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Hypersurfaces of the Euclidean sphere with nonnegative Ricci
curvature

By

José N. Barbosa, Aldir Brasil Jr1), Ézio A. Costa2) and Isaac C. Lázaro

Abstract. In this paper we prove that a compact oriented hypersurface of a Euclidean sphere
with nonnegative Ricci curvature and infinite fundamental group is isometric to an H(r)-torus with
constant mean curvature. Furthermore, we generalize, whithout any hypothesis about the mean
curvature, a characterization of Clifford torus due to Hasanis and Vlachos.

1. Introduction. Let Mn be an n-dimensional hypersurface of the (n+1)-dimensional
unit Euclidean sphere Sn+1. If Mn is compact, minimal and 0 � S � n, then Simons [16]
proved that S = 0 or S = n, where S is the square of the length of the second fundamental
form of Mn. Chern, Do Carmo and Kobayashi [3] and Lawson [11] proved, independently,
that the Clifford Tori are the only minimal hypersurfaces with S = n. Peng and Terng [15]
studied the case where S is constant and n = 3, and proved that if S > 3, then S � 6. Jorge
and Mercuri [10] proved that if Mn is minimal with two distinct principal curvatures of
multiplicities m and (n−m) and 2 � m � (n−2), then Mn is locally Sm(c1)×Sn−m(c2).
Otsuki in [14] gives necessary conditions for a minimal hypersurface of the sphere to be
a product of spheres, namely that the second fundamental form have just two eigenvalues,
each one of constant multiplicity. Recently, Hasanis and Vlachos [9] proved that if Mn

is minimal and compact with two principal curvatures, one of them has multiplicity 1 and
S � n, then S = n and Mn is a Clifford Torus. Alencar and do Carmo [1] proved that if Mn

is compact with constant mean curvature H and S−nH 2 � BH , where BH is a constant that
depends only on H and n, then S −nH 2 = 0 or S −nH 2 = BH . They also proved that the
H(r)-tori Sn−1(r)×S1(

√
1 − r2) with r2 � n−1

n
are the only hypersurfaces with constant

mean curvature H �= 0 and S−nH 2 = BH . These results do not characterize the others tori
Sn−1(r)×S1(

√
1 − r2), with r2 � n−1

n
, and Sn−k(r)×Sk(

√
1 − r2) for 2 � k � (n−1).

We observe that a torus Sn−1(r)×S1(
√

1 − r2) has nonnegative Ricci curvature and infinite
fundamental group, while a torus Sn−k(r) × Sk(

√
1 − r2), for 2 � k < (n − 1), has
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positive Ricci curvature and finite fundamental group. Hence a natural question is to
classify the immersions into the sphere with nonnegative Ricci curvature. The first result
we obtained here concerning that problem is a topological-geometrical classification of
H(r)-tori Sn−1(r) × S1(

√
1 − r2). We have:

Theorem 1. Let f : Mn → Sn+1, n � 3, be a compact oriented hypersurface with
nonnegative Ricci curvature. Then, f (Mn) is isometric to an H(r)-torus if, and only if, the
fundamental group π1(M) is infinite. Furthermore, if n = 3 then the universal covering
M̃3 of M3 is diffeomorphic to S3 or f (M3) is isometric to S2(r) × S1(

√
1 − r2).

The second theorem stated here is a generalization of the result of Hasanis and Vlachos
[9] without any hypothesis about the mean curvature, where we obtain a characterization
for H(r)-tori Sn−1(r) × S1(

√
1 − r2) with r2 � n−1

n
.

Theorem 2. Let f : Mn → Sn+1, n � 3, be a compact oriented hypersurface with two
distinct principal curvatures λ and µ with multiplicities 1 and n − 1, respectively, and
S � S(H) , where

S(H) = n + n3H 2

2(n − 1)
+ n(n − 2)|H |

2(n − 1)

√
n2H 2 + 4(n − 1).

Then H is constant, S = S(H) and f (Mn) is isometric to an H(r)-torus Sn−1(r) ×
S1(

√
1 − r2) with r2 � n−1

n
.

We observe that a hypersurface Mn → Sn+1, n � 4, is conformally flat if and only if f

has a principal curvature with multiplicity at least (n − 1) (see Theorem 7.11 of [7]). So,
we have the following consequence of the Theorem 1:

Corollary 1. Let f : Mn → Sn+1, n � 3, be a compact, oriented conformally flat
hypersurface in such way that Mn has nonnegative Ricci curvature.

(i) If n = 3, then the universal covering M̃3 is homeomorphic to S3 or f (M3) is
isometric to an H(r)-torus S2(r)×S1(

√
1 − r2) and f has constant mean curvature.

(ii) If n � 4, then Mn is homeomorphic to Sn or f (Mn) is isometric to a H(r)-torus
Sn−1(r) × S1(

√
1 − r2) and f has constant mean curvature.

Recently, Cheng [7] obtained the following result:

Theorem 3 [Q. M. Cheng, [7]]. Let Mn be a compact oriented conformally flat
n-dimensional Riemannian manifold with constant scalar curvature. If the Ricci curvature
of Mn is nonnegative, then Mn is isometric to a space form or to a Riemannian product
Sn−1 × S1.

A consequence of the Cheng’s result above and Theorem 1 of Noronha [13] is that similars
statements of Corollary 1 can be obtained if we assume that Mn is only a compact, oriented
and conformally flat manifold with nonnegative Ricci curvature.
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2. Preliminaries. Let Mn be an n-dimensional smooth, oriented Riemannian manifold
and f : Mn → Sn+1 be an isometric immersion. Denote the standard connection of Sn+1

by ∇̄, the Riemannian connection of Mn by ∇, and the second fundamental form of the
immersion by B. For tangent vectors X and Y of Mn we have the Gauss formula

∇̄XY = ∇XY + B(X, Y ),

as well as the Weingarten formula

∇̄XN = −AN(X),

where AN is the shape operator associated with the normal vector field N . It is well known
that 〈AN(X), Y 〉 = 〈B(X, Y ), N〉. Moreover, for any unit tangent vector X

Ric(X) = (n − 1) + tr(AN)〈AN(X), X〉 − |AN(X)|2.

In particular, for a minimal immersion we have

Ric(X) = (n − 1) − |ANX|2.

Now, we consider the parallel hypersurfaces of Mn given by the map

fθ = cos θf + sin θN.

If cot θ is not a principal curvature of f , then fθ is an isometric immersion if we endow
Mn with the pullback metric 〈, 〉θ via fθ . Moreover, if the Riemannian manifold (Mn, 〈, 〉)
is complete, then (Mn, 〈, 〉θ ) is complete. Let λ1, . . . , λn be the principal curvatures of f

and let us suppose that λi �= cot θ , for all i = 1, . . . , n. In that case, the shape operator Aθ

of the immersion fθ with respect to the unit normal vector Nθ = cos θN − sin θf is given
by

Aθ = [(cot θ)AN + Id][(cot θ)Id − AN ]−1

and the principal curvatures of fθ are

λi(θ) = cot θλi + 1

cot θ − λi

.

If the shape operator A of f is not singular, for θ = π
2 , the immersion fπ

2
is the Gauss

map of f with associated shape operator (−A−1). We note that the pullback metric 〈 , 〉∗
via N is given by

〈X, Y 〉∗ = 〈ANX, ANY 〉, X, Y ∈ TM,

and the principal curvatures of fπ
2

are − 1
λ1

, . . . , − 1
λn

.
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3. Proof of Theorem 1. Let i : Sn+1 → Rn+2 be the inclusion map and f̄ : Mn →
Rn+2 be the isometric immersion f̄ = i ◦ f . Since π1(M

n) is infinite, applying the
Theorem 1 of [12] to f̄ , we conclude that Mn has nonnegative secctional curvature. On
the other hand, by Aubin (see [2], p. 397), for every x ∈ M , there exists v ∈ TxM , so that
‖v‖ = 1 and Ric(v) = 0. Since K(v, w) � 0 for every w �= v, then K(v, w) = 0. Since
the Ricci curvature attains its absolute extrema at principal directions, we can choose a
local orthonormal frame {e1, . . . , en} in a neighborhood of p ∈ Mn satisfying Aei = λiei ,
i = 1, . . . , n, and Ric(e1) = 0. Then the nonnegativity of sectional curvatures of Mn

implies K(e1, ej ) = 0 for all j � 2. Therefore 1 + λ1λj = 0. We conclude that f has
only two distinct principal curvatures λ e µ with multiplicities 1 and n − 1, respectively.

If n � 4 , by Dajczer [8] (Theorem 7.11, p. 118), Mn is conformally flat. If n = 3, M3

is conformally flat if and only if holds the Codazzi condition

(∇Xγ )(Y ) = (∇Y γ )(X),(1)

where γ : T M → T M is given by γ (X) = Q(X) − τ
4 X, Q is the Ricci tensor and τ is the

scalar curvature of Mn.
Let us prove that the tensor γ satisfies (1). We observe that Q(ei) = Ric(ei)ei . By Gauss

equation we have

Ric(e1) = 2 + 2λµ,

Ric(ei) = 2 + λµ + µ2 , i = 2, 3,

and, therefore,

Q(e1) = (2 + 2λµ)e1,

Q(ei) = (2 + λµ + µ2)ei , i = 2, 3.

Since

τ = Ric(e1) + 2Ric(e2) = 6 + 4λµ + 2µ2 ,

we obtain

γ (e1) =
[

1

2
+ µ

(
λ − µ

2

)]
e1

and

γ (ei) =
[

1

2
+ 1

2
µ2

]
ei, i = 2, 3.

Consequently,

γ = 1

2
I + µ

(
A − µ

2
I
)

.

Since µ has constant multiplicity bigger than 1, it follows from the Theorem 4.4, p. 139 of
[6] that e2(µ) = e3(µ) = 0. Using this fact and the Codazzi equation

(∇ei
A)(ej ) = (∇ej

A)(ei),

we obtain (1). Hence M3 is conformally flat.
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Therefore, for any n � 3, Mn is an orientable, compact manifold, conformally flat with
nonnegative Ricci curvature. Since π1(M

n) is infinite, we can use the same arguments of
the proof of the Theorem 1 of [14] to conclude that the universal covering M̃n of Mn is
isometric to R × Sn−1

c . Consequently, M̃n and Mn have constant scalar curvature. But the
scalar curvature of Mn is given by

τ =2
∑
j

K(e1, ej ) +
∑
i �=j

i,j �=1

K(ei, ej )

=(n − 1)(n − 2)(1 + µ2) .

We conclude that µ is constant. Since λµ = −1, we have that λ is also constant. Hence
f has constant mean curvature and Mn is isometric to a torus Sn−1(r) × S1(

√
1 − r2).

Consider the case n = 3. By Theorem 1.2 of Hamilton [8], M3 is diffeomorphic either
S3 or a quocient of S3, S2 ×R or R3 by a fixed-point free group of isometries of the standard
metric in each case. Then the universal covering M̃3 of M3 is diffeomorphic to either S3,
S2 × R or R3. If M̃3 is diffeomorphic to S2 × R or R3, then M3 is non-compact and so
π1(M

3) is infinite. In this case, f (M3) is isometric to S2(r)×S1(
√

1 − r2), which finishes
the proof of theorem. �

4. Proof of Theorem 2. Note that

λ + (n − 1)µ = nH(2)

and

S = λ2 + (n − 1)µ.(3)

In particular, λ �= 0 and µ �= 0, otherwise (2) and (3) imply S = n2

n−1H 2 if λ = 0 or

S = n2H 2 if µ = 0, which contradicts S � S(H). Then, the shape operator of f is not
singular. Consequently, we can define the Gauss map of f and 〈 , 〉∗ is a metric on M .

Now let us write

S(H) = n

n − 1

{
(n − 1) + n2

2
H 2 + n − 2

2
α(H)

}
,

where α(H) = √
n2H 4 + 4(n − 1)H 2.

Setting λµ = Z, from equations (2) and (3), we get

n2Z2 + 2n(S − 2nH 2)Z + (S − n2H 2)

(
S − n2H 2

n − 1

)
= 0.

The solutions of this equation are

−(S − 2nH 2) ± (n − 2)
√

n
n−1 |H |√S − nH 2

n
.
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Since S � S(H) the solutions above are less that −1. Hence λµ � − 1. Therefore,
the seccional curvatures K∗ of the Gauss map of f with respect to the planes generated
by e1 and ej , j > 1, satisfy K∗(e1, ej ) = 1 + 1

λµ
� 0. On the other hand, we have

K∗(ei, ej ) = 1 + 1/µ2 > 1, for j > i > 1. Hence, the Ricci curvature of the immer-
sion fπ

2
is nonnegative. On the other hand, for n � 4, since fπ

2
has only two principal

curvatures of multiplicities 1 and n − 1, we have that (Mn, 〈 , 〉∗) is conformally flat (see
Theorem 7.11 of [7]). Hence, since fπ

2
has not umbilical points, we may apply Corollary 2.6

of [5] (for immersions in Sn+1) to conclude that Mn is homeomorphic to a product of spheres
Sn−1(r) × S1(

√
1 − r2). Therefore, π1(M

n) is infinite. For n = 3, the same conclusion
of Corollary 2.6 of [5] holds, because fπ

2
has only two principal curvatures and has not

umbilical points. Consequently, applying the Theorem 1 for fπ
2

, we conclude that fπ
2
(M) is

isometric to an H(r)-torus Sn−1(r)×S1(
√

1 − r2). In particular, we have that the principal
curvatures 1/λ and 1/µ of fπ

2
are constant. Consequently, we conclude that f (Mn) is a

torus Sn−1(r)×S1(
√

1 − r2). Since S = S(H), we have r2 � (n−1)/n, which completes
the proof of theorem.

5. Proof of Corollary 1. (i) Let n = 3. If π1(M
3) is finite, then the universal covering

of M3 is compact and simply connected. By a theorem of N. Kuiper (see Corollary 7.9 of
[7]), M̃3 is homeomorphic to S3. If π1(M

3) is infinite, the corollary is a consequence of
the Theorem 1.

(ii) Let n � 4. If π1(M
n) is finite, by Theorem 1.10 of [5], M is homeomorphic to Sn.

If π1(M
n) is infinite, the result is a consequence of Theorem 1.
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