. II,

we introduce the transport coefficients and the chiral
Lagrangian density that describes the interactions between
Bmesons and light mesons. Afterwards, Sec. III is devoted
to obtaining the unitarized scattering amplitude and fitting
the relevant free constants to available data. The transport
coefficients are evaluated and analyzed in detail in Sec. IV
for a pure pion gas. A pertinent discussion of the role of
unitarization of scattering amplitudes in heavy-quark dif-
fusion is also contained in this section. The modifications
in the transport coefficients owing to the inclusion of kaons
and � mesons in the thermal bath are studied in Sec. V.
A summary and concluding remarks are given in Sec. VI.

II. FORMALISM

A. Transport coefficients

We evaluate the transport coefficients of stable Bmesons
propagating through a hot mesonic gas by using the scat-
tering amplitudes obtained from chiral perturbation theory,
taking into account unitarity and heavy-quark symmetry.
We assume that the density of pseudoscalar (B) and
vector (B�) bottomed mesons is very small, so we will
neglect collisions among bottomed mesons themselves
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and concentrate only on their interaction with the light
meson gas in thermal equilibrium.

Following the assumptions made in Ref. [4], the
momentum-space distribution of bottomed mesons must
relax via the Fokker-Planck equation. We choose the

momenta of the elastic collision between a meson Bð�Þ
and a light meson � as

Bð�ÞðpÞ þ�ðqÞ ! Bð�Þðp� kÞ þ�ðqþ kÞ: (1)

In this context, the evolution of the momentum distribution
of bottomed mesons because of their interaction with the
isotropic mesonic gas is fully controlled by the drag (F)
and diffusion (�0, �1) coefficients, written as

Fðp2Þ ¼
Z

dkwðp;kÞ kip
i

p2
;

�0ðp2Þ ¼ 1

4

Z
dkwðp;kÞ

�
k2 � ðkipiÞ2

p2

�
;

�1ðp2Þ ¼ 1

2

Z
dkwðp;kÞ ðkip

iÞ2
p2

;

(2)

where wðp;kÞ denotes the collision rate for a bottomed
meson with initial (final) momentum pðp� kÞ,

wðp;kÞ¼g�
Z dq

ð2�Þ9f�ðqÞ½1þf�ðqþkÞ� 1

2EB
p

1

2E�
q

� 1

2EB
p�k

1

2E�
qþk

ð2�Þ4�
�
EB
pþE�

q �EB
p�k�E�

qþk

�

�XjMB�ðs;t;�Þj2: (3)

In Eq. (3), f�ðqÞ is the bath’s distribution function, MB�

stands for the Lorentz invariant B meson—light meson
scattering matrix element, g� is the Goldstone boson iso-

spin degeneracy (i.e., g� ¼ 3 for the pion), and � denotes
the possible spin degrees of freedom.

In the next subsection we derive the scattering amplitude
M for bottomed mesons in the light meson medium,
necessary to evaluate the three transport coefficients intro-
duced above.

B. Effective Lagrangian for B-meson
and light meson interaction

Our task now is to construct the chiral Lagrangian
density that describes the interactions between the J ¼ 0
and J ¼ 1 B mesons and light mesons. In this sense, we
note that heavy-meson ChPT, described in Refs. [4,7–9] for
the case of charmed mesons, can be applied to the B-meson
sector as well.

Let us start by introducing the pseudoscalar Goldstone
bosons. They follow the nonlinear realization of the
SUðNfÞL � SUðNfÞR chiral symmetry, given in the expo-

nential parametrization

U ¼ exp

� ffiffiffi
2

p
i�

F

�
; (4)

with F being the Goldstone boson decay constant in the
chiral limit and � the matrix incorporating the pseudo-
scalar Goldstone bosons,

� ¼

1ffiffi
2

p �0 þ 1ffiffi
6

p � �þ Kþ

�� � 1ffiffi
2

p �0 þ 1ffiffi
6

p � K0

K� �K0 � 2ffiffi
6

p �

0
BBBB@

1
CCCCA: (5)

Under chiral symmetry, the matrix U is transformed as

U ! U0 ¼ LURy; (6)

where L and R are global transformations under SUð3ÞL
and SUð3ÞR, respectively. The Goldstone boson kinetic
term of the effective Lagrangian is explicitly invariant
under this symmetry

L� ¼ F2

4
h@�Uy@�Ui: (7)

For convenience, a matrix u is introduced as

u ¼ ffiffiffiffi
U

p
; (8)

and is transformed under chiral symmetry as

u ! u0 ¼ LuWy ¼ WuRy; (9)

where W is a unitary matrix expressible as a certain com-
bination of L, R, and �. The axial and vector fields are
constructed as

�� ¼ 1

2
ðuy@�uþ u@�u

yÞ;
u� ¼ iðuy@�u� u@�u

yÞ;
(10)

whose transformation laws read

�� ! �0
� ¼ W��W

y þW@�W
y;

u� ! u0� ¼ Wu�W
y:

(11)

Finally, the covariant derivative that acts on the heavy
meson field reads

r� ¼ @� � ��: (12)

With these ingredients, the leading-order (LO) chiral

LagrangianLð1Þ involving heavy mesons and pseudoscalar
Goldstone bosons is given by

Lð1Þ ¼r�Pr�P
y�m2

BPP
y�r�P��r�P

�y
�

þm2
BP

��P�y
� þ igðP��u�Py�Pu�P�y

� Þ
þ g

2mB

ðP�
�u�r	P

�y
� �r	P

�
�u�P

�y
� Þ"���	; (13)
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where P ¼ ðB�; �B0; �B0
sÞ and P�

� ¼ ðB��; �B�0; �B�0
s Þ� are the SUð3Þ antitriplets of spin-zero and spin-one Bmesons with the

chiral limit masses mB and mB� , respectively. This Lagrangian is indeed invariant under SUð3ÞL � SUð3ÞR symmetry.

The NLO chiral Lagrangian Lð2Þ reads

Lð2Þ ¼ �h0PP
yh�þi þ h1P�þPy þ h2PP

yhu�u�i þ h3Pu
�u�P

y þ h4r�Pr�P
yhu�u�i

þ h5r�Pfu�; u�gr�P
y þ ~h0P

��P�y
� h�þi � ~h1P

���þP�y
� � ~h2P

��P�y
� hu�u�i

� ~h3P
��u�u�P�y

� � ~h4r�P
��r�P

�y
� hu�u�i � ~h5r�P

��fu�; u�gr�P
�y
� ; (14)

where

�þ ¼ uy�uy þ u�u (15)

and � ¼ diagðm2
�;m

2
�; 2m

2
K �m2

�Þ being the Goldstone
boson mass matrix. The 12 parameters hi; ~hiði¼0;...;5Þ
are the low-energy constants (LECs), to be determined.
However, we can make use of some constraints to reduce
the set of free LECs. First, it should be noticed that in
the limit of large number of colors (Nc) of QCD [10],
single-flavor trace interactions are dominant. So, we fix
h0 ¼ h2 ¼ h4 ¼ ~h0 ¼ ~h2 ¼ ~h4 ¼ 0 henceforth. Besides,
by imposing the heavy-quark symmetry, it follows that
~hi ’ hi.
In the following, we use the lowest order of the pertur-

bative expansion of the quantities ��, u�, and �þ in

Eqs. (13) and (14), and construct the scattering matrix of
the interaction between the bottomed mesons and the
pseudoscalar Goldstone bosons.

III. SCATTERING MATRIX FOR THE BOTTOMED
MESON IN THE MESON GAS

A. Scattering matrix elements

With the Lagrangian in Eqs. (13) and (14) we are able to
calculate the scattering of pseudoscalar Goldstone bosons
� off pseudoscalar B mesons as well as vector B� mesons.
In Fig. 1 we show the tree-level diagrams constructed from

the LO and NLO interactions. These include both contact
interactions and Born exchanges.
Note that the Lagrangian density in Eq. (14) has been

manifestly constructed maintaining chiral symmetry,
which is then broken carefully only in perturbation theory
upon expanding in fields and derivatives to construct the
LO and NLO chiral amplitudes. However, since the bot-
tomedmesons are heavy fields, the heavy-meson symmetry
should be recovered by taking mB ! 1. We discuss below
the implications of this limit in the scattering amplitude.
The spin-changing amplitudes B�� ! B� and

B� ! B��, shown in Figs. 1(b) and 1(c), should vanish
in the limit mB ! 1, since a collision with a Goldstone
boson cannot change the heavy-quark spin that decouples
in this limit. It can easily be proved that indeed these
amplitudes are subleading in 1=mb [11].
Turning to the elastic B� and B�� amplitudes, dis-

played in Figs. 1(a) and 1(d), one finds [4] that the Born
exchange terms (proportional to g2 with an intermediate
bottomed meson propagator) are subleading in heavy
quark effective theory, and therefore are suppressed by
m�1

B with respect to the contact interaction.
Hence, the final amplitude for scattering off a bottom

quark in the light meson gas, at NLO in the chiral expan-
sion and LO in the heavy quark expansion, irrespective of
whether the heavy quark is in a B- or a B�-meson state, is
given by

V ’ C0

2F2
ðs�uÞþ2C1

F2
h1þ2C2

F2
h3ðp2 �p4Þ

þ2C3

F2
h5½ðp1 �p2Þðp3 �p4Þþðp1 �p4Þðp2 �p3Þ�; (16)

where Ciði ¼ 0; . . . ; 3Þ are channel-dependent numerical
coefficients in isospin basis, as collected in Table I

[channels are denoted as Bð�Þ�ðIÞ, with total isospin I].

TABLE I. Coefficients of the scattering amplitudes for the
Bð�Þ�ðIÞ channels with total isospin I in Eq. (16).

Ci B�ð12Þ B�ð32Þ BKð0Þ BKð1Þ B �Kð0Þ B �Kð1Þ B�ð12Þ
C0 �2 1 �1 1 �2 0 0

C1 �m2
� �m2

� m2
K �m2

K �2m2
K 0 �m2

�=3
C2 1 1 �1 1 2 0 1=3
C3 1 1 �1 1 2 0 1=3

(a)

(b)

(c)

(d)

FIG. 1. Tree-level diagrams relevant to the scattering ampli-
tudes for Bð�Þ� ! Bð�Þ� processes. The solid, double, and
dashed lines represent the B mesons, B� mesons, and
Goldstone bosons, respectively.
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B. Unitarized scattering amplitude

It is well known that ChPT, involving a perturbative
expansion up to a certain order, is bound to work properly
only at low energies. Particularly, it cannot describe the
presence of resonances in specific scattering channels, since
a resonance shows up as a pole in the S-matrix complex
energy plane. Moreover, the use of ChPT amplitudes at a
finite order leads to cross sections that increase monotoni-
cally with energy, eventually violating Froissart bounds
imposed by the unitarity of the Smatrix. This, in turn, limits
the applicability of the theory in finite-temperature calcu-
lations, since the higher the temperature means the more
energy available for the two-body interaction.

Imposing unitarity of the scattering amplitudes solves
these problems and furthermore accounts for resonances
dynamically generated from the LO amplitudes in those
channels where the interaction is attractive. In the present
case, and motivated by our former experience in the charm
sector [4], we can expect to find resonances in the

Bð�Þ�ð1=2Þ and the Bð�ÞKð0Þ, Bð�Þ �Kð0Þ S-wave channels;
cf. Table I (we briefly review the experimental situation
of the B-meson excitation spectrum in Sec. III C). As a
resonant interaction implies a more efficient diffusion
(and, thus, shorter thermalization times), we believe uni-
tarization of the scattering amplitudes is mandatory in this
approach.

Following Refs. [4,12], using on-shell unitarization via
the Bethe-Salpeter equation, the unitarized scalar ampli-
tude T can be written as

TðsÞ ¼ �VðsÞ
1� VðsÞGðsÞ ; (17)

where VðsÞ is the S-wave projection of the scattering
amplitude in Eq. (16), and GðsÞ stands for the two-meson
loop integral,

GðsÞ ¼ i
Z d4q

ð2�Þ4
1

ðP� qÞ2 �m2
B þ i


1

q2 �m2
� þ i


;

(18)

where m� is the mass of the light meson. Employing

dimensional regularization, this integral reads

GðsÞ ¼ 1

16�2

�
að�Þ þ ln

m2
B

�2
þm2

� �m2
B þ s

2s
ln
m2

�

m2
B

þ qffiffiffi
s

p ½lnðs� ðm2
B �m2

�Þ þ 2q
ffiffiffi
s

p Þ

þ lnðsþ ðm2
B �m2

�Þ þ 2q
ffiffiffi
s

p Þ
� lnðs� ðm2

B �m2
�Þ � 2q

ffiffiffi
s

p Þ

� lnðsþ ðm2
B �m2

�Þ � 2q
ffiffiffi
s

p Þ � 2�i�
	
; (19)

where � is the regularization energy scale, að�Þ is a
subtraction constant that absorbs the scale dependence of

the integral, and q is the modulus of the light meson’s
three-momentum in the c.m. frame,

q ¼ 1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s� ðm� þmBÞ2�½s� ðm� �mBÞ2�

q
: (20)

It is worth mentioning that heavy-meson spin symmetry
guarantees the same scattering cross section for both the
B� and B�� channels, and no further spin averaging is
needed. Then, we use in the collision rate defined in Eq. (3)
the scattering matrix element given by

X jMB�ðs; t; �Þj2 ¼ j �TB�j2; (21)

where j �TB�j2 is the isospin averaged unitarized amplitude,

namely,

j �TB�j2 ¼ 1P
Ið2I þ 1Þ

X
I

ð2I þ 1ÞjTIj2; (22)

with TI being derived from Eq. (17) in the total isospin
basis.
For the sake of comparison with other systems of inter-

est, we also evaluate the corresponding cross sections in
the c.m. frame,

�B�ðsÞ ¼ 1

16�s
jMB�j2: (23)

C. Free constants

The only remaining task before proceeding with the
calculation of the drag and diffusion coefficients is to
determine the free constants of the theory from available
data.
At the level of precision that we are working, the pion

decay constant in the chiral limit can be approximated by
the physical value, F ¼ 92 MeV. The values of the meson
physical masses that we use are mB ¼ 5279 MeV, mB� ¼
5325 MeV, mBs

¼ 5366 MeV, mB�
s
¼ 5415 MeV, m� ¼

138 MeV, mK ¼ 496 MeV, and m� ¼ 548 MeV [13].

Let us focus on the scattering of pions off Bmesons. We
use the renormalization scale � ¼ 1 GeV, and the scheme
is such that the subtraction constant að�Þ ¼ �3:47.
Details in the choice of these numbers are given in the
Appendix. For this choice of parameters we show in Fig. 2
the squared amplitude, jTj2, for B� scattering with isospin
I ¼ 1=2, keeping only the LO ðs� uÞ term in the elastic
amplitude V. This channel, as expected, exhibits a resonant
behavior with a peak around

ffiffiffi
s

p ’ 5530 MeV, which is
in good agreement with the former determinations in
Refs. [14–16].
Notice that we have only considered the isospin channel

I ¼ 1=2 in the square amplitude displayed in Fig. 2. The
exotic I ¼ 3=2 channel is nonresonant in this case and in
all situations presented below.
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In addition, we compute jTj2 for B�� scattering with
I ¼ 1=2, just by replacingmB bym�

B in VðB� ! B�Þ. The
result is plotted in Fig. 3, where now the peak shows up atffiffiffi
s

p ’ 5580 MeV, also in agreement with Ref. [17].
Some comments about the theoretical and experimental

knowledge of the B-meson spectrum are in order: From
heavy quark considerations (confirmed by the well known
charmed meson spectrum) one expects a spin 3=2 doublet
and a spin 1=2 doublet as first excitations. The former is

composed by the states B1 and B2, both of which have been
observed as the B1ð5721Þ0 and B�

2ð5747Þ resonances. These
states are narrow, the B1 state decaying mostly into B�� in
D wave. Therefore, this state does not correspond with the
resonance that is generated in our amplitude. On the other
hand, the other two states B0 and B1 are supposed to exist
(in analogy with the D0 and D1 states for charm) that
should be much broader and have not been discovered
yet. The latter decays into B�� in S wave, which would
naturally correspond to the state that we find in Fig. 3. As
its mass is still not determined experimentally, we can only
guess that it is very close to the mass of the other B1 state,
appearing at 5720 MeV. We justify this guess based on the
fact that, in the charm sector, the masses of the two D1

states are nearly the same, and thus we expect the same
behavior for the B system provided that heavy quark
symmetry works. Many quarks models also predict a simi-
lar mass for the two B1. See Table II for a short review.
The NLO terms, containing the hi constants, may be

used to improve our results concerning the position of the
observed resonances in view of the former discussion. h1 is
fixed by the mass difference between the strange and non-
strange B mesons, as obtained from the chiral Lagrangian

Lð2Þ. We have

m2
Bs
�m2

B ¼ �4h1ðm2
K �m2

�Þ; (24)

for the pseudoscalar B mesons, and

m2
B�
s
�m2

B� ¼ �4h1ðm2
K �m2

�Þ; (25)

for the vector B mesons. Replacing into these equations
the values of the masses introduced above, we get
h1 ¼ �1:020 and �1:064 for the scalar and vector cases,
respectively. We shall adopt in our computations an aver-
age value: h1 ¼ �1:042. We note that the value of h1 does
not yield any relevant changes in the squared amplitudes,
since the corresponding term in the NLO amplitude is
multiplied by a small m2

� constant.
The last free LECs to be estimated are h3 and h5. We

proceed to fit them by demanding that the B�� squared
scattering amplitude peaks at the mass of the B1ð5721Þ0
resonance ½IðJPÞ ¼ 1=2ð1þÞ�; ð5723:5� 2:0Þ MeV [13].
Following the discussion in Ref. [8] we can estimate a
valid range for h5 from our results in the D sector. Taking
into account that h5 scales as h5 �m�2

D , we use for the
B sector

 (GeV)s

5.4 5.6 5.8 6 6.2

2 |
(1

/2
)

|T

100

200

300

310×

FIG. 2. Square amplitude for B� scattering with isospin
I ¼ 1=2 and at LO in ChPT.

 (GeV)s

5.4 5.6 5.8 6 6.2

2 |
(1

/2
)

|T

100

200

300

310×

FIG. 3. Square amplitude for B�� scattering with isospin
I ¼ 1=2 at LO in ChPT, computed replacing mB by m�

B

in Eq. (17).

TABLE II. List of heavy meson states. Left side: D mesons. Right side: B mesons. The two states in bold font are the ones that we
obtain in our unitarization scheme. Experimental data are taken from Ref. [13]. Lack of experimental evidence is labeled with a
question mark.

Heavy spin, J� D (quark model) D (experimental) ðM;�Þ MeV B (quark model) B (experimental) ðM;�Þ MeV

1=2, 0þ D0 D�
0ð2400Þ 2318, 267 B0 ? ?

1=2, 1þ D1 D1ð2430Þ 2427, 384 B1 ? ?

3=2, 1þ D1 D1ð2420Þ0 2421, 27 B1 B1ð5721Þ 5723, ?

3=2, 2þ D2 D�
2ð2460Þ 2466, 49 B2 B�

2ð5747Þ 5743, 23
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hB5 ¼ hD5

�
mD

mB

�
2
; (26)

leading to a value of h5 ¼ �0:04 GeV�2. The value of h3
does not affect much the pole position of the resonance.

Choosing a value of h3 ¼ 2:5, we obtain the final result
in Fig. 4. The predicted mass for this state from the peak of
the amplitude is still about 100 MeV below the B1ð5721Þ0
mass. We find, as discussed in the Appendix, that it is not
possible to fix simultaneously the low energy and subtrac-
tion constants—in a natural choice—to get values nearer
the expected B1ð5721Þ mass. Furthermore, our findings are
in agreement with those in Refs. [14,15,17]. Because of the
lack of experimental evidence of a B1 state decaying into
B��, the most reasonable choice is to keep the values of the
LECs determined above.

For completeness, we also compute B� scattering
at NLO in ChPT. This channel is also resonant, with
mB0

¼ 5534 MeV. Again, there are no data yet at our

disposal to compare with. The total cross section for the
B� channel (considering the two isospin channels I ¼ 1=2
and 3=2) is shown in Fig. 5.
The I ¼ 1=2 cross section at threshold is 18.1 mbarn, or

equivalently an S-wave scattering length of a1=2B� ¼
0:38 fm or m�aB�

¼ 0:26 is found, in total agreement

with the results of Flynn and Nieves [16] but larger than

the result of Liu et al. [18], a1=2B� ¼ 0:25 fm. For the repul-
sive channel I ¼ 3=2 we find a cross section of 1.5 mbarn,

or a3=2B� ¼ �0:11 fm, close to the results in Ref. [18]
of �0:17 fm.
After the estimation of the free relevant constants for the

Bð�Þ� scattering amplitude, we are now in position to
compute the transport coefficients, which are the subject
of the next section.

IV. DRAG AND DIFFUSION COEFFICIENTS

We proceed to calculate the F, �0, and �1 transport
coefficients defined in Eq. (2), for bottomed mesons in a
pure pion gas. We expect the contribution of pions to be the
most relevant one because of their large multiplicity in
comparison to other particles. For completeness, in this
work we also account for the effect of the other members of
the light meson SUð3Þ octet. A detailed discussion is given
in Sec. V.
In Fig. 6 we show the dependence on the temperature

and B-meson momentum of the drag coefficient F. We
observe an increase of a factor of about 6–8 in the range
from T ¼ 100 to 180 MeV, which means that the tempera-
ture evolution of the thermal medium can modify the
nature of its interaction with the B mesons. So, the drag
in a heavy-ion collision is considerably strengthened in the
hotter stages, with a significant interaction between heavy
mesons and thermal medium, and accordingly at larger
momentum transfers. However, as the temperature of
thermal bath diminishes, the magnitude of interaction
decreases and the bottomed mesons move more freely.
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The drag coefficient exhibits a mild momentum depen-
dence of about 10% in the range [0.5, 2.5] GeV, whereas
it is more pronounced at low p. From this coefficient we
estimate the relaxation length of bottom quarks in the
hadronic medium. Taking the pion gas at a temperature
of 150 MeV (at which our approach is reliable), we find

�BðT¼150MeV;p¼1GeVÞ¼ 1

F
’ 1

0:01
fm¼100 fm

(27)

for bottomed mesons traveling with a typical momentum
of 1 GeV. This value of �B is considerably bigger than the
case of charmed mesons, evaluated in the same approach
in Ref. [4] (there �D ’ 40 fm). Thus, it is reasonable to
expect that the lifetime of the pion gas (typically 5–10 fm)
is smaller than the relaxation time of bothD and Bmesons,
which means that heavy quarks do not completely relax
before leaving the hadronic medium.

Another point worthy of mention is that the drag coef-
ficient for charmed mesons computed in our previous work
[4] is about 3 times larger than the one for bottomed
mesons at small p. This scaling is the correct one when
looking at the nonrelativistic expression of this coefficient
in the static limit

F ’ 1

3
�P

ffiffiffiffiffiffiffi
m�

T

r
1

mB

; (28)

where � is the total cross section and P the pressure of the
gas. Note that there is a dependence on the heavy-flavor
mass in the denominator. This makes the drag coefficient
smaller for heavier mesons. With respect to the D meson
system, the drag force is suppressed by a factor of
mB=mD ’ 2:8 in very good agreement with what we
observe in our results. Note that in the low-energy limit
the cross section does not depend on the heavy meson
mass. This is not the case at higher temperatures where
Eq. (28) contains further corrections in powers of 1=mB.
This scaling is also observed for the drag coefficient
of b and c quarks in the static limit beyond the critical
temperature within the phenomenological approach of
Refs. [19,20], in total accordance with our findings in the
hadronic phase. We observe, however, that this scaling is
not maintained in the results of [3,6]. There, a similar
approach based on heavy-meson ChPT amplitudes is
used to calculate the transport coefficients of D and B
mesons. However, the authors employ NLO perturbative
amplitudes in the case ofD� scattering [3], overestimating
the effect owing to the high-energy dependence of their
cross sections. This is partly solved in Ref. [6] for the
B system, where NLO amplitudes at threshold energy
(scattering lengths) are used in the evaluation of B-meson
transport, thus taming the high-energy behavior of the
amplitudes. In contrast, this approximation underestimates

diffusion from resonant scattering in the Bð�Þ�ð1=2Þ chan-
nel. This discussion reinforces the role of unitarization of

low-energy scattering amplitudes to obtain realistic trans-
port coefficients at high temperatures in the heavy-flavor
sector. A more detailed discussion of the use of perturba-
tive versus unitarized amplitudes is carried over at the end
of this section.
In Fig. 7 the temperature dependence of the B-meson

diffusion coefficients �0 and �1 is displayed for several
momenta. The two coefficients become degenerate in the
static limit, p ! 0. At p ¼ 0:1 GeV this limit is already
well reached. Interestingly, one finds that numerically
these coefficients are very similar to those obtained
for the D meson case in Ref. [4]. Looking at the non-
relativistic expression of these coefficients gives a clue for
this fact,

�0;�1 ’ 1

3
�P

ffiffiffiffiffiffiffiffiffiffi
m�T

p
; (29)

where we have used the Einstein relation

F ¼ �

mBT
(30)

to obtain this equation. The coefficients �0 and �1 are
independent of the heavy quark mass in the nonrelativistic
limit. For this reason the results in Fig. 7 are basically the
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same as those in Ref. [4]. In Refs. [19,20] very similar
diffusion coefficients are found in the c and b quark
systems, confirming the prediction of the nonrelativistic
kinetic theory. These findings constitute an additional con-
sistency test of our calculations.

In the following we study the role of unitarization in
obtaining realistic amplitudes for B meson scattering off
the light gas and its impact on the transport coefficients.
We deem this an important point for understanding the
wide range of results for transport coefficients that can be
found in literature within similar approaches based on
effective theories of heavy meson interactions. In Fig. 8
we depict the B� total cross section in three different
schemes: using NLO (perturbative) chiral amplitudes, uni-
tarized amplitudes as described in Sec. III B, and NLO
amplitudes evaluated at threshold energy (scattering
lengths). We observe that the perturbative cross section
grows monotonically with energy, as expected from the
chiral expansion. The cross section within the threshold
approximation is essentially flat over the full energy range.
The unitarized cross section, in contrast, peaks at the
resonance region, dominating over the other two schemes,
whereas later it decreases at higher energies as expected

from phase space considerations. The corresponding drag
coefficient with p ¼ 0:1 GeV is shown in the lower panel
of Fig. 8. The perturbative scheme leads to an unrealistic
temperature behavior of F, which is clearly tied to the
unphysical high-energy behavior of the cross section.
The scattering length approach does not suffer from this
artifact at high energies. However, it provides a rather
smaller diffusion coefficient (factor 1.5–2) over the whole
temperature range as compared to the unitarized scheme,
since it misses the s-channel enhancement of the interac-
tion because of the presence of resonances. The unitarized
scheme leads to the most realistic result in our opinion,
accounting for the phenomenology of the heavy-meson
interaction in view of the current knowledge of the
B-meson spectrum, and with a controlled high-energy
behavior.
Finally, a comment on the Einstein relation within our

calculation is in order. In the evaluation of F, �0, and �1 we
have not made use of the Einstein relation to obtain the
coefficients at low momentum, but performed the calcu-
lation explicitly as in Eqs. (2) and (3). A pertinent consis-
tency test can be done by obtaining the diffusion
coefficient from the drag coefficient (or vice versa) in a
static limit from the Einstein relation. Numerically, the
integrations in Eq. (2) have to be performed with a suitable
pion momentum cutoff, which is the scale at which the
effective theory ceases to be valid. The presence of this
cutoff is expected not to affect the integrations (at least
at low temperatures) because the distribution function
suppresses the integrand at large pion momentum so that
high-energy contributions are negligible. In practice, the
used cutoff �� � 4�f� ¼ 1:2 GeV makes our results

sensitive at high temperatures, where the Einstein relation
is not well fulfilled. Notice that one cannot arbitrarily
increase this cutoff to achieve convergence, as this implies
that the scattering amplitudes have to be evaluated at
energies that escape the expected validity of the effective
theory. This would introduce an uncontrolled uncertainty
in the coefficients. Therefore we prefer to use the safe value
of 1.2 GeV for the pion momentum cutoff. Studying how
much the static coefficients deviate from fulfilling the
Einstein relation as a function of the momentum cutoff
can be considered as an estimate of the systematic error in
our computation of the transport coefficients. An example
of this is provided in Fig. 9. In the upper panel we plot the
function F at p ¼ 0:1 GeV (very close to the static limit)
as obtained from Eqs. (2) and (3) with a momentum cutoff
of 1.2 GeV, together with the determination from �0, �1

using the Einstein relation. In the lower panel the same
curves are shown with a cutoff of 3 GeV. This higher cutoff
ensures convergence of the transport integrals at all tem-
peratures, and the Einstein relation is well satisfied. It is
worth mentioning that the scattering length scheme dis-
cussed above ensures a much quicker convergence of the
transport integrals, at a cost, however, of implementing an
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unrealistic energy dependence of the heavy-light meson
cross sections and missing the phenomenological informa-
tion from resonance-enhanced diffusion.

V. EFFECT OF KAONS AND � MESONS

Analogous to our previous work, so far we have studied
the interaction of the bottomed mesons with pions, as they
are most abundant. However, the mesonic gas is also
populated by kaons and � mesons, with whom the heavy
mesons can also interact. In Sec. III we only discussed
scattering channels involving pions, although we have
actually extended the computation to the other members
of the SUð3Þ octet. With this information it is straight-
forward to implement the contribution from kaons and �’s
to the transport coefficients. We also added these states
for the sake of comparison with other references, particu-
larly Ref. [6].

The changes in our calculation are minimal, and they
affect the collision rate w defined in Eq. (3), which now
reads

w ¼ w� þ wK þ w �K þ w�: (31)

We note that the contribution to the transport coefficients
from different species in the gas is always additive, so we
expect a moderate increase with the inclusion of these
new states.
In Fig. 10 we plot the �0 coefficient of B mesons with a

momentum p ¼ 0:1 GeV, considering the mesonic gas
constituted by different particles. We see that the most
relevant contribution comes from the pion gas, as expected.
Performing a decomposition of individual hadron
contributions to �0 at T ¼ 150 MeV, we observe that
pions provide almost 90% of the total, while the next
contribution is provided by kaons and (mostly) antikaons.
The contribution of � mesons is almost negligible, in
agreement with the fact that the B� interaction vanishes
at LO.
In Fig. 11 we compare the value of the F and �0

coefficients at p ¼ 0:1 GeV with those of Ref. [6]. It can
be noticed that our results are larger than those of Das et al.
[6], where no unitarization is performed. �0, though, exhib-
its a smoother growth with temperature in our case,
actually being overtaken beyond T ’ 150 MeV. We
believe that the reason for this discrepancy is the use, in
Ref. [6], of scattering lengths (valid in principle for very
low energies) in the whole energy and temperature range.
As discussed above, this will certainly bring an under-
estimation of the cross section in the region where reso-
nances take over, producing lower transport coefficients.
In contrast, at very high energies, the use of a constant
cross section may lead to the opposite effect, explaining
the behavior of �0 in the high-temperature region
from Ref. [6].
Another point deserving attention is the relaxation of

bottom quarks in the present situation, for the sake of
comparison with that obtained in Sec. IV, which has been
calculated for a pure pion gas. Taking the meson gas at a
temperature of 150 MeV, the relaxation length of bottomed
mesons traveling with 1 GeV momentum in the full meson
gas is
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�BðT¼150MeV;p¼1GeVÞ¼ 1

F
’ 1

0:0124
fm’81 fm:

(32)

We find that the value for �B in Eq. (32) is reduced with
respect to that estimated in Eq. (27), since in the present
case the inclusion of other contributions to the meson gas
yields an increase of the transport coefficients. However,
this thermal relaxation time continues to greater than the
lifetime of hadron gas, allowing us to consider that indeed
heavy quarks are carriers of information of the phase
transition upon exiting the hadron gas.

For completeness, we also account in Figs. 12 and 13 for
the evolution of the transport coefficients and the extracted
bottom relaxation length with the heavy-meson momen-
tum, in the full meson gas, at a temperature of 150 MeV.

Notice that we have presented results in a wide tempera-
ture range. When T is of the order of the pion mass, some
corrections in our scheme are in order because of (i) the
loss of the diluteness assumption in the kinetic equation,
and (ii) missing medium effects in the scattering ampli-
tudes. To have an idea of the error owing to this fact, we
have studied the effect of a change in the pion mass for
the case p ¼ 1 GeV and T ¼ 150 MeV. With a 10% of
the pion mass variation, i.e., m� ¼ 138� 14 MeV, we
obtain F ¼ 1:24þ0:03

�0:04 � 10�2 fm�1, �0 ¼ ð9:07� 0:29Þ �
10�3 GeV2=fm, and �1 ¼ 9:75þ0:29

�0:31 � 10�3 GeV2=fm,

which represent a variation of 3.2% around the central
value in the three cases. We thus expect large temperature
corrections to be relatively small. In view of the latter,
we have assigned an uncertainty to the relaxation length in
Eq. (32): �B ¼ 81� 2 fm.
In the present approach we can also estimate the energy

and momentum loss per unit length of a bottomed meson
traveling in the meson gas from the classical interpretation
of the F coefficient as a drag force. One has
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dE=dx ¼ �Fp; and dp=dx ¼ �FE; (33)

in terms of the energy and momentum of the bottomed
meson. These quantities are depicted in Fig. 14 at
T ¼ 150 MeV for the SUð3Þ meson gas. Thus, a reference
bottom quark in a B or B� mesonic state with a typical
momentum of 1 GeV with respect to the rest frame of the
surrounding medium loses about 70 MeV per Fermi as it

propagates in the hadron gas. This effect should be taken
into account to correctly analyze heavy-meson distribu-
tions, suggesting that the hadronic phase also has to be
treated in hydrodynamical simulations regarding open
heavy flavor probes.
Finally, we calculate the spatial difusion coefficient,Dx,

which can be related to the diffusion coefficient in the
static limit as Dx ¼ T2=� (cf. Ref. [4], Appendix B for
details). It is shown in Fig. 15 together with our previous
result for charmed mesons, below the crossover, and with
the estimations by Rapp and van Hees for c- and b-quark
transport properties above the critical temperature [19–21].
The conclusion observed for the charm sector is here
confirmed for the bottom: the minimum relaxation time
for heavy flavor seems to take place around the crossover,
where one expects strongest (and long-range) interactions.
Our present work reinforces the use of heavy flavor as
probes of the QCD phase transition by reducing theoretical
uncertainties regarding the dynamics in the hadronic
phase.

VI. SUMMARYAND CONCLUSIONS

In this work the drag and diffusion coefficients of bot-
tomed mesons in a thermal gas of pions, kaons, and �
mesons have been evaluated in a Fokker-Plank transport
approach. The dynamics of the interaction of B andB� with
the light mesons has been modeled, employing a unitarized
version of heavy-meson chiral perturbation theory within
the constraints of heavy quark symmetry. The relevant
scattering amplitudes have been calculated at next-to-
leading order in the chiral expansion and leading order in
the heavy quark limit, and the free parameters have been

constrained by available data on the Bð�Þ spectrum and
heavy-quark considerations.
We have observed a sizable temperature dependence of

the transport coefficients, indicating that both drag and
diffusion are more efficient in the hotter stages of the
hadronic phase in a heavy-ion collision.
Regarding momentum dependence, it turns out that F

and �0 change only mildly, whereas the transverse coeffi-
cient, �1, is particularly sensitive to the momentum of the
heavy meson. The latter may lead to observable conse-
quences in the analysis of anisotropic observables such as
the elliptic flow.
In addition, a detailed comparison has been accom-

plished between our outcomes and the other ones in litera-
ture obtained via different approaches. Our statements rely
on good control of the elementary B-meson interaction
with the light meson octet over a wide range of energies,
accounting for dynamical generation of resonances in
attractive channels. We have shown that preserving unitar-
ity in the scattering amplitudes plays an essential role in
providing realistic estimates of the transport coefficients at
high temperatures.
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We have performed several consistency tests of our
results such as studying the scaling of transport coefficients
with the heavy-quark mass and verifying the Einstein
relation in the static limit, which were satisfactory.

Moreover, the individual contribution of pions, kaons,
and � mesons to the transport coefficients have been
estimated. The most relevant contribution is led by the
pion gas, as expected, with the next-to-leading contribution
being provided by kaons and antikaons.

Also, some estimations of relevant quantities have been
done directly from the transport coefficients. One example
is the bottom relaxation length, which is about 80 fm for
bottomed mesons with momenta of 1 GeV and for meson
gas at temperature of 150 MeV. It allows us to infer that
bottomed mesons barely relax during the lifetime of the
hadron gas, unlike charm mesons that, while not relaxing
completely, lose a great deal of memory of the initial state.
In this sense, the bottomed mesons constitute an optimal
system to characterize the early stages of a relativistic
heavy-ion collision. Observables like the nuclear suppres-
sion factor or the elliptic flow can provide clear indications
of the system properties and evolution after the nuclear
collision.

Furthermore, the computation of the spatial diffusion
coefficient for the present case is in agreement with the
idea that the relaxation time for heavy quarks has a mini-
mum around the crossover to the quark-gluon plasma, the
expected place of strongest interactions.

Another interesting quantity evaluated has been the
momentum loss per unit length, which is 70 MeV per
Fermi for a bottomed meson with momentum of 1 GeV
propagating in the hadron gas. This result indicates that to
correctly analyze the heavy-meson distributions, the effect
of loss of energy and momentum must be taken into
account.

Hence, the findings of the present work discussed above
reinforce the role of heavymesons as probes of the strongly
interacting matter phase transition, paving the way to a
better understanding of heavy-flavor dynamics and trans-
port properties below the crossover.
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APPENDIX: SUBTRACTION CONSTANT

In parallel with the work of Ref. [4] we would like
to provide a reasonable description of meson-meson scat-
tering in such a way that the pertinent resonances in the
different channels are generated. In particular, wewould like
to reproduce the B0 and B1 resonances in the B� and B��
channels, respectively. However, the masses and widths of
these resonances are not yet experimentally known.
Starting at LO, there are no free low-energy constants,

and the perturbative amplitude V in the B�� channel is
fixed. In the unitarized amplitude—the one that generates a
pole in the amplitude—we introduce a subtraction constant
að�Þ. This constant will be fixed by matching the function
GðsÞ in dimensional regularization to the one with a cutoff
regularization scheme.
The loop function GðsÞ in dimensional regularization is

given in Eq. (19). The regularization scale � is chosen at a
natural scale of 1 GeV [22] In a cutoff regularization one
has [23]
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FIG. 16 (color online). Re GðsÞ and Im GðsÞ from Eq. (19)
(dimensional regularization) and Eq. (A1) (cutoff regulariza-
tion). We match the loop function in the two regularization
schemes at

ffiffiffiffiffiffi
sth

p ¼ mB þm�. At higher energies G
�ðsÞ becomes

nonphysical and diverges around
ffiffiffiffiffiffi
s1

p ¼ 6 GeV.
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Note that this expression is valid below and above thresh-
old. The equivalent cutoff in momentum, �, is obtained
by matching both expressions where we use the value of
að�Þ in the D� sector [4]. It is well known that G�

presents a spurious divergence at some s1 above threshold,
where its determination is unreliable. For this reason, one
typically compares the two loop functions at threshold
sth ¼ ðmB þm�Þ2 (see Fig. 16).

Combining all these requirements, we obtain
að1 GeVÞ ¼ �3:47, corresponding to a reasonable cutoff
momentum of about 1 GeV. Within this scheme we obtain
a resonance around 5580 MeV at LO in the I ¼ 1=2
channel, about 100 MeV below the reference value of

the mass of the B1 (heavy quark spin 3=2). At NLO the
two free low-energy constants h3 and h5 can modify the
pole position and width. Varying these parameters within
the constraints of HQ symmetry, a maximal value of
5587 MeV can be found for the pole position, with a
width around 245 MeV. Although higher values of the
resonance mass can be forced by tuning the subtraction
constant, to keep the equivalent cutoff of natural scale we
content ourselves with a B1 pole mass of 5587 and
5534 MeV for the B0 resonance (with a width of
210 MeV). Our results agree with previous studies using
similar unitarization methods. They are summarized in
Table III.
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