Arch. Math. 81 (2003) 478–484 0003–889X/03/040478–07 DOI 10.1007/s00013-003-4767-0 © Birkhäuser Verlag, Basel, 2003

Archiv der Mathematik

A lower bound for the norm of the second fundamental form of minimal hypersurfaces of S^{n+1}

By

J. N. BARBOSA and A. BARROS

Abstract. The aim of this paper is to give an estimate for the squared norm *S* of the second fundamental form *A* of a compact minimal hypersurface $M^n \subset \mathbb{S}^{n+1}$ in terms of the gap $n - \lambda_1$, where λ_1 stands for the first eigenvalue of the Laplacian of *M*. More precisely we will show that there exists a constant $k \ge \frac{n}{n-1}$ such that $S \ge k \frac{n-1}{n} (n - \lambda_1)$.

1. Introduction. Let M^n be a closed and orientable Riemannian manifold, i.e. compact without boundary and let us denote by \mathbb{S}^m a unit Euclidean sphere. If $\varphi : M^n \to \mathbb{S}^{n+p}$ is a minimal immersion then $\Delta \varphi + n\varphi = 0$, where Δ stands for the Laplacian of M with its induced metric, see e.g. [13]. Hence n is an upper bound for the first eigenvalue λ_1 of Δ . In 1983 Leung [8] have shown that the gap $n - \lambda_1$ is a lower bound for $S = |A|^2$, where A stands for the second fundamental form of φ , provided S is constant. Among the purposes of this subject one of them is to answer a interesting question posed by Chern [4] for hypersurfaces concerning the gap of S under the assumption of S constant. In a recent paper Barros [1] have improved Leung's gap for compact minimal hypersurfaces $M^n \subset \mathbb{S}^{n+1}$ by showing that $S \ge c(n, k) \frac{(n-1)}{n}(n-\lambda_1)$, where $c(n, k) = \frac{(n-k)}{(n-k-1)}$ and k depends on the dimension of the kernel of A. The main purpose of this paper is to improve the above result for compact minimal hypersurface $M^n \subset \mathbb{S}^{n+1}$ by showing that there is a rational constant $k \in [\frac{n}{n-1}, n]$ depending either on A or on the first eigenfunction of Δ such that $S \ge k \frac{(n-1)}{n}(n-\lambda_1)$.

We point out that the first contribution to such problem was given in 1968 by Simons [12] who showed that if S satisfies $0 \le S \le \frac{n}{2-\frac{1}{p}}$, then either S = 0, and M is totally geodesic, or else $S = \frac{n}{2-\frac{1}{p}}$. In 1969 was shown by Lawson [7] and independently, in 1970, by Chern et al [5], if $S = \frac{n}{2-\frac{1}{p}}$ hence S = n and M^n is a Clifford torus in \mathbb{S}^{n+1} . In 1998 Chen-Yang [3] have showed for hypersurfaces if S > n then $S \ge \frac{4}{3}n$. On the other

Mathematics Subject Classification (2000): Primary 53C42, 53A10.

Vol. 81, 2003 A lower bound for the second fundamental form

hand it was conjectured by Yau [14] that for any embedded compact minimal hypersurface $M^n \subset \mathbb{S}^{n+1}$ the first eigenvalue of Δ satisfies $\lambda_1 = n$. The first general contribution to Yau problem was given by Choi-Wang [6] where they have proved that $\lambda_1 \ge \frac{n}{2}$. Taking into account our inequality we derive $\lambda_1 \ge n(1 - \frac{S}{k(n-1)})$. Hence we get an improvement of the Choi-Wang bound provided *S* is constant and $k(n-1) \ge 2S$. We also point out that Yau problem was solved for a certain class of isoparametric minimal hypersurfaces by Muto [9]. But in such case our gap is zero since $n - \lambda_1 = 0$. It should be noted that according to the results of Simons, Chern-do Carmo-Kobayashi and Lawson quoted above our bound turns out better then their one provided $k \frac{(n-1)}{n} (n - \lambda_1) \ge n$. Now we will announce our result according to the next theorems.

Theorem 1. Let M^n be a compact orientable Riemannian manifold. We consider $\varphi: M^n \to \mathbb{S}^{n+1}$ a minimal immersion. Let f be a first eigenfunction of the Laplacian of M^n associated to λ_1 . Let l(p) denotes the number of nonnull components of ∇f with respect to a principal referential $E_p = \{e_1(p), \ldots, e_n(p)\}$ in $p \in M$. If $l_0 = \min_{p \in M} \{l(p) \mid \nabla f(p) \neq 0\}$,

 $k_0 = \frac{n}{n-1}$ if $l_0 = 1$ and $k_0 = l_0$ for $l_0 \ge 2$, then

$$\int_{M} S |\nabla f|^2 \ge \frac{k_0(n-1)(n-\lambda_1)}{n} \int_{M} |\nabla f|^2.$$

In particular, if S is constant, we have $S \ge \frac{k_0(n-1)(n-\lambda_1)}{n}$.

Theorem 2. Let M^n be a compact orientable Riemannian manifold. We consider $\varphi : M^n \to \mathbb{S}^{n+1}$ a minimal immersion. If f denotes a first eigenfunction of the Laplacian of M^n associated to λ_1 and $k = \max \dim \ker A$, then

$$\int_{M} S |\nabla f|^2 \ge \frac{(n-n_0)(n-1)(n-\lambda_1)}{n} \int_{M} |\nabla f|^2$$

where

$$n_0 = \begin{cases} k \ , & if \ k \leq n-2 \\ n-2 \ , & if \ k = n-1 \ or \ k = n. \end{cases}$$

In particular, if S is constant, we have $S \ge \frac{(n-n_0)(n-1)(n-\lambda_1)}{n}$.

2. Preliminaries. One of the basic tools in our work is the Bochner-Lichnerowicz formula which states that for a differentiable function $f: M \to R$

(2.1)
$$\frac{1}{2}\Delta(|\nabla f|^2) = \operatorname{Ric}(\nabla f, \nabla f) + \langle \nabla f, \nabla(\Delta f) \rangle + |\operatorname{Hess} f|^2$$

where Hess and Ric denote, respectively, the Hessian form and the Ricci tensor of M, and the norm of an operator T considered here is the Euclidean, which is given by $|T|^2 = tr(TT^*)$. The proof of this formula can be found in [2] or [11].

ARCH. MATH.

If $\triangle f + \lambda_1 f = 0$, according to formula (2.6) of Barros [1] we have

(2.2)
$$\int_{M} |\operatorname{Hess} f|^{2} = \int_{M} |\operatorname{Hess} f + \frac{\lambda_{1}}{n} fI|^{2} + \frac{\lambda_{1}}{n} \int_{M} |\nabla f|^{2}.$$

Therefore,

(2.3)
$$\int_{M} |\operatorname{Hess} f|^{2} \ge \frac{\lambda_{1}}{n} \int_{M} |\nabla f|^{2}.$$

Moreover, the equality holds if and only if *M* is isometric to the sphere $S^n(\sqrt{\frac{\lambda_1}{n}})$. See Theorem A of Obata [10].

Another ingredients to aid our proofs are the next two lemmas of linear algebra. The first one states the following:

Lemma 1. Let V be a vector space of finite dimension n. Let $T : V \to V$ be a traceless symmetric linear operator and let $\{e_1, \ldots, e_n\}$ be an orthonormal referential such that $Te_i = \mu_i e_i, i = 1, \ldots, n$. For $v = \sum_{i=1}^n v_i e_i$ in V let l be the number of nonnull components v_i of v and we set $k_0 = \frac{n}{n-1}$ if l = 1 and $k_0 = l$, otherwise. Then we have

$$\frac{1}{k_0}|T|^2|v|^2 \ge \sum_{i=1}^n \mu_i^2 v_i^2.$$

Proof. In order to derive the lemma we will use the Lagrange multipliers method to find the maximum of the function

$$F: (x_1,\ldots,x_n,y_1,\ldots,y_n) \longmapsto \sum_{i=1}^n x_i^2 y_i^2,$$

with constraints

$$\sum_{i=1}^{n} x_i^2 = |T|^2, \quad \sum_{i=1}^{n} y_i^2 = |v|^2, \quad \sum_{i=1}^{n} x_i = 0,$$

$$y_1, \dots, y_l \neq 0 \quad \text{and} \quad y_{l+1} = \dots = y_n = 0$$

Then, using Lagrange multipliers we obtain the following system

(2.4)
$$\begin{cases} x_i y_i^2 = \alpha x_i + \gamma \\ x_i^2 y_i = \beta y_i \end{cases}, \quad i = 1, \dots, n.$$

From where we obtain

(2.5)
$$\begin{cases} x_i^2 y_i^2 = \alpha x_i^2 + \gamma x_i \\ x_i^2 y_i^2 = \beta y_i^2 \end{cases}, \quad i = 1, \dots, n.$$

480

Vol. 81, 2003

A lower bound for the second fundamental form

Summing up the above equations one obtains

(2.6)
$$F = \alpha |T|^2 = \beta |v|^2.$$

Let us assume that $\alpha \neq 0$ and $\beta \neq 0$, otherwise F = 0 by (2.6). If l = n, it follows from the equations $x_i^2 y_i = \beta y_i$, i = 1, ..., n, of (2.4) that $\beta = x_1^2 = ... = x_n^2$, $|T|^2 = nx_1^2 = n\beta$. Consequently we obtain

$$F = \frac{1}{n}|T|^2|v|^2.$$

If l < n, by system (2.4), we infer that

$$\beta = x_1^2 = \ldots = x_l^2$$

and

$$x_{l+1} = \ldots = x_n = -\frac{\gamma}{\alpha}$$

When l = 1, we have $\beta = x_1^2$ and the constraint $\sum_{i=1}^n x_i = 0$ yields

$$x_2=\ldots=x_n=-\frac{1}{n-1}x_1.$$

If $\gamma = 0$, then $x_n = 0$ implies $x_1 = 0$ and F = 0. Hence we may assume that $\gamma \neq 0$ to obtain

$$|T|^2 = x_1^2 + (n-1)x_n^2 = x_1^2 + \frac{1}{n-1}x_1^2 = \frac{n}{n-1}\beta.$$

Therefore,

$$F = \beta |v|^{2} = \frac{n-1}{n} |T|^{2} |v|^{2}.$$

Let us suppose now $2 \leq l < n$. In this case, $|T|^2 = lx_1^2 + (n-l)x_n^2$. Thus, $|T|^2 \geq lx_1^2 = l\beta$ and consequently we have

$$\frac{1}{l}|T|^2|v|^2 \ge F$$

which finishes the proof of the lemma. \Box

Lemma 2. Let V be a vector space of finite dimension n and let $T : V \to V$ be a traceless symmetric nontrivial linear operator. Let also $\{e_1, \ldots, e_n\}$ be an orthonormal referential such that $Te_i = \mu_i e_i$, $i = 1, \ldots, n$. If $k = \dim \ker T$ then given a nonnull vector $v = \sum_{i=1}^n v_i e_i$, we have

$$\frac{1}{n-k}|T|^2|v|^2 \ge \sum_{i=1}^n \mu_i^2 v_i^2.$$

J. N. BARBOSA and A. BARROS

ARCH. MATH.

Proof. Without loss of generality we suppose that $\mu_1 = \ldots = \mu_k = 0$ and $\mu_{k+1}, \ldots, \mu_n \neq 0$. As in the previous lemma, we will use also Lagrange multipliers method. Now we should to find the maximum of the function

$$G: (x_1,\ldots,x_n,y_1,\ldots,y_n) \longmapsto \sum_{i=1}^n x_i^2 y_i^2,$$

with constraints

$$\sum_{i=1}^{n} y_i^2 = |v|^2, \quad \sum_{i=1}^{n} x_i^2 = |T|^2, \quad \sum_{i=1}^{n} x_i = 0,$$

$$x_1 = \dots = x_k = 0 \quad \text{and} \quad x_{k+1}, \dots, x_n \neq 0.$$

Then, we will find solutions of the system

(2.7)
$$\begin{cases} x_i y_i^2 = \alpha x_i + \gamma \\ x_i^2 y_i = \beta y_i \end{cases}, \quad i = 1, \dots, n.$$

Using a similar argument as that one of the previous lemma, we multiply the *n* first equations of (2.7) by x_i , the *n* last ones by y_i and summing up we obtain

(2.8)
$$G = \alpha |T|^2 = \beta |v|^2.$$

We will suppose that $\alpha \neq 0$ and $\beta \neq 0$. In another way, by (2.8) we have G = 0. Since $x_i = 0$, for i = 1, ..., k, it follows from (2.7) that $y_1 = ... = y_k = 0$. Taking into account this on the first *k*-equations of (2.7) we derive that $\gamma = 0$. Hence we have $x_i y_i^2 = \alpha x_i$, for i = k + 1, ..., n. Therefore, $y_{k+1}, ..., y_k \neq 0$ and by the equations $x_i^2 y_i = \beta y_i$, i = k + 1, ..., n, we infer that

$$\beta = x_{k+1}^2 = \ldots = x_n^2.$$

Thus, $|T|^2 = (n-k)x_n^2 = (n-k)\beta$ and we conclude that

$$\frac{1}{n-k}|T|^2|v|^2 \ge G$$

which finishes the proof of the lemma. \Box

3. Proof of Theorems.

Proof of Theorem 1. Given $p \in M$, let k_i be the principal curvatures of M in p, relationed with the referential E_p , i.e., $Ae_i = k_i e_i$, i = 1, ..., n, in p. Making use of Gauss equation we derive

$$\operatorname{Ric}(e_i, e_j) = (n - 1 - k_i^2)\delta_{ij}.$$

482

Vol. 81, 2003

Now for a differentiable function f defined on M^n , writing $\nabla f = \sum_{i=1}^n f_i e_i$ in p we have

$$\operatorname{Ric}(\nabla f, \nabla f) = (n-1)|\nabla f|^2 - \sum_{i=1}^n k_i^2 f_i^2.$$

We may apply Lemma 1 in each point of M to obtain the inequality

$$\frac{1}{k_0}S|\nabla f|^2 \ge \sum_{i=1}^n k_i^2 f_i^2,$$

where k_0 is given according to Theorem 1. Consequently we derive

(3.1)
$$\operatorname{Ric}(\nabla f, \nabla f) \ge (n-1)|\nabla f|^2 - \frac{1}{k_0}S|\nabla f|^2.$$

If, in addition $\triangle f = -\lambda_1 f$, then the Bochner-Lichnerowicz formula (2.1) yields

(3.2)
$$\frac{1}{2} \triangle |\nabla f|^2 = |\operatorname{Hess} f|^2 + \operatorname{Ric}(\nabla f, \nabla f) - \lambda_1 |\nabla f|^2.$$

Hence integrating (3.2) and using the inequalities (2.3) and (3.1), we get

$$0 \ge \frac{\lambda_1}{n} \int_M |\nabla f|^2 + (n-1) \int_M |\nabla f|^2 - \frac{1}{k_0} \int_M S |\nabla f|^2 - \lambda_1 \int_M |\nabla f|^2.$$

Therefore, we obtain

$$\int_{M} S|\nabla f|^{2} \ge \frac{k_{0}(n-1)(n-\lambda_{1})}{n} \int_{M} |\nabla f|^{2}$$

which concludes the proof of the theorem. $\hfill \Box$

Proof of Theorem 2. The proof of this theorem is similar to that one of Theorem 1. First we choose a local orthonormal referential $\{e_1, \ldots, e_n\}$ such that $Ae_i = k_i e_i$, $i = 1, \ldots, n$ to derive

$$\operatorname{Ric}(e_i, e_j) = (n - 1 - k_i^2)\delta_{ij}.$$

Second we choose also an eigenfunction f associated to the Laplacian of M and write $\nabla f = \sum_{i=1}^{n} f_i e_i$. Hence, we use Lemma 2 to show in this case that

$$\frac{1}{(n-n_0)}S|\nabla f|^2 \ge \sum_{i=1}^n k_i^2 f_i^2.$$

However, we note that dim ker $A \ge n - 1$ implies $A \equiv 0$, because M is minimal. In this way, we can guarantee that $2 \le n - n_0$. Therefore,

(3.3)
$$\operatorname{Ric}(\nabla f, \nabla f) \ge (n-1)|\nabla f|^2 - \frac{1}{n-n_0}S|\nabla f|^2$$

and the proof follows as that one of the previous theorem after integrating (3.2) and using (3.3). \Box

J. N. BARBOSA and A. BARROS

ARCH. MATH.

References

- [1] A. BARROS, Applications of Bochner formula to minimal submanifolds of the sphere. J. Geom. Phys. 44, 196–201 (2002).
- [2] M. BERGER, P. GAUDUCHON and E. MAZET, Le Spectre d'une Variété Riemannienne. LNM **194**, Berlin-Heidelberg-New York 1971.
- [3] Q. M. CHENG and H. YANG, Chern's conjecture on minimal hypersurfaces. Math. Z. 227, 377–390 (1998).
- [4] S. S. CHERN, Selected papers. Berlin 1978.
- [5] S. S. CHERN, M. DO CARMO and S. KOBAYASHI, Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields, 59–75, Berlin-New York 1970.
- [6] H. I. CHOI and A. N. WANG, A first eigenvalue estimate for minimal hypersurfaces. J. Differential. Geom. 18, 559–562 (1983).
- [7] B. LAWSON, Local rigidity theorems for minimal hypersurfaces. Ann. of Math. 89, 187-197 (1969).
- [8] P. F. LEUNG, Minimal submanifolds in a sphere. Math. Z. 183, 75-83 (1983).
- [9] H. MUTO, The first eigenvalue of the Laplacian of an isoparametric hypersurface in a unit sphere. Math. Z. 197, 531–549 (1988).
- [10] M. OBATA, Certain conditions for a Riemannian manifold to be isometric with a sphere. J. Math. Soc. Japan **14**, 333–340 (1962).
- [11] R. SCHOEN and S. YAU, Lectures on Differential Geometry. Cambridge, MA 1994.
- [12] J. SIMONS, Minimal varieties in Riemannian manifolds. Ann. of Math. 88, 62–105 (1968).
- [13] T. TAKAHASHI, Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan 18, 380–385 (1966).
- [14] S. T. YAU, Problem Section of Seminar on Differential Geometry at Tokyo. Ann. Math. Stud. 102, 669–706 (1982).

Received: 25 July 2002; revised manuscript accepted: 4 October 2002

J. N. Barbosa Universidade Federal da Bahia Departamento de Matemática 40 170-110 Salvador, BA Brasil jnelson@ufba.br A. Barros Universidade Federal do Ceará Departamento de Matemática 60 455-670 Fortaleza, CE Brasil abbarros@mat.ufc.br

484