Arch. Math. 81 (2003) 335–341 0003–889X/03/030335–07 DOI 10.1007/s00013-003-4698-9 © Birkhäuser Verlag, Basel, 2003

Archiv der Mathematik

Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature

By

JOSÉ N. BARBOSA, ALDIR BRASIL JR¹⁾, ÉZIO A. COSTA²⁾ and ISAAC C. LÁZARO

Abstract. In this paper we prove that a compact oriented hypersurface of a Euclidean sphere with nonnegative Ricci curvature and infinite fundamental group is isometric to an H(r)-torus with constant mean curvature. Furthermore, we generalize, whithout any hypothesis about the mean curvature, a characterization of Clifford torus due to Hasanis and Vlachos.

1. Introduction. Let M^n be an *n*-dimensional hypersurface of the (n + 1)-dimensional unit Euclidean sphere S^{n+1} . If M^n is compact, minimal and $0 \leq S \leq n$, then Simons [16] proved that S = 0 or S = n, where S is the square of the length of the second fundamental form of M^n . Chern, Do Carmo and Kobayashi [3] and Lawson [11] proved, independently, that the Clifford Tori are the only minimal hypersurfaces with S = n. Peng and Terng [15] studied the case where S is constant and n = 3, and proved that if S > 3, then $S \ge 6$. Jorge and Mercuri [10] proved that if M^n is minimal with two distinct principal curvatures of multiplicities m and (n-m) and $2 \leq m \leq (n-2)$, then M^n is locally $S^m(c_1) \times S^{n-m}(c_2)$. Otsuki in [14] gives necessary conditions for a minimal hypersurface of the sphere to be a product of spheres, namely that the second fundamental form have just two eigenvalues, each one of constant multiplicity. Recently, Hasanis and Vlachos [9] proved that if M^n is minimal and compact with two principal curvatures, one of them has multiplicity 1 and $S \ge n$, then S = n and M^n is a Clifford Torus. Alencar and do Carmo [1] proved that if M^n is compact with constant mean curvature H and $S - nH^2 \leq B_H$, where B_H is a constant that depends only on H and n, then $S - nH^2 = 0$ or $S - nH^2 = B_H$. They also proved that the H(r)-tori $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$ with $r^2 \leq \frac{n-1}{n}$ are the only hypersurfaces with constant mean curvature $H \neq 0$ and $S - nH^2 = B_H$. These results do not characterize the others tori $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$, with $r^2 \ge \frac{n-1}{n}$, and $S^{n-k}(r) \times S^k(\sqrt{1-r^2})$ for $2 \le k \le (n-1)$. We observe that a torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$ has nonnegative Ricci curvature and infinite fundamental group, while a torus $S^{n-k}(r) \times S^k(\sqrt{1-r^2})$, for $2 \leq k < (n-1)$, has

Mathematics Subject Classification (1991): Primary 53C42; Secondary 53B30 and 53C50.

¹⁾Partially supported by CAPES and UFBA

²⁾Partially supported by FINEP and UFC

positive Ricci curvature and finite fundamental group. Hence a natural question is to classify the immersions into the sphere with nonnegative Ricci curvature. The first result we obtained here concerning that problem is a topological-geometrical classification of H(r)-tori $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$. We have:

Theorem 1. Let $f : M^n \to S^{n+1}$, $n \ge 3$, be a compact oriented hypersurface with nonnegative Ricci curvature. Then, $f(M^n)$ is isometric to an H(r)-torus if, and only if, the fundamental group $\pi_1(M)$ is infinite. Furthermore, if n = 3 then the universal covering \widetilde{M}^3 of M^3 is diffeomorphic to S^3 or $f(M^3)$ is isometric to $S^2(r) \times S^1(\sqrt{1-r^2})$.

The second theorem stated here is a generalization of the result of Hasanis and Vlachos [9] without any hypothesis about the mean curvature, where we obtain a characterization for H(r)-tori $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$ with $r^2 \ge \frac{n-1}{n}$.

Theorem 2. Let $f: M^n \to S^{n+1}$, $n \ge 3$, be a compact oriented hypersurface with two distinct principal curvatures λ and μ with multiplicities 1 and n - 1, respectively, and $S \geq S(H)$, where

$$S(H) = n + \frac{n^3 H^2}{2(n-1)} + \frac{n(n-2)|H|}{2(n-1)} \sqrt{n^2 H^2 + 4(n-1)}.$$

Then H is constant, S = S(H) and $f(M^n)$ is isometric to an H(r)-torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$ with $r^2 \ge \frac{n-1}{n}$.

We observe that a hypersurface $M^n \to S^{n+1}$, $n \ge 4$, is conformally flat if and only if f has a principal curvature with multiplicity at least (n - 1) (see Theorem 7.11 of [7]). So, we have the following consequence of the Theorem 1:

Corollary 1. Let $f : M^n \to S^{n+1}$, $n \ge 3$, be a compact, oriented conformally flat hypersurface in such way that M^n has nonnegative Ricci curvature.

- (i) If n = 3, then the universal covering M³ is homeomorphic to S³ or f(M³) is isometric to an H(r)-torus S²(r)×S¹(√1-r²) and f has constant mean curvature.
 (ii) If n ≥ 4, then Mⁿ is homeomorphic to Sⁿ or f(Mⁿ) is isometric to a H(r)-torus Sⁿ⁻¹(r) × S¹(√1-r²) and f has constant mean curvature.

Recently, Cheng [7] obtained the following result:

Theorem 3 [Q. M. Cheng, [7]]. Let M^n be a compact oriented conformally flat n-dimensional Riemannian manifold with constant scalar curvature. If the Ricci curvature of M^n is nonnegative, then M^n is isometric to a space form or to a Riemannian product $S^{n-1} \times S^1$.

A consequence of the Cheng's result above and Theorem 1 of Noronha [13] is that similars statements of Corollary 1 can be obtained if we assume that M^n is only a compact, oriented and conformally flat manifold with nonnegative Ricci curvature.

Vol. 81, 2003

2. Preliminaries. Let M^n be an *n*-dimensional smooth, oriented Riemannian manifold and $f: M^n \to S^{n+1}$ be an isometric immersion. Denote the standard connection of S^{n+1} by $\overline{\nabla}$, the Riemannian connection of M^n by ∇ , and the second fundamental form of the immersion by *B*. For tangent vectors *X* and *Y* of M^n we have the Gauss formula

$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y),$$

as well as the Weingarten formula

$$\bar{\nabla}_X N = -A_N(X),$$

where A_N is the shape operator associated with the normal vector field N. It is well known that $\langle A_N(X), Y \rangle = \langle B(X, Y), N \rangle$. Moreover, for any unit tangent vector X

$$\operatorname{Ric}(X) = (n-1) + tr(A_N) \langle A_N(X), X \rangle - |A_N(X)|^2.$$

In particular, for a minimal immersion we have

$$\operatorname{Ric}(X) = (n-1) - |A_N X|^2.$$

Now, we consider the parallel hypersurfaces of M^n given by the map

$$f_{\theta} = \cos \theta f + \sin \theta N.$$

If $\cot \theta$ is not a principal curvature of f, then f_{θ} is an isometric immersion if we endow M^n with the pullback metric $\langle, \rangle_{\theta}$ via f_{θ} . Moreover, if the Riemannian manifold (M^n, \langle, \rangle) is complete, then $(M^n, \langle, \rangle_{\theta})$ is complete. Let $\lambda_1, \ldots, \lambda_n$ be the principal curvatures of f and let us suppose that $\lambda_i \neq \cot \theta$, for all $i = 1, \ldots, n$. In that case, the shape operator A_{θ} of the immersion f_{θ} with respect to the unit normal vector $N_{\theta} = \cos \theta N - \sin \theta f$ is given by

$$A_{\theta} = [(\cot \theta)A_N + Id][(\cot \theta)Id - A_N]^{-1}$$

and the principal curvatures of f_{θ} are

$$\lambda_i(\theta) = \frac{\cot \theta \lambda_i + 1}{\cot \theta - \lambda_i} \,.$$

If the shape operator A of f is not singular, for $\theta = \frac{\pi}{2}$, the immersion $f_{\frac{\pi}{2}}$ is the Gauss map of f with associated shape operator $(-A^{-1})$. We note that the pullback metric \langle , \rangle_* via N is given by

$$\langle X, Y \rangle_* = \langle A_N X, A_N Y \rangle, \quad X, Y \in TM,$$

and the principal curvatures of $f_{\frac{\pi}{2}}$ are $-\frac{1}{\lambda_1}, \ldots, -\frac{1}{\lambda_n}$.

3. Proof of Theorem 1. Let $i : S^{n+1} \to R^{n+2}$ be the inclusion map and $\overline{f} : M^n \to R^{n+2}$ be the isometric immersion $\overline{f} = i \circ f$. Since $\pi_1(M^n)$ is infinite, applying the Theorem 1 of [12] to \overline{f} , we conclude that M^n has nonnegative sectional curvature. On the other hand, by Aubin (see [2], p. 397), for every $x \in M$, there exists $v \in T_x M$, so that $\|v\| = 1$ and $\operatorname{Ric}(v) = 0$. Since $K(v, w) \ge 0$ for every $w \ne v$, then K(v, w) = 0. Since the Ricci curvature attains its absolute extrema at principal directions, we can choose a local orthonormal frame $\{e_1, \ldots, e_n\}$ in a neighborhood of $p \in M^n$ satisfying $Ae_i = \lambda_i e_i$, $i = 1, \ldots, n$, and $\operatorname{Ric}(e_1) = 0$. Then the nonnegativity of sectional curvatures of M^n implies $K(e_1, e_j) = 0$ for all $j \ge 2$. Therefore $1 + \lambda_1 \lambda_j = 0$. We conclude that f has only two distinct principal curvatures $\lambda \in \mu$ with multiplicities 1 and n - 1, respectively.

If $n \ge 4$, by Dajczer [8] (Theorem 7.11, p. 118), M^n is conformally flat. If n = 3, M^3 is conformally flat if and only if holds the Codazzi condition

(1)
$$(\nabla_X \gamma)(Y) = (\nabla_Y \gamma)(X),$$

where $\gamma : TM \to TM$ is given by $\gamma(X) = Q(X) - \frac{\tau}{4}X$, Q is the Ricci tensor and τ is the scalar curvature of M^n .

Let us prove that the tensor γ satisfies (1). We observe that $Q(e_i) = \text{Ric}(e_i)e_i$. By Gauss equation we have

$$\operatorname{Ric}(e_1) = 2 + 2\lambda\mu,$$

 $\operatorname{Ric}(e_i) = 2 + \lambda\mu + \mu^2, \ i = 2, 3,$

and, therefore,

τ

$$Q(e_1) = (2 + 2\lambda\mu)e_1,$$

$$Q(e_i) = (2 + \lambda\mu + \mu^2)e_i, \ i = 2, 3.$$

Since

and

$$r = \operatorname{Ric}(e_1) + 2\operatorname{Ric}(e_2) = 6 + 4\lambda\mu + 2\mu^2$$
,

.... T

we obtain

$$\gamma(e_1) = \left[\frac{1}{2} + \mu \left(\lambda - \frac{\mu}{2}\right)\right] e_1$$
$$\gamma(e_i) = \left[\frac{1}{2} + \frac{1}{2}\mu^2\right] e_i, \quad i = 2, 3.$$

Γ1

Consequently,

$$\gamma = \frac{1}{2}I + \mu \left(A - \frac{\mu}{2}I\right).$$

Since μ has constant multiplicity bigger than 1, it follows from the Theorem 4.4, p. 139 of [6] that $e_2(\mu) = e_3(\mu) = 0$. Using this fact and the Codazzi equation

$$(\nabla_{e_i} A)(e_i) = (\nabla_{e_i} A)(e_i),$$

we obtain (1). Hence M^3 is conformally flat.

338

Vol. 81, 2003

Therefore, for any $n \ge 3$, M^n is an orientable, compact manifold, conformally flat with nonnegative Ricci curvature. Since $\pi_1(M^n)$ is infinite, we can use the same arguments of the proof of the Theorem 1 of [14] to conclude that the universal covering \widetilde{M}^n of M^n is isometric to $R \times S_c^{n-1}$. Consequently, \widetilde{M}^n and M^n have constant scalar curvature. But the scalar curvature of M^n is given by

$$\tau = 2\sum_{j} K(e_1, e_j) + \sum_{\substack{i \neq j \\ i, j \neq 1}} K(e_i, e_j)$$
$$= (n-1)(n-2)(1+\mu^2).$$

We conclude that μ is constant. Since $\lambda \mu = -1$, we have that λ is also constant. Hence f has constant mean curvature and M^n is isometric to a torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$.

Consider the case n = 3. By Theorem 1.2 of Hamilton [8], M^3 is diffeomorphic either S^3 or a quocient of S^3 , $S^2 \times R$ or R^3 by a fixed-point free group of isometries of the standard metric in each case. Then the universal covering \widetilde{M}^3 of M^3 is diffeomorphic to either S^3 , $S^2 \times R$ or R^3 . If \widetilde{M}^3 is diffeomorphic to $S^2 \times R$ or R^3 , then M^3 is non-compact and so $\pi_1(M^3)$ is infinite. In this case, $f(M^3)$ is isometric to $S^2(r) \times S^1(\sqrt{1-r^2})$, which finishes the proof of theorem. \Box

4. Proof of Theorem 2. Note that

(2)
$$\lambda + (n-1)\mu = nH$$

and

$$S = \lambda^2 + (n-1)\mu.$$

In particular, $\lambda \neq 0$ and $\mu \neq 0$, otherwise (2) and (3) imply $S = \frac{n^2}{n-1}H^2$ if $\lambda = 0$ or $S = n^2 H^2$ if $\mu = 0$, which contradicts $S \ge S(H)$. Then, the shape operator of f is not singular. Consequently, we can define the Gauss map of f and \langle , \rangle_* is a metric on M.

Now let us write

$$S(H) = \frac{n}{n-1} \left\{ (n-1) + \frac{n^2}{2} H^2 + \frac{n-2}{2} \alpha(H) \right\},\,$$

where $\alpha(H) = \sqrt{n^2 H^4 + 4(n-1)H^2}$.

Setting $\lambda \mu = Z$, from equations (2) and (3), we get

$$n^{2}Z^{2} + 2n(S - 2nH^{2})Z + (S - n^{2}H^{2})\left(S - \frac{n^{2}H^{2}}{n-1}\right) = 0.$$

The solutions of this equation are

$$\frac{-(S-2nH^2) \pm (n-2)\sqrt{\frac{n}{n-1}}|H|\sqrt{S-nH^2}}{n}.$$

Since $S \ge S(H)$ the solutions above are less that -1. Hence $\lambda \mu \le -1$. Therefore, the seccional curvatures K_* of the Gauss map of f with respect to the planes generated by e_1 and e_j , j > 1, satisfy $K_*(e_1, e_j) = 1 + \frac{1}{\lambda \mu} \ge 0$. On the other hand, we have $K_*(e_i, e_j) = 1 + 1/\mu^2 > 1$, for j > i > 1. Hence, the Ricci curvature of the immersion $f_{\frac{\pi}{2}}$ is nonnegative. On the other hand, for $n \ge 4$, since $f_{\frac{\pi}{2}}$ has only two principal curvatures of multiplicities 1 and n - 1, we have that $(M^n, \langle , \rangle_*)$ is conformally flat (see Theorem 7.11 of [7]). Hence, since $f_{\frac{\pi}{2}}$ has not umbilical points, we may apply Corollary 2.6 of [5] (for immersions in S^{n+1}) to conclude that M^n is homeomorphic to a product of spheres $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$. Therefore, $\pi_1(M^n)$ is infinite. For n = 3, the same conclusion of Corollary 2.6 of [5] holds, because $f_{\frac{\pi}{2}}$ has only two principal curvatures and has not umbilical points. Consequently, applying the Theorem 1 for $f_{\frac{\pi}{2}}$, we conclude that $f_{\frac{\pi}{2}}(M)$ is isometric to an H(r)-torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$. In particular, we have that the principal curvatures $1/\lambda$ and $1/\mu$ of $f_{\frac{\pi}{2}}$ are constant. Consequently, we conclude that $f(M^n)$ is a torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$. Since S = S(H), we have $r^2 \ge (n-1)/n$, which completes the proof of theorem.

5. Proof of Corollary 1. (i) Let n = 3. If $\pi_1(M^3)$ is finite, then the universal covering of M^3 is compact and simply connected. By a theorem of N. Kuiper (see Corollary 7.9 of [7]), \tilde{M}^3 is homeomorphic to S^3 . If $\pi_1(M^3)$ is infinite, the corollary is a consequence of the Theorem 1.

(ii) Let $n \ge 4$. If $\pi_1(M^n)$ is finite, by Theorem 1.10 of [5], M is homeomorphic to S^n . If $\pi_1(M^n)$ is infinite, the result is a consequence of Theorem 1.

References

- [1] H. ALENCAR and M. DO CARMO, Hypersurfaces with constant mean curvature in Spheres. Proc. Amer. Math. Soc. **120**, 4, 1223–1229 (1994).
- [2] T. AUBIN, Metriques Riemanniene et courbure. J. Differential Geom. 4, 385–424 (1970).
- [3] M. DO CARMO, S. CHERN and S. KOBAYASHI, Minimal submanifolds of the sphere with second fundamental form of constant lenght. Functional Analysis and related Fields. 59–75, New York 1970.
- [4] M. DO CARMO and M. DACJZER, Rotation hypersurfaces in spaces of constant curvature, Trans. Amer. Math. Soc. 277, 685–709 (1983).
- [5] M. DO CARMO, M. DAJCZER and F. MERCURI, Compact conformally flat hypersurfaces. Trans. Amer. Math. Soc. 288, 189–203 (1985).
- [6] T. E. CECIL and P. J. RYAN, Tight and Taut Immersions of Manifolds. London 1985.
- [7] Q. CHENG, Compact locally conformally flat Riemannian manifolds. Bull. London Math. Soc. 33, 459–465 (2001).
- [8] M. DAJCZER, et al., Submanifolds and isometric immersions. Houston 1990.
- [9] R. HAMILTON, Four-manifolds with positive curvature operator. J. Differential Geom. 24, 153–179 (1986).
- [10] T. HASANIS and T. VLACHOS, A pinching theorem for minimal hypersurfaces in a sphere. Arch. Math. 75, 469–471 (2000).
- [11] L. JORGE and F. MERCURI, Minimal immersions into space forms with two principal curvatures. Math. Z. 187, 325–333 (1984).
- [12] H. LAWSON, Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969).
- [13] M. NORONHA, A note of the first Betti number of submanifolds with nonnegative Ricci curvature in codimension 2. Manuscripta Math. 73, 335–339 (1991).

Vol. 81, 2003

Hypersurfaces of the Euclidean sphere

- [14] M. NORONHA, Some compact conformally flat manifolds with nonnegative scalar curvature. Geom. Dedicata 47, 255–268 (1993).
- [15] T. OTSUKI, Minimal hypersurfaces in a Riemannian manifold of constant curvature. Amer. J. Math. 92, 145–173 (1970).
- [16] C. PENG and C. TERNG, Minimal hypersurfaces of sphere with constant scalar curvature. Ann. Math. Stud. 103, 177–198 (1983).
- [17] J. SIMONS, Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62-105 (1968).

Received: 19 March 2002

José N. Barbosa, Ézio Costa and Isaac C. Lázaro Universidade Federal da Bahia Departamento de Matemática 40.170-110 Salvador, BA Brasil jnelson@ufba.br ezio@ufba.br lazaro@ufba.br Aldir Brasil Jr. Universidade Federal do Ceará Departamento de Matemática 60.455-670 Fortaleza, CE Brasil aldir@mat.ufc.br