Archiv der Mathematik

A lower bound for the norm of the second fundamental form of minimal hypersurfaces of \mathbb{S}^{n+1}

By

J. N. Barbosa and A. Barros

Abstract

The aim of this paper is to give an estimate for the squared norm S of the second fundamental form A of a compact minimal hypersurface $M^{n} \subset \mathbb{S}^{n+1}$ in terms of the gap $n-\lambda_{1}$, where λ_{1} stands for the first eigenvalue of the Laplacian of M. More precisely we will show that there exists a constant $k \geqq \frac{n}{n-1}$ such that $S \geqq k \frac{n-1}{n}\left(n-\lambda_{1}\right)$.

1. Introduction. Let M^{n} be a closed and orientable Riemannian manifold, i.e. compact without boundary and let us denote by \mathbb{S}^{m} a unit Euclidean sphere. If $\varphi: M^{n} \rightarrow \mathbb{S}^{n+p}$ is a minimal immersion then $\Delta \varphi+n \varphi=0$, where Δ stands for the Laplacian of M with its induced metric, see e.g. [13]. Hence n is an upper bound for the first eigenvalue λ_{1} of Δ. In 1983 Leung [8] have shown that the gap $n-\lambda_{1}$ is a lower bound for $S=|A|^{2}$, where A stands for the second fundamental form of φ, provided S is constant. Among the purposes of this subject one of them is to answer a interesting question posed by Chern [4] for hypersurfaces concerning the gap of S under the assumption of S constant. In a recent paper Barros [1] have improved Leung's gap for compact minimal hypersurfaces $M^{n} \subset \mathbb{S}^{n+1}$ by showing that $S \geqq c(n, k) \frac{(n-1)}{n}\left(n-\lambda_{1}\right)$, where $c(n, k)=\frac{(n-k)}{(n-k-1)}$ and k depends on the dimension of the kernel of A. The main purpose of this paper is to improve the above result for compact minimal hypersurface $M^{n} \subset \mathbb{S}^{n+1}$ by showing that there is a rational constant $k \in\left[\frac{n}{n-1}, n\right]$ depending either on A or on the first eigenfunction of Δ such that $S \geqq k \frac{(n-1)}{n}\left(n-\lambda_{1}\right)$.
We point out that the first contribution to such problem was given in 1968 by Simons [12] who showed that if S satisfies $0 \leqq S \leqq \frac{n}{2-\frac{1}{p}}$, then either $S=0$, and M is totally geodesic, or else $S=\frac{n}{2-\frac{1}{p}}$. In 1969 was shown by Lawson [7] and independently, in 1970, by Chern et al [5], if $S=\frac{n}{2-\frac{1}{p}}$ hence $S=n$ and M^{n} is a Clifford torus in \mathbb{S}^{n+1}. In 1998 Chen-Yang [3] have showed for hypersurfaces if $S>n$ then $S \geqq \frac{4}{3} n$. On the other
hand it was conjectured by Yau [14] that for any embedded compact minimal hypersurface $M^{n} \subset \mathbb{S}^{n+1}$ the first eigenvalue of Δ satisfies $\lambda_{1}=n$. The first general contribution to Yau problem was given by Choi-Wang [6] where they have proved that $\lambda_{1} \geqq \frac{n}{2}$. Taking into account our inequality we derive $\lambda_{1} \geqq n\left(1-\frac{S}{k(n-1)}\right)$. Hence we get an improvement of the Choi-Wang bound provided S is constant and $k(n-1) \geqq 2 S$. We also point out that Yau problem was solved for a certain class of isoparametric minimal hypersurfaces by Muto [9]. But in such case our gap is zero since $n-\lambda_{1}=0$. It should be noted that according to the results of Simons, Chern-do Carmo-Kobayashi and Lawson quoted above our bound turns out better then their one provided $k \frac{(n-1)}{n}\left(n-\lambda_{1}\right) \geqq n$. Now we will announce our result according to the next theorems.

Theorem 1. Let M^{n} be a compact orientable Riemannian manifold. We consider $\varphi: M^{n} \rightarrow \mathbb{S}^{n+1}$ a minimal immersion. Let f be a first eigenfunction of the Laplacian of M^{n} associated to λ_{1}. Let $l(p)$ denotes the number of nonnull components of ∇f with respect to a principal referential $E_{p}=\left\{e_{1}(p), \ldots, e_{n}(p)\right\}$ in $p \in M$. If $l_{0}=\min _{p \in M}\{l(p) \mid \nabla f(p) \neq 0\}$, $k_{0}=\frac{n}{n-1}$ if $l_{0}=1$ and $k_{0}=l_{0}$ for $l_{0} \geqq 2$, then

$$
\int_{M} S|\nabla f|^{2} \geqq \frac{k_{0}(n-1)\left(n-\lambda_{1}\right)}{n} \int_{M}|\nabla f|^{2} .
$$

In particular, if S is constant, we have $S \geqq \frac{k_{0}(n-1)\left(n-\lambda_{1}\right)}{n}$.
Theorem 2. Let M^{n} be a compact orientable Riemannian manifold. We consider $\varphi: M^{n} \rightarrow \mathbb{S}^{n+1}$ a minimal immersion. If f denotes a first eigenfunction of the Laplacian of M^{n} associated to λ_{1} and $k=\max \operatorname{dim} \operatorname{ker} A$, then

$$
\int_{M} S|\nabla f|^{2} \geqq \frac{\left(n-n_{0}\right)(n-1)\left(n-\lambda_{1}\right)}{n} \int_{M}|\nabla f|^{2},
$$

where

$$
n_{0}=\left\{\begin{array}{lll}
k, & \text { if } & k \leqq n-2 \\
n-2, & \text { if } & k=n-1 \text { or } k=n .
\end{array}\right.
$$

In particular, if S is constant, we have $S \geqq \frac{\left(n-n_{0}\right)(n-1)\left(n-\lambda_{1}\right)}{n}$.
2. Preliminaries. One of the basic tools in our work is the Bochner-Lichnerowicz formula which states that for a differentiable function $f: M \rightarrow R$

$$
\begin{equation*}
\frac{1}{2} \Delta\left(|\nabla f|^{2}\right)=\operatorname{Ric}(\nabla f, \nabla f)+\langle\nabla f, \nabla(\Delta f)\rangle+\mid \text { Hess }\left.f\right|^{2} \tag{2.1}
\end{equation*}
$$

where Hess and Ric denote, respectively, the Hessian form and the Ricci tensor of M, and the norm of an operator T considered here is the Euclidean, which is given by $|T|^{2}=\operatorname{tr}\left(T T^{*}\right)$. The proof of this formula can be found in [2] or [11].

If $\Delta f+\lambda_{1} f=0$, according to formula (2.6) of Barros [1] we have

$$
\begin{equation*}
\int_{M} \mid \text { Hess }\left.f\right|^{2}=\int_{M} \mid \text { Hess } f+\left.\frac{\lambda_{1}}{n} f I\right|^{2}+\frac{\lambda_{1}}{n} \int_{M}|\nabla f|^{2} \tag{2.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{M}|\operatorname{Hess} f|^{2} \geqq \frac{\lambda_{1}}{n} \int_{M}|\nabla f|^{2} . \tag{2.3}
\end{equation*}
$$

Moreover, the equality holds if and only if M is isometric to the sphere $S^{n}\left(\sqrt{\frac{\lambda_{1}}{n}}\right)$. See Theorem A of Obata [10].

Another ingredients to aid our proofs are the next two lemmas of linear algebra. The first one states the following:

Lemma 1. Let V be a vector space of finite dimension n. Let $T: V \rightarrow V$ be a traceless symmetric linear operator and let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal referential such that $T e_{i}=\mu_{i} e_{i}, i=1, \ldots, n$. For $v=\sum_{i=1}^{n} v_{i} e_{i}$ in V let l be the number of nonnull components v_{i} of v and we set $k_{0}=\frac{n}{n-1}$ if $l=1$ and $k_{0}=l$, otherwise. Then we have

$$
\frac{1}{k_{0}}|T|^{2}|v|^{2} \geqq \sum_{i=1}^{n} \mu_{i}^{2} v_{i}^{2}
$$

Proof. In order to derive the lemma we will use the Lagrange multipliers method to find the maximum of the function

$$
F:\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \longmapsto \sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}
$$

with constraints

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}^{2}=|T|^{2}, \quad \sum_{i=1}^{n} y_{i}^{2}=|v|^{2}, \quad \sum_{i=1}^{n} x_{i}=0 \\
& y_{1}, \ldots, y_{l} \neq 0 \quad \text { and } \quad y_{l+1}=\ldots=y_{n}=0 .
\end{aligned}
$$

Then, using Lagrange multipliers we obtain the following system

$$
\left\{\begin{array}{l}
x_{i} y_{i}^{2}=\alpha x_{i}+\gamma \tag{2.4}\\
x_{i}^{2} y_{i}=\beta y_{i}
\end{array}, \quad i=1, \ldots, n\right.
$$

From where we obtain

$$
\left\{\begin{array}{l}
x_{i}^{2} y_{i}^{2}=\alpha x_{i}^{2}+\gamma x_{i} \tag{2.5}\\
x_{i}^{2} y_{i}^{2}=\beta y_{i}^{2}
\end{array}, \quad i=1, \ldots, n\right.
$$

Summing up the above equations one obtains

$$
\begin{equation*}
F=\alpha|T|^{2}=\beta|v|^{2} . \tag{2.6}
\end{equation*}
$$

Let us assume that $\alpha \neq 0$ and $\beta \neq 0$, otherwise $F=0$ by (2.6). If $l=n$, it follows from the equations $x_{i}^{2} y_{i}=\beta y_{i}, i=1, \ldots, n$, of (2.4) that $\beta=x_{1}^{2}=\ldots=x_{n}^{2},|T|^{2}=n x_{1}^{2}=n \beta$. Consequently we obtain

$$
F=\frac{1}{n}|T|^{2}|v|^{2} .
$$

If $l<n$, by system (2.4), we infer that

$$
\beta=x_{1}^{2}=\ldots=x_{l}^{2}
$$

and

$$
x_{l+1}=\ldots=x_{n}=-\frac{\gamma}{\alpha}
$$

When $l=1$, we have $\beta=x_{1}^{2}$ and the constraint $\sum_{i=1}^{n} x_{i}=0$ yields

$$
x_{2}=\ldots=x_{n}=-\frac{1}{n-1} x_{1} .
$$

If $\gamma=0$, then $x_{n}=0$ implies $x_{1}=0$ and $F=0$. Hence we may assume that $\gamma \neq 0$ to obtain

$$
|T|^{2}=x_{1}^{2}+(n-1) x_{n}^{2}=x_{1}^{2}+\frac{1}{n-1} x_{1}^{2}=\frac{n}{n-1} \beta .
$$

Therefore,

$$
F=\beta|v|^{2}=\frac{n-1}{n}|T|^{2}|v|^{2} .
$$

Let us suppose now $2 \leqq l<n$. In this case, $|T|^{2}=l x_{1}^{2}+(n-l) x_{n}^{2}$. Thus, $|T|^{2} \geqq l x_{1}^{2}=l \beta$ and consequently we have

$$
\frac{1}{l}|T|^{2}|v|^{2} \geqq F
$$

which finishes the proof of the lemma.
Lemma 2. Let V be a vector space of finite dimension n and let $T: V \rightarrow V$ be a traceless symmetric nontrivial linear operator. Let also $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal referential such that $T e_{i}=\mu_{i} e_{i}, i=1, \ldots, n$. If $k=\operatorname{dim} \operatorname{ker} T$ then given a nonnull vector $v=\sum_{i=1}^{n} v_{i} e_{i}$, we have

$$
\frac{1}{n-k}|T|^{2}|v|^{2} \geqq \sum_{i=1}^{n} \mu_{i}^{2} v_{i}^{2}
$$

Proof. Without loss of generality we suppose that $\mu_{1}=\ldots=\mu_{k}=0$ and μ_{k+1}, \ldots, $\mu_{n} \neq 0$. As in the previous lemma, we will use also Lagrange multipliers method. Now we should to find the maximum of the function

$$
G:\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \longmapsto \sum_{i=1}^{n} x_{i}^{2} y_{i}^{2}
$$

with constraints

$$
\begin{aligned}
& \sum_{i=1}^{n} y_{i}^{2}=|v|^{2}, \quad \sum_{i=1}^{n} x_{i}^{2}=|T|^{2}, \quad \sum_{i=1}^{n} x_{i}=0 \\
& x_{1}=\ldots=x_{k}=0 \quad \text { and } \quad x_{k+1}, \ldots, x_{n} \neq 0
\end{aligned}
$$

Then, we will find solutions of the system

$$
\left\{\begin{array}{l}
x_{i} y_{i}^{2}=\alpha x_{i}+\gamma \tag{2.7}\\
x_{i}^{2} y_{i}=\beta y_{i}
\end{array}, \quad i=1, \ldots, n\right.
$$

Using a similar argument as that one of the previous lemma, we multiply the n first equations of (2.7) by x_{i}, the n last ones by y_{i} and summing up we obtain

$$
\begin{equation*}
G=\alpha|T|^{2}=\beta|v|^{2} \tag{2.8}
\end{equation*}
$$

We will suppose that $\alpha \neq 0$ and $\beta \neq 0$. In another way, by (2.8) we have $G=0$. Since $x_{i}=0$, for $i=1, \ldots, k$, it follows from (2.7) that $y_{1}=\ldots=y_{k}=0$. Taking into account this on the first k-equations of (2.7) we derive that $\gamma=0$. Hence we have $x_{i} y_{i}^{2}=\alpha x_{i}$, for $i=k+1, \ldots, n$. Therefore, $y_{k+1}, \ldots, y_{k} \neq 0$ and by the equations $x_{i}^{2} y_{i}=\beta y_{i}$, $i=k+1, \ldots, n$, we infer that

$$
\beta=x_{k+1}^{2}=\ldots=x_{n}^{2}
$$

Thus, $|T|^{2}=(n-k) x_{n}^{2}=(n-k) \beta$ and we conclude that

$$
\frac{1}{n-k}|T|^{2}|v|^{2} \geqq G
$$

which finishes the proof of the lemma.

3. Proof of Theorems.

Proof of Theorem 1. Given $p \in M$, let k_{i} be the principal curvatures of M in p, relationed with the referential E_{p}, i.e., $A e_{i}=k_{i} e_{i}, i=1, \ldots, n$, in p. Making use of Gauss equation we derive

$$
\operatorname{Ric}\left(e_{i}, e_{j}\right)=\left(n-1-k_{i}^{2}\right) \delta_{i j}
$$

Now for a differentiable function f defined on M^{n}, writing $\nabla f=\sum_{i=1}^{n} f_{i} e_{i}$ in p we have

$$
\operatorname{Ric}(\nabla f, \nabla f)=(n-1)|\nabla f|^{2}-\sum_{i=1}^{n} k_{i}^{2} f_{i}^{2}
$$

We may apply Lemma 1 in each point of M to obtain the inequality

$$
\frac{1}{k_{0}} S|\nabla f|^{2} \geqq \sum_{i=1}^{n} k_{i}^{2} f_{i}^{2}
$$

where k_{0} is given according to Theorem 1. Consequently we derive

$$
\begin{equation*}
\operatorname{Ric}(\nabla f, \nabla f) \geqq(n-1)|\nabla f|^{2}-\frac{1}{k_{0}} S|\nabla f|^{2} . \tag{3.1}
\end{equation*}
$$

If, in addition $\triangle f=-\lambda_{1} f$, then the Bochner-Lichnerowicz formula (2.1) yields

$$
\begin{equation*}
\frac{1}{2} \Delta|\nabla f|^{2}=\mid \text { Hess }\left.f\right|^{2}+\operatorname{Ric}(\nabla f, \nabla f)-\lambda_{1}|\nabla f|^{2} \tag{3.2}
\end{equation*}
$$

Hence integrating (3.2) and using the inequalities (2.3) and (3.1), we get

$$
0 \geqq \frac{\lambda_{1}}{n} \int_{M}|\nabla f|^{2}+(n-1) \int_{M}|\nabla f|^{2}-\frac{1}{k_{0}} \int_{M} S|\nabla f|^{2}-\lambda_{1} \int_{M}|\nabla f|^{2} .
$$

Therefore, we obtain

$$
\int_{M} S|\nabla f|^{2} \geqq \frac{k_{0}(n-1)\left(n-\lambda_{1}\right)}{n} \int_{M}|\nabla f|^{2}
$$

which concludes the proof of the theorem.
Proof of Theorem 2. The proof of this theorem is similar to that one of Theorem 1. First we choose a local orthonormal referential $\left\{e_{1}, \ldots, e_{n}\right\}$ such that $A e_{i}=k_{i} e_{i}, i=$ $1, \ldots, n$ to derive

$$
\operatorname{Ric}\left(e_{i}, e_{j}\right)=\left(n-1-k_{i}^{2}\right) \delta_{i j} .
$$

Second we choose also an eigenfunction f associated to the Laplacian of M and write $\nabla f=\sum_{i=1}^{n} f_{i} e_{i}$. Hence, we use Lemma 2 to show in this case that

$$
\frac{1}{\left(n-n_{0}\right)} S|\nabla f|^{2} \geqq \sum_{i=1}^{n} k_{i}^{2} f_{i}^{2}
$$

However, we note that $\operatorname{dim} \operatorname{ker} A \geqq n-1$ implies $A \equiv 0$, because M is minimal. In this way, we can guarantee that $2 \leqq n-n_{0}$. Therefore,

$$
\begin{equation*}
\operatorname{Ric}(\nabla f, \nabla f) \geqq(n-1)|\nabla f|^{2}-\frac{1}{n-n_{0}} S|\nabla f|^{2} \tag{3.3}
\end{equation*}
$$

and the proof follows as that one of the previous theorem after integrating (3.2) and using (3.3).

References

[1] A. Barros, Applications of Bochner formula to minimal submanifolds of the sphere. J. Geom. Phys. 44, 196-201 (2002).
[2] M. Berger, P. Gauduchon and E. Mazet, Le Spectre d'une Variété Riemannienne. LNM 194, Berlin-Heidelberg-New York 1971.
[3] Q. M. Cheng and H. Yang, Chern's conjecture on minimal hypersurfaces. Math. Z. 227, 377-390 (1998).
[4] S. S. CHERN, Selected papers. Berlin 1978.
[5] S. S. CHERN, M. DO CARMO and S. KobAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields, 59-75, Berlin-New York 1970.
[6] H. I. Choi and A. N. WANG, A first eigenvalue estimate for minimal hypersurfaces. J. Differential. Geom. 18, 559-562 (1983).
[7] B. Lawson, Local rigidity theorems for minimal hypersurfaces. Ann. of Math. 89, 187-197 (1969).
[8] P. F. Leung, Minimal submanifolds in a sphere. Math. Z. 183, 75-83 (1983).
[9] H. Muto, The first eigenvalue of the Laplacian of an isoparametric hypersurface in a unit sphere. Math. Z. 197, 531-549 (1988).
[10] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan 14, 333-340 (1962).
[11] R. Schoen and S. Yau, Lectures on Differential Geometry. Cambridge, MA 1994.
[12] J. Simons, Minimal varieties in Riemannian manifolds. Ann. of Math. 88, 62-105 (1968).
[13] T. TAKAhashi, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, 380-385 (1966).
[14] S. T. Yau, Problem Section of Seminar on Differential Geometry at Tokyo. Ann. Math. Stud. 102, 669-706 (1982).

Received: 25 July 2002; revised manuscript accepted: 4 October 2002
J. N. Barbosa

Universidade Federal da Bahia
Departamento de Matemática
40 170-110 Salvador, BA
Brasil
jnelson@ufba.br
A. Barros

Universidade Federal do Ceará
Departamento de Matemática 60 455-670 Fortaleza, CE
Brasil
abbarros@mat.ufc.br

