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A lower bound for the norm of the second fundamental form
of minimal hypersurfaces of S"*!

By

J. N. BARBOSA and A. BARROS

Abstract. The aim of this paper is to give an estimate for the squared norm S of the second
fundamental form A of a compact minimal hypersurface M" C S"*! in terms of the gap n — A1,
where 1] stands for the first eigenvalue of the Laplacian of M. More precisely we will show that
there exists a constant k > n"f] such that § > k"n;1 (n—2Xryp).

1. Introduction. Let M" be a closed and orientable Riemannian manifold, i.e. compact
without boundary and let us denote by S™ a unit Euclidean sphere. If ¢ : M" — S"*7
is a minimal immersion then A¢ + ng = 0, where A stands for the Laplacian of M with
its induced metric, see e.g. [13]. Hence n is an upper bound for the first eigenvalue A
of A. In 1983 Leung [8] have shown that the gap n — A1 is a lower bound for § = |A|?,
where A stands for the second fundamental form of ¢, provided S is constant. Among the
purposes of this subject one of them is to answer a interesting question posed by Chern
[4] for hypersurfaces concerning the gap of S under the assumption of S constant. In a
recent paper Barros [1] have improved Leung’s gap for compact minimal hypersurfaces
M" C S"*! by showing that § = ¢ (n, k) "1 (n — A1), where ¢ (n, k) = % and k
depends on the dimension of the kernel of A. The main purpose of this paper is to improve
the above result for compact minimal hypersurface M" C S by showing that there is
a rational constant k € [n"Tl, n] depending either on A or on the first eigenfunction of A

such that § = k=D (n — 1),
We point out that the first contribution to such problem was given in 1968 by Simons [12]
who showed that if S satisfies0 < § < 5 ", then either S = 0, and M is totally geodesic,

n

P
or else S = T In 1969 was shown by Lawson [7] and independently, in 1970, by

14
Chern et al [5],if § = 2jl hence S = n and M" is a Clifford torus in S*t'. In 1998
P

Chen-Yang [3] have showed for hypersurfaces if S > n then § = %n. On the other
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hand it was conjectured by Yau [14] that for any embedded compact minimal hypersurface
M" C S"T! the first eigenvalue of A satisfies A1 = n. The first general contribution to Yau
problem was given by Choi-Wang [6] where they have proved that 1; = 5. Taking into
account our inequality we derive A; = n(1 — kn%l). Hence we get an improvement of the
Choi-Wang bound provided S is constant and k (n — 1) = 2S. We also point out that Yau
problem was solved for a certain class of isoparametric minimal hypersurfaces by Muto
[9]. But in such case our gap is zero since n — A1 = 0. It should be noted that according
to the results of Simons, Chern-do Carmo-Kobayashi and Lawson quoted above our bound
turns out better then their one provided k@ (n — A1) = n. Now we will announce our
result according to the next theorems.

Theorem 1. Let M" be a compact orientable Riemannian manifold. We consider
¢:M"— S a minimal immersion. Let f be afirst eigenfunction of the Laplacian of M"
associatedto Ay. Letl(p) denotes the number of nonnull components of V f with respect to a
principal referential E;, = {e1(p), ..., ex(p)}inp € M. Ifly = ;réiﬁr/}{l(p) | Vf(p) # 0},

ko = =5 iflo = 1 and ko = lo for lo = 2, then

/S|Vf|2 > Koln = 1;(” — M) / VP
M

M

In particular, if S is constant, we have S = w

Theorem 2. Let M" be a compact orientable Riemannian manifold. We consider
¢: M — S a minimal immersion. If f denotes a first eigenfunction of the Laplacian
of M" associated to )| and k = max dim ker A, then

/SIVf|2 > n—no)(n — D — 1) / VR
M

n
M

where

)k, if k<n-2
M= -2, if k=n—1or k=n.

In particular, if S is constant, we have S > qu

2. Preliminaries. One of the basic tools in our work is the Bochner-Lichnerowicz for-
mula which states that for a differentiable function f : M — R

(2.1 %A(IVflz) = Ric(Vf, V) + (Vf, V(Af)) + | Hess f|*,

where Hess and Ric denote, respectively, the Hessian form and the Ricci tensor of M, and the
norm of an operator T considered here is the Euclidean, which is given by |T|*> = tr(TT*).
The proof of this formula can be found in [2] or [11].
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If Af + X1 f =0, according to formula (2.6) of Barros [1] we have

(2.2) /|Hessf|2=/|Hessf+%ﬂ|2+%/|Vf|2.
M M M

Therefore,

(2.3) LﬁHmez%/WWW
M M

Moreover, the equality holds if and only if M is isometric to the sphere S”(@). See
Theorem A of Obata [10].

Another ingredients to aid our proofs are the next two lemmas of linear algebra. The first
one states the following:

Lemma 1. Let V be a vector space of finite dimensionn. Let T : V — V be a traceless

symmetric linear operator and let {ey, ..., e} be an orthonormal referential such that
n

Tei = pjej,i=1,...,n. Forv="> vje; inV letl be the number of nonnull components

i=1
v; of v and we set ko = -5 ifl = 1 and ko = I, otherwise. Then we have

1 21,12 - 2.2
TP 2 3wl
i=l1

Proof. In order to derive the lemma we will use the Lagrange multipliers method to
find the maximum of the function

n
. 2.2
F.(XI,---yxn7y17"'7yl’l) inyi’
i=1

with constraints
n n n
2 2 2 2
doxr=ITP, D yi=PWPA D x=0,
i=1 i=1 i=1

Vs 1 0 and Vier=...=y, =0.
Then, using Lagrange multipliers we obtain the following system

WP = axity

(24) 5 , i=1,...,n.
xiyi = Byi

From where we obtain

D = ad vy

(2.5) - 5 , i=1,...,n.
X Vi ﬁyi
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Summing up the above equations one obtains
(2.6) F =a|T|> = Bv|*

Letus assume thatae # 0 and 8 # 0, otherwise F = 0 by (2.6). If [ = n, it follows from the
equations x?y; = By;,i = 1,...,n,0f (24) that B = x = ... = x2, |T|* = nx} = np.
Consequently we obtain

1
F = —|T)*lv]%.
n
If I < n, by system (2.4), we infer that
B = xlz =...= xlz
and
4
X4l = ... =Xy = ——.
o

n
When ! = 1, we have 8 = x12 and the constraint ) | x; = 0 yields
i=1

1
n—1

Xp=...=Xp = — X1.
If y = 0, then x,, = 0 implies x; = 0 and F = 0. Hence we may assume that y # 0 to
obtain

1 n
|T|2=x%+(n—1)x,21=x12+n_1x%= B.

Therefore,
n—1
F=ph*= T|T|2|v|2'

Letus suppose now 2 < [ < n. Inthis case, |T|2 = lx12+(n—l)x,%. Thus, |T|2 > lx12 =18
and consequently we have

1
JITPIP 2 F
which finishes the proof of the lemma. [

Lemma 2. Let V be a vector space of finite dimension n and let T : V — V be a
traceless symmetric nontrivial linear operator. Let also {e1, ..., ey} be an orthonormal
referential such that Te; = pie;, i = 1,...,n. If k = dimker T then given a nonnull

n
vector v =Y vje;, we have
i=1

1 21,12 - 2.2
— TP 2} uiv}.
i=1
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Proof. Without loss of generality we suppose that 1 = ... = ur = 0 and w41, ...,
Un 7 0. As in the previous lemma, we will use also Lagrange multipliers method. Now
we should to find the maximum of the function

n
. 2.2
G:(X1, s X, V1o eoes V) > § XEyis
i=l1

with constraints
n n n
2 2 2 2
Yoyi=wl Y =T Y xi=0,
i=1 i=1 i=1

x1=...=xk=0 and xk_H,...,xn;éO.

Then, we will find solutions of the system

V2 o= .
2.7) {"gyi A T TS
x7yi = Byi

Using a similar argument as that one of the previous lemma, we multiply the 7 first equations
of (2.7) by x;, the n last ones by y; and summing up we obtain

(2.8) G =a|T|)? = Blv|%.
We will suppose that @ # 0 and § # 0. In another way, by (2.8) we have G = 0. Since
x; =0,fori =1,...,k,itfollows from (2.7) that y; = ... = y; = 0. Taking into account
this on the first k-equations of (2.7) we derive that y = 0. Hence we have x; yl.2 = ax;,
fori = k+1,...,n. Therefore, yx+1,...,yx # 0 and by the equations xl.zy,- = Byi,
i=k+1,...,n, weinfer that

ﬂ:x,?H =... =x,%.

Thus, |T|? = (n — k)x,2Z = (n — k) B and we conclude that
1
—— TP 2G
n—=k
which finishes the proof of the lemma. [
3. Proof of Theorems.
Proof of Theorem1. Given p € M, let k; be the principal curvatures of M in p,

relationed with the referential £, ie., Ae; = kie;, i = 1,...,n, in p. Making use of
Gauss equation we derive

Ric(e;, e;) = (n — 1 — k?)8;;.
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n
Now for a differentiable function f defined on M", writing Vf = > fie; in p we have
i=1

n
Ric(VA V) =@m—DIVF* =) kf.
i=1
We may apply Lemma 1 in each point of M to obtain the inequality

| n
CSIVAE 2 gk?ff,

where kq is given according to Theorem 1. Consequently we derive

(3.1) Ric(Vf, Vf) = (n—=DIVS~ k—loSIVflz.

If, in addition A f = —AX1 f, then the Bochner-Lichnerowicz formula (2.1) yields

(3.2) %A|Vf|2= |Hess f|? + Ric(V f, V) — A |V f]2.

Hence integrating (3.2) and using the inequalities (2.3) and (3.1), we get

A 1
02> ;1/|Vf|2+<n— 1)/|Vf|2—k—/S|Vf|2—x1/|Vf|2.
M M 0M M

Therefore, we obtain

/s|vf|2 > Koln = li(” — M) f VP
M

M

which concludes the proof of the theorem. [

Proof of Theorem 2. The proof of this theorem is similar to that one of Theorem 1.
First we choose a local orthonormal referential {ej, ..., e,} such that Ae; = kje;, i =
1, ..., n toderive

Ric(ei, ej) = (n — 1 — kH)3;;.
Second we choose also an eigenfunction f associated to the Laplacian of M and write

n
Vf = fiei. Hence, we use Lemma 2 to show in this case that
i=1

1 2 2
prp— S|V ] Zk

However, we note that dim ker A 2 n — 1 implies A = 0, because M is minimal. In this
way, we can guarantee that 2 < n — ng. Therefore,

(3.3) Ric(VS, V) 2 (n—DIVfI* - ﬁswﬁ
— no

and the proof follows as that one of the previous theorem after integrating (3.2) and using
(3.3). 0O
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