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A lower bound for the norm of the second fundamental form
of minimal hypersurfaces of SS

n+1

By

J. N. Barbosa and A. Barros

Abstract. The aim of this paper is to give an estimate for the squared norm S of the second
fundamental form A of a compact minimal hypersurface Mn ⊂ S

n+1 in terms of the gap n − λ1,
where λ1 stands for the first eigenvalue of the Laplacian of M . More precisely we will show that
there exists a constant k � n

n−1 such that S � k n−1
n (n − λ1).

1. Introduction. Let Mn be a closed and orientable Riemannian manifold, i.e. compact
without boundary and let us denote by S

m a unit Euclidean sphere. If ϕ : Mn → S
n+p

is a minimal immersion then �ϕ + nϕ = 0, where � stands for the Laplacian of M with
its induced metric, see e.g. [13]. Hence n is an upper bound for the first eigenvalue λ1
of �. In 1983 Leung [8] have shown that the gap n − λ1 is a lower bound for S = |A|2,
where A stands for the second fundamental form of ϕ, provided S is constant. Among the
purposes of this subject one of them is to answer a interesting question posed by Chern
[4] for hypersurfaces concerning the gap of S under the assumption of S constant. In a
recent paper Barros [1] have improved Leung’s gap for compact minimal hypersurfaces
Mn ⊂ S

n+1 by showing that S � c (n, k)
(n−1)

n
(n − λ1), where c (n, k) = (n−k)

(n−k−1)
and k

depends on the dimension of the kernel of A. The main purpose of this paper is to improve
the above result for compact minimal hypersurface Mn ⊂ S

n+1 by showing that there is
a rational constant k ∈ [ n

n−1 , n] depending either on A or on the first eigenfunction of �

such that S � k
(n−1)

n
(n − λ1).

We point out that the first contribution to such problem was given in 1968 by Simons [12]
who showed that if S satisfies 0 � S � n

2− 1
p

, then either S = 0, and M is totally geodesic,

or else S = n

2− 1
p

. In 1969 was shown by Lawson [7] and independently, in 1970, by

Chern et al [5], if S = n

2− 1
p

hence S = n and Mn is a Clifford torus in S
n+1. In 1998

Chen-Yang [3] have showed for hypersurfaces if S > n then S � 4
3 n. On the other
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hand it was conjectured by Yau [14] that for any embedded compact minimal hypersurface
Mn ⊂ S

n+1 the first eigenvalue of � satisfies λ1 = n. The first general contribution to Yau
problem was given by Choi-Wang [6] where they have proved that λ1 � n

2 . Taking into
account our inequality we derive λ1 � n(1− S

k(n−1)
). Hence we get an improvement of the

Choi-Wang bound provided S is constant and k (n − 1) � 2S. We also point out that Yau
problem was solved for a certain class of isoparametric minimal hypersurfaces by Muto
[9]. But in such case our gap is zero since n − λ1 = 0. It should be noted that according
to the results of Simons, Chern-do Carmo-Kobayashi and Lawson quoted above our bound
turns out better then their one provided k

(n−1)
n

(n − λ1) � n. Now we will announce our
result according to the next theorems.

Theorem 1. Let Mn be a compact orientable Riemannian manifold. We consider
ϕ : Mn → S

n+1 a minimal immersion. Let f be a first eigenfunction of the Laplacian of Mn

associated to λ1. Let l(p) denotes the number of nonnull components of ∇f with respect to a
principal referential Ep = {e1(p), . . . , en(p)} in p ∈ M . If l0 = min

p∈M
{l(p) | ∇f (p) �= 0},

k0 = n
n−1 if l0 = 1 and k0 = l0 for l0 � 2, then∫

M

S|∇f |2 �
k0(n − 1)(n − λ1)

n

∫
M

|∇f |2.

In particular, if S is constant, we have S � k0(n−1)(n−λ1)
n

.

Theorem 2. Let Mn be a compact orientable Riemannian manifold. We consider
ϕ : Mn → S

n+1 a minimal immersion. If f denotes a first eigenfunction of the Laplacian
of Mn associated to λ1 and k = max dim ker A, then∫

M

S|∇f |2 �
(n − n0)(n − 1)(n − λ1)

n

∫
M

|∇f |2 ,

where

n0 =
{

k , if k � n − 2
n − 2 , if k = n − 1 or k = n.

In particular, if S is constant, we have S � (n−n0)(n−1)(n−λ1)
n

.

2. Preliminaries. One of the basic tools in our work is the Bochner-Lichnerowicz for-
mula which states that for a differentiable function f : M → R

1

2
�(|∇f |2) = Ric(∇f, ∇f ) + 〈∇f, ∇(�f )〉 + | Hess f |2 ,(2.1)

where Hess and Ric denote, respectively, the Hessian form and the Ricci tensor of M , and the
norm of an operator T considered here is the Euclidean, which is given by |T |2 = tr(TT∗).
The proof of this formula can be found in [2] or [11].



480 J. N. Barbosa and A. Barros arch. math.

If 	f + λ1f = 0, according to formula (2.6) of Barros [1] we have∫
M

| Hess f |2 =
∫
M

| Hess f + λ1

n
fI|2 + λ1

n

∫
M

|∇f |2.(2.2)

Therefore, ∫
M

| Hess f |2 �
λ1

n

∫
M

|∇f |2 .(2.3)

Moreover, the equality holds if and only if M is isometric to the sphere Sn(

√
λ1
n

). See
Theorem A of Obata [10].

Another ingredients to aid our proofs are the next two lemmas of linear algebra. The first
one states the following:

Lemma 1. Let V be a vector space of finite dimension n. Let T : V → V be a traceless
symmetric linear operator and let {e1, . . . , en} be an orthonormal referential such that

T ei = µiei , i = 1, . . . , n. For v =
n∑

i=1
viei in V let l be the number of nonnull components

vi of v and we set k0 = n
n−1 if l = 1 and k0 = l, otherwise. Then we have

1

k0
|T |2|v|2 �

n∑
i=1

µ2
i v

2
i .

P r o o f. In order to derive the lemma we will use the Lagrange multipliers method to
find the maximum of the function

F : (x1, . . . , xn, y1, . . . , yn) 
−→
n∑

i=1

x2
i y2

i ,

with constraints
n∑

i=1

x2
i = |T |2,

n∑
i=1

y2
i = |v|2,

n∑
i=1

xi = 0,

y1, . . . , yl �= 0 and yl+1 = . . . = yn = 0 .

Then, using Lagrange multipliers we obtain the following system{
xiy

2
i = αxi + γ

x2
i yi = βyi

, i = 1, . . . , n.(2.4)

From where we obtain{
x2
i y2

i = αx2
i + γ xi

x2
i y2

i = βy2
i

, i = 1, . . . , n .(2.5)
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Summing up the above equations one obtains

F = α|T |2 = β|v|2.(2.6)

Let us assume that α �= 0 and β �= 0, otherwise F = 0 by (2.6). If l = n, it follows from the
equations x2

i yi = βyi , i = 1, . . . , n, of (2.4) that β = x2
1 = . . . = x2

n , |T |2 = nx2
1 = nβ.

Consequently we obtain

F = 1

n
|T |2|v|2.

If l < n, by system (2.4), we infer that

β = x2
1 = . . . = x2

l

and

xl+1 = . . . = xn = −γ

α
.

When l = 1, we have β = x2
1 and the constraint

n∑
i=1

xi = 0 yields

x2 = . . . = xn = − 1

n − 1
x1.

If γ = 0, then xn = 0 implies x1 = 0 and F = 0. Hence we may assume that γ �= 0 to
obtain

|T |2 = x2
1 + (n − 1)x2

n = x2
1 + 1

n − 1
x2

1 = n

n − 1
β.

Therefore,

F = β|v|2 = n − 1

n
|T |2|v|2.

Let us suppose now 2 � l < n. In this case, |T |2 = lx2
1 +(n−l)x2

n . Thus, |T |2 � lx2
1 = lβ

and consequently we have

1

l
|T |2|v|2 � F

which finishes the proof of the lemma. �

Lemma 2. Let V be a vector space of finite dimension n and let T : V → V be a
traceless symmetric nontrivial linear operator. Let also {e1, . . . , en} be an orthonormal
referential such that T ei = µiei , i = 1, . . . , n. If k = dim ker T then given a nonnull

vector v =
n∑

i=1
viei , we have

1

n − k
|T |2|v|2 �

n∑
i=1

µ2
i v

2
i .
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P r o o f. Without loss of generality we suppose that µ1 = . . . = µk = 0 and µk+1, . . . ,

µn �= 0. As in the previous lemma, we will use also Lagrange multipliers method. Now
we should to find the maximum of the function

G : (x1, . . . , xn, y1, . . . , yn) 
−→
n∑

i=1

x2
i y2

i ,

with constraints

n∑
i=1

y2
i = |v|2,

n∑
i=1

x2
i = |T |2,

n∑
i=1

xi = 0,

x1 = . . . = xk = 0 and xk+1, . . . , xn �= 0.

Then, we will find solutions of the system{
xiy

2
i = αxi + γ

x2
i yi = βyi

, i = 1, . . . , n.(2.7)

Using a similar argument as that one of the previous lemma, we multiply the n first equations
of (2.7) by xi , the n last ones by yi and summing up we obtain

G = α|T |2 = β|v|2.(2.8)

We will suppose that α �= 0 and β �= 0. In another way, by (2.8) we have G = 0. Since
xi = 0, for i = 1, . . . , k, it follows from (2.7) that y1 = . . . = yk = 0. Taking into account
this on the first k-equations of (2.7) we derive that γ = 0. Hence we have xiy

2
i = αxi ,

for i = k + 1, . . . , n. Therefore, yk+1, . . . , yk �= 0 and by the equations x2
i yi = βyi ,

i = k + 1, . . . , n, we infer that

β = x2
k+1 = . . . = x2

n .

Thus, |T |2 = (n − k)x2
n = (n − k)β and we conclude that

1

n − k
|T |2|v|2 � G

which finishes the proof of the lemma. �

3. Proof of Theorems.

P r o o f o f T h e o r e m 1. Given p ∈ M , let ki be the principal curvatures of M in p,
relationed with the referential Ep, i.e., Aei = kiei , i = 1, . . . , n, in p. Making use of
Gauss equation we derive

Ric(ei, ej ) = (n − 1 − k2
i )δij .
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Now for a differentiable function f defined on Mn, writing ∇f =
n∑

i=1
fiei in p we have

Ric(∇f, ∇f ) = (n − 1)|∇f |2 −
n∑

i=1

k2
i f

2
i .

We may apply Lemma 1 in each point of M to obtain the inequality

1

k0
S|∇f |2 �

n∑
i=1

k2
i f

2
i ,

where k0 is given according to Theorem 1. Consequently we derive

Ric(∇f, ∇f ) � (n − 1)|∇f |2 − 1

k0
S|∇f |2.(3.1)

If, in addition 	f = −λ1f , then the Bochner-Lichnerowicz formula (2.1) yields

1

2
	|∇f |2 = | Hess f |2 + Ric(∇f, ∇f ) − λ1|∇f |2.(3.2)

Hence integrating (3.2) and using the inequalities (2.3) and (3.1), we get

0 �
λ1

n

∫
M

|∇f |2 + (n − 1)

∫
M

|∇f |2 − 1

k0

∫
M

S|∇f |2 − λ1

∫
M

|∇f |2.

Therefore, we obtain∫
M

S|∇f |2 �
k0(n − 1)(n − λ1)

n

∫
M

|∇f |2

which concludes the proof of the theorem. �

P r o o f o f T h e o r e m 2. The proof of this theorem is similar to that one of Theorem 1.
First we choose a local orthonormal referential {e1, . . . , en} such that Aei = kiei , i =
1, . . . , n to derive

Ric(ei, ej ) = (n − 1 − k2
i )δij.

Second we choose also an eigenfunction f associated to the Laplacian of M and write

∇f =
n∑

i=1
fiei . Hence, we use Lemma 2 to show in this case that

1

(n − n0)
S|∇f |2 �

n∑
i=1

k2
i f

2
i .

However, we note that dim ker A � n − 1 implies A ≡ 0, because M is minimal. In this
way, we can guarantee that 2 � n − n0. Therefore,

Ric(∇f, ∇f ) � (n − 1)|∇f |2 − 1

n − n0
S|∇f |2(3.3)

and the proof follows as that one of the previous theorem after integrating (3.2) and using
(3.3). �
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