Archiv der Mathematik

Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature

By
José N. Barbosa, Aldir Brasil Jr ${ }^{1)}$, Ézio A. Costa ${ }^{2)}$ and IsaAC C. Lázaro

Abstract

In this paper we prove that a compact oriented hypersurface of a Euclidean sphere with nonnegative Ricci curvature and infinite fundamental group is isometric to an $H(r)$-torus with constant mean curvature. Furthermore, we generalize, whithout any hypothesis about the mean curvature, a characterization of Clifford torus due to Hasanis and Vlachos.

1. Introduction. Let M^{n} be an n-dimensional hypersurface of the ($n+1$)-dimensional unit Euclidean sphere S^{n+1}. If M^{n} is compact, minimal and $0 \leqq S \leqq n$, then Simons [16] proved that $S=0$ or $S=n$, where S is the square of the length of the second fundamental form of M^{n}. Chern, Do Carmo and Kobayashi [3] and Lawson [11] proved, independently, that the Clifford Tori are the only minimal hypersurfaces with $S=n$. Peng and Terng [15] studied the case where S is constant and $n=3$, and proved that if $S>3$, then $S \geqq 6$. Jorge and Mercuri [10] proved that if M^{n} is minimal with two distinct principal curvatures of multiplicities m and $(n-m)$ and $2 \leqq m \leqq(n-2)$, then M^{n} is locally $S^{m}\left(c_{1}\right) \times S^{n-m}\left(c_{2}\right)$. Otsuki in [14] gives necessary conditions for a minimal hypersurface of the sphere to be a product of spheres, namely that the second fundamental form have just two eigenvalues, each one of constant multiplicity. Recently, Hasanis and Vlachos [9] proved that if M^{n} is minimal and compact with two principal curvatures, one of them has multiplicity 1 and $S \geqq n$, then $S=n$ and M^{n} is a Clifford Torus. Alencar and do Carmo [1] proved that if M^{n} is compact with constant mean curvature H and $S-n H^{2} \leqq B_{H}$, where B_{H} is a constant that depends only on H and n, then $S-n H^{2}=0$ or $S-n H^{2}=B_{H}$. They also proved that the $H(r)$-tori $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $r^{2} \leqq \frac{n-1}{n}$ are the only hypersurfaces with constant mean curvature $H \neq 0$ and $S-n H^{2}=B_{H}$. These results do not characterize the others tori $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$, with $r^{2} \geqq \frac{n-1}{n}$, and $S^{n-k}(r) \times S^{k}\left(\sqrt{1-r^{2}}\right)$ for $2 \leqq k \leqq(n-1)$. We observe that a torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ has nonnegative Ricci curvature and infinite fundamental group, while a torus $S^{n-k}(r) \times S^{k}\left(\sqrt{1-r^{2}}\right)$, for $2 \leqq k<(n-1)$, has

[^0]positive Ricci curvature and finite fundamental group. Hence a natural question is to classify the immersions into the sphere with nonnegative Ricci curvature. The first result we obtained here concerning that problem is a topological-geometrical classification of $H(r)$-tori $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$. We have:

Theorem 1. Let $f: M^{n} \rightarrow S^{n+1}, n \geqq 3$, be a compact oriented hypersurface with nonnegative Ricci curvature. Then, $f\left(M^{n}\right)$ is isometric to an $H(r)$-torus if, and only if, the fundamental group $\pi_{1}(M)$ is infinite. Furthermore, if $n=3$ then the universal covering \widetilde{M}^{3} of M^{3} is diffeomorphic to S^{3} or $f\left(M^{3}\right)$ is isometric to $S^{2}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$.

The second theorem stated here is a generalization of the result of Hasanis and Vlachos [9] without any hypothesis about the mean curvature, where we obtain a characterization for $H(r)$-tori $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with $r^{2} \geqq \frac{n-1}{n}$.

Theorem 2. Let $f: M^{n} \rightarrow S^{n+1}, n \geqq 3$, be a compact oriented hypersurface with two distinct principal curvatures λ and μ with multiplicities 1 and $n-1$, respectively, and $S \geqq S(H)$, where

$$
S(H)=n+\frac{n^{3} H^{2}}{2(n-1)}+\frac{n(n-2)|H|}{2(n-1)} \sqrt{n^{2} H^{2}+4(n-1)}
$$

Then H is constant, $S=S(H)$ and $f\left(M^{n}\right)$ is isometric to an $H(r)$-torus $S^{n-1}(r) \times$ $S^{1}\left(\sqrt{1-r^{2}}\right)$ with $r^{2} \geqq \frac{n-1}{n}$.

We observe that a hypersurface $M^{n} \rightarrow S^{n+1}, n \geqq 4$, is conformally flat if and only if f has a principal curvature with multiplicity at least ($n-1$) (see Theorem 7.11 of [7]). So, we have the following consequence of the Theorem 1:

Corollary 1. Let $f: M^{n} \rightarrow S^{n+1}, n \geqq 3$, be a compact, oriented conformally flat hypersurface in such way that M^{n} has nonnegative Ricci curvature.
(i) If $n=3$, then the universal covering \tilde{M}^{3} is homeomorphic to S^{3} or $f\left(M^{3}\right)$ is isometric to an $H(r)$-torus $S^{2}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ and f has constant mean curvature.
(ii) If $n \geqq 4$, then M^{n} is homeomorphic to S^{n} or $f\left(M^{n}\right)$ is isometric to a $H(r)$-torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ and f has constant mean curvature.

Recently, Cheng [7] obtained the following result:
Theorem 3 [Q. M. Cheng, [7]]. Let M^{n} be a compact oriented conformally flat n-dimensional Riemannian manifold with constant scalar curvature. If the Ricci curvature of M^{n} is nonnegative, then M^{n} is isometric to a space form or to a Riemannian product $S^{n-1} \times S^{1}$.

A consequence of the Cheng's result above and Theorem 1 of Noronha [13] is that similars statements of Corollary 1 can be obtained if we assume that M^{n} is only a compact, oriented and conformally flat manifold with nonnegative Ricci curvature.
2. Preliminaries. Let M^{n} be an n-dimensional smooth, oriented Riemannian manifold and $f: M^{n} \rightarrow S^{n+1}$ be an isometric immersion. Denote the standard connection of S^{n+1} by $\bar{\nabla}$, the Riemannian connection of M^{n} by ∇, and the second fundamental form of the immersion by B. For tangent vectors X and Y of M^{n} we have the Gauss formula

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y),
$$

as well as the Weingarten formula

$$
\bar{\nabla}_{X} N=-A_{N}(X),
$$

where A_{N} is the shape operator associated with the normal vector field N. It is well known that $\left\langle A_{N}(X), Y\right\rangle=\langle B(X, Y), N\rangle$. Moreover, for any unit tangent vector X

$$
\operatorname{Ric}(X)=(n-1)+\operatorname{tr}\left(A_{N}\right)\left\langle A_{N}(X), X\right\rangle-\left|A_{N}(X)\right|^{2}
$$

In particular, for a minimal immersion we have

$$
\operatorname{Ric}(X)=(n-1)-\left|A_{N} X\right|^{2} .
$$

Now, we consider the parallel hypersurfaces of M^{n} given by the map

$$
f_{\theta}=\cos \theta f+\sin \theta N
$$

If $\cot \theta$ is not a principal curvature of f, then f_{θ} is an isometric immersion if we endow M^{n} with the pullback metric \langle,\rangle_{θ} via f_{θ}. Moreover, if the Riemannian manifold (M^{n},\langle,$\rangle)$ is complete, then $\left(M^{n},\langle,\rangle_{\theta}\right)$ is complete. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the principal curvatures of f and let us suppose that $\lambda_{i} \neq \cot \theta$, for all $i=1, \ldots, n$. In that case, the shape operator A_{θ} of the immersion f_{θ} with respect to the unit normal vector $N_{\theta}=\cos \theta N-\sin \theta f$ is given by

$$
A_{\theta}=\left[(\cot \theta) A_{N}+I d\right]\left[(\cot \theta) I d-A_{N}\right]^{-1}
$$

and the principal curvatures of f_{θ} are

$$
\lambda_{i}(\theta)=\frac{\cot \theta \lambda_{i}+1}{\cot \theta-\lambda_{i}} .
$$

If the shape operator A of f is not singular, for $\theta=\frac{\pi}{2}$, the immersion $f_{\frac{\pi}{2}}$ is the Gauss map of f with associated shape operator $\left(-A^{-1}\right)$. We note that the pullback metric \langle,\rangle_{*} via N is given by

$$
\langle X, Y\rangle_{*}=\left\langle A_{N} X, A_{N} Y\right\rangle, \quad X, Y \in T M,
$$

and the principal curvatures of $f_{\frac{\pi}{2}}$ are $-\frac{1}{\lambda_{1}}, \ldots,-\frac{1}{\lambda_{n}}$.
3. Proof of Theorem 1. Let $i: S^{n+1} \rightarrow R^{n+2}$ be the inclusion map and $\bar{f}: M^{n} \rightarrow$ R^{n+2} be the isometric immersion $\bar{f}=i \circ f$. Since $\pi_{1}\left(M^{n}\right)$ is infinite, applying the Theorem 1 of [12] to \bar{f}, we conclude that M^{n} has nonnegative secctional curvature. On the other hand, by Aubin (see [2], p. 397), for every $x \in M$, there exists $v \in T_{x} M$, so that $\|v\|=1$ and $\operatorname{Ric}(v)=0$. Since $K(v, w) \geqq 0$ for every $w \neq v$, then $K(v, w)=0$. Since the Ricci curvature attains its absolute extrema at principal directions, we can choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}\right\}$ in a neighborhood of $p \in M^{n}$ satisfying $A e_{i}=\lambda_{i} e_{i}$, $i=1, \ldots, n$, and $\operatorname{Ric}\left(e_{1}\right)=0$. Then the nonnegativity of sectional curvatures of M^{n} implies $K\left(e_{1}, e_{j}\right)=0$ for all $j \geqq 2$. Therefore $1+\lambda_{1} \lambda_{j}=0$. We conclude that f has only two distinct principal curvatures λ e μ with multiplicities 1 and $n-1$, respectively.

If $n \geqq 4$, by Dajczer [8] (Theorem 7.11, p. 118), M^{n} is conformally flat. If $n=3, M^{3}$ is conformally flat if and only if holds the Codazzi condition

$$
\begin{equation*}
\left(\nabla_{X} \gamma\right)(Y)=\left(\nabla_{Y} \gamma\right)(X) \tag{1}
\end{equation*}
$$

where $\gamma: T M \rightarrow T M$ is given by $\gamma(X)=Q(X)-\frac{\tau}{4} X, Q$ is the Ricci tensor and τ is the scalar curvature of M^{n}.
Let us prove that the tensor γ satisfies (1). We observe that $Q\left(e_{i}\right)=\operatorname{Ric}\left(e_{i}\right) e_{i}$. By Gauss equation we have

$$
\begin{aligned}
& \operatorname{Ric}\left(e_{1}\right)=2+2 \lambda \mu \\
& \operatorname{Ric}\left(e_{i}\right)=2+\lambda \mu+\mu^{2}, i=2,3
\end{aligned}
$$

and, therefore,

$$
\begin{aligned}
& Q\left(e_{1}\right)=(2+2 \lambda \mu) e_{1}, \\
& Q\left(e_{i}\right)=\left(2+\lambda \mu+\mu^{2}\right) e_{i}, \quad i=2,3 .
\end{aligned}
$$

Since

$$
\tau=\operatorname{Ric}\left(e_{1}\right)+2 \operatorname{Ric}\left(e_{2}\right)=6+4 \lambda \mu+2 \mu^{2}
$$

we obtain

$$
\gamma\left(e_{1}\right)=\left[\frac{1}{2}+\mu\left(\lambda-\frac{\mu}{2}\right)\right] e_{1}
$$

and

$$
\gamma\left(e_{i}\right)=\left[\frac{1}{2}+\frac{1}{2} \mu^{2}\right] e_{i}, \quad i=2,3 .
$$

Consequently,

$$
\gamma=\frac{1}{2} I+\mu\left(A-\frac{\mu}{2} I\right) .
$$

Since μ has constant multiplicity bigger than 1, it follows from the Theorem 4.4, p. 139 of [6] that $e_{2}(\mu)=e_{3}(\mu)=0$. Using this fact and the Codazzi equation

$$
\left(\nabla_{e_{i}} A\right)\left(e_{j}\right)=\left(\nabla_{e_{j}} A\right)\left(e_{i}\right),
$$

we obtain (1). Hence M^{3} is conformally flat.

Therefore, for any $n \geqq 3, M^{n}$ is an orientable, compact manifold, conformally flat with nonnegative Ricci curvature. Since $\pi_{1}\left(M^{n}\right)$ is infinite, we can use the same arguments of the proof of the Theorem 1 of [14] to conclude that the universal covering \widetilde{M}^{n} of M^{n} is isometric to $R \times S_{c}^{n-1}$. Consequently, \widetilde{M}^{n} and M^{n} have constant scalar curvature. But the scalar curvature of M^{n} is given by

$$
\begin{aligned}
\tau & =2 \sum_{j} K\left(e_{1}, e_{j}\right)+\sum_{\substack{i \neq j \\
i, j \neq 1}} K\left(e_{i}, e_{j}\right) \\
& =(n-1)(n-2)\left(1+\mu^{2}\right) .
\end{aligned}
$$

We conclude that μ is constant. Since $\lambda \mu=-1$, we have that λ is also constant. Hence f has constant mean curvature and M^{n} is isometric to a torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$.

Consider the case $n=3$. By Theorem 1.2 of Hamilton [8], M^{3} is diffeomorphic either S^{3} or a quocient of $S^{3}, S^{2} \times R$ or R^{3} by a fixed-point free group of isometries of the standard metric in each case. Then the universal covering \widetilde{M}^{3} of M^{3} is diffeomorphic to either S^{3}, $S^{2} \times R$ or R^{3}. If \tilde{M}^{3} is diffeomorphic to $S^{2} \times R$ or R^{3}, then M^{3} is non-compact and so $\pi_{1}\left(M^{3}\right)$ is infinite. In this case, $f\left(M^{3}\right)$ is isometric to $S^{2}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$, which finishes the proof of theorem.

4. Proof of Theorem 2. Note that

$$
\begin{equation*}
\lambda+(n-1) \mu=n H \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S=\lambda^{2}+(n-1) \mu \tag{3}
\end{equation*}
$$

In particular, $\lambda \neq 0$ and $\mu \neq 0$, otherwise (2) and (3) imply $S=\frac{n^{2}}{n-1} H^{2}$ if $\lambda=0$ or $S=n^{2} H^{2}$ if $\mu=0$, which contradicts $S \geqq S(H)$. Then, the shape operator of f is not singular. Consequently, we can define the Gauss map of f and \langle,\rangle_{*} is a metric on M.

Now let us write

$$
S(H)=\frac{n}{n-1}\left\{(n-1)+\frac{n^{2}}{2} H^{2}+\frac{n-2}{2} \alpha(H)\right\},
$$

where $\alpha(H)=\sqrt{n^{2} H^{4}+4(n-1) H^{2}}$.
Setting $\lambda \mu=Z$, from equations (2) and (3), we get

$$
n^{2} Z^{2}+2 n\left(S-2 n H^{2}\right) Z+\left(S-n^{2} H^{2}\right)\left(S-\frac{n^{2} H^{2}}{n-1}\right)=0
$$

The solutions of this equation are

$$
\frac{-\left(S-2 n H^{2}\right) \pm(n-2) \sqrt{\frac{n}{n-1}}|H| \sqrt{S-n H^{2}}}{n} .
$$

Since $S \geqq S(H)$ the solutions above are less that -1 . Hence $\lambda \mu \leqq-1$. Therefore, the seccional curvatures K_{*} of the Gauss map of f with respect to the planes generated by e_{1} and $e_{j}, j>1$, satisfy $K_{*}\left(e_{1}, e_{j}\right)=1+\frac{1}{\lambda \mu} \geqq 0$. On the other hand, we have $K_{*}\left(e_{i}, e_{j}\right)=1+1 / \mu^{2}>1$, for $j>i>1$. Hence, the Ricci curvature of the immersion $f_{\frac{\pi}{2}}$ is nonnegative. On the other hand, for $n \geqq 4$, since $f_{\frac{\pi}{2}}$ has only two principal curvatures of multiplicities 1 and $n-1$, we have that ($M^{n},\langle,\rangle_{*}$) is conformally flat (see Theorem 7.11 of [7]). Hence, since $f_{\frac{\pi}{2}}$ has not umbilical points, we may apply Corollary 2.6 of [5] (for immersions in S^{n+1}) to conclude that M^{n} is homeomorphic to a product of spheres $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$. Therefore, $\pi_{1}\left(M^{n}\right)$ is infinite. For $n=3$, the same conclusion of Corollary 2.6 of [5] holds, because $f_{\frac{\pi}{2}}$ has only two principal curvatures and has not umbilical points. Consequently, applying the Theorem 1 for $f_{\frac{\pi}{2}}$, we conclude that $f_{\frac{\pi}{2}}(M)$ is isometric to an $H(r)$-torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$. In particular, we have that the principal curvatures $1 / \lambda$ and $1 / \mu$ of $f_{\frac{\pi}{2}}$ are constant. Consequently, we conclude that $f\left(M^{n}\right)$ is a torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$. Since $S=S(H)$, we have $r^{2} \geqq(n-1) / n$, which completes the proof of theorem.
5. Proof of Corollary 1. (i) Let $n=3$. If $\pi_{1}\left(M^{3}\right)$ is finite, then the universal covering of M^{3} is compact and simply connected. By a theorem of N . Kuiper (see Corollary 7.9 of [7]), \tilde{M}^{3} is homeomorphic to S^{3}. If $\pi_{1}\left(M^{3}\right)$ is infinite, the corollary is a consequence of the Theorem 1.
(ii) Let $n \geqq 4$. If $\pi_{1}\left(M^{n}\right)$ is finite, by Theorem 1.10 of [5], M is homeomorphic to S^{n}. If $\pi_{1}\left(M^{n}\right)$ is infinite, the result is a consequence of Theorem 1 .

References

[1] H. Alencar and M. do Carmo, Hypersurfaces with constant mean curvature in Spheres. Proc. Amer. Math. Soc. 120, 4, 1223-1229 (1994).
[2] T. Aubin, Metriques Riemanniene et courbure. J. Differential Geom. 4, 385-424 (1970).
[3] M. Do CARMo, S. Chern and S. Kobayashi, Minimal submanifolds of the sphere with second fundamental form of constant lenght. Functional Analysis and related Fields. 59-75, New York 1970.
[4] M. Do Carmo and M. DacJzer, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277, 685-709 (1983).
[5] M. Do CARMO, M. DAJCZER and F. Mercuri, Compact conformally flat hypersurfaces. Trans. Amer. Math. Soc. 288, 189-203 (1985).
[6] T. E. CECIL and P. J. Ryan, Tight and Taut Immersions of Manifolds. London 1985.
[7] Q. ChENG, Compact locally conformally flat Riemannian manifolds. Bull. London Math. Soc. 33, 459-465 (2001).
[8] M. DAJCZER, et al., Submanifolds and isometric immersions. Houston 1990.
[9] R. Hamilton, Four-manifolds with positive curvature operator. J. Differential Geom. 24, 153-179 (1986).
[10] T. Hasanis and T. Vlachos, A pinching theorem for minimal hypersurfaces in a sphere. Arch. Math. 75, 469-471 (2000).
[11] L. Jorge and F. Mercuri, Minimal immersions into space forms with two principal curvatures. Math. Z. 187, 325-333 (1984).
[12] H. Lawson, Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187-197 (1969).
[13] M. Noronha, A note of the first Betti number of submanifolds with nonnegative Ricci curvature in codimension 2. Manuscripta Math. 73, 335-339 (1991).
[14] M. Noronha, Some compact conformally flat manifolds with nonnegative scalar curvature. Geom. Dedicata 47, 255-268 (1993).
[15] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math. 92, 145-173 (1970).
[16] C. Peng and C. Terng, Minimal hypersurfaces of sphere with constant scalar curvature. Ann. Math. Stud. 103, 177-198 (1983).
[17] J. SimONS, Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62-105 (1968).

Received: 19 March 2002

José N. Barbosa, Ézio Costa and Isaac C. Lázaro
Universidade Federal da Bahia
Departamento de Matemática
40.170-110 Salvador, BA

Brasil
jnelson@ufba.br
ezio@ufba.br
lazaro@ufba.br

Aldir Brasil Jr.
Universidade Federal do Ceará
Departamento de Matemática
60.455-670 Fortaleza, CE

Brasil
aldir@mat.ufc.br

[^0]: Mathematics Subject Classification (1991): Primary 53C42; Secondary 53B30 and 53C50.
 ${ }^{1)}$ Partially supported by CAPES and UFBA
 ${ }^{2)}$ Partially supported by FINEP and UFC

