HYPERSURFACES OF \mathbb{S}^{n+1} WITH TWO DISTINCT PRINCIPAL CURVATURES

JOSÉ N. BARBOSA*

Universidade Federal da Bahia, Instituto de Matemática, Departamento de Matemática, Av. Ademar de Barros, s/n, Campus de Ondina – Ondina, Salvador, BA, 40.170-110, Brazil e-mail: jnelson@ufba.br

(Received 16 March, 2004; accepted 26 July, 2004)

Abstract. The aim of this paper is to prove that the Ricci curvature Ric_M of a complete hypersurface M^n , $n \ge 3$, of the Euclidean sphere \mathbb{S}^{n+1} , with two distinct principal curvatures of multiplicity 1 and n-1, satisfies $\sup \operatorname{Ric}_M \ge \inf f(H)$, for a function f depending only on f and the mean curvature f. Supposing in addition that f is compact, we will show that the equality occurs if and only if f is constant and f is isometric to a Clifford torus f and f is isometric to a Clifford torus f is that f is curvature f is incomplete.

2000 Mathematics Subject Classification. Primary 53C42. Secondary 53B30, 53C50.

1. Introduction. Let M^n be a n-dimensional complete, oriented Riemannian manifold and $\varphi: M \to \mathbb{S}^{n+1}$ a minimal isometric immersion of M into the unit Euclidean sphere \mathbb{S}^{n+1} . When n=3, T. Hasanis and D. Koutrofiotis [5] proved that $\sup \operatorname{Ric}_M \geq \frac{3}{2}$ and, that if M^3 is compact, the equality occurs if and only if $\varphi(M^3)$ is isometric to the Clifford torus $S^1(\sqrt{\frac{1}{3}}) \times S^2(\sqrt{\frac{2}{3}})$. Later, L. Haizhong [6] showed that if M^3 is compact and $0 \leq \operatorname{Ric}_M \leq \frac{3}{2}$ then $\varphi(M^3)$ is isometric to the Clifford torus $S^1(\sqrt{\frac{1}{3}}) \times S^2(\sqrt{\frac{2}{3}})$. On the other hand, T. Hasanis and T. Vlachos [4] proved that $\sup \operatorname{Ric}_M \geq n-2$, for any dimension n. Moreover, for even dimension n=2m they proved that the equality occurs if and only if $\varphi(M^n)$ is isometric to the Clifford torus $S^m(\frac{1}{\sqrt{2}}) \times S^m(\frac{1}{\sqrt{2}})$. In the odd case n=2m+1, the authors obtained a topological result. More precisely, they showed that the universal covering of M^n is homeomorphic to totally geodesic sphere S^n .

It is known that the supremum of Ricci curvature of a Clifford torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$ with nonnull mean curvature H (constant) is given by

$$\frac{n(n-2)}{n-1} \left[1 + \frac{n}{2(n-1)} H^2 - \frac{1}{2(n-1)} \sqrt{n^2 H^4 + 4(n-1) H^2} \right], \quad \text{if } r^2 > \frac{n-1}{n},$$

or

$$\frac{n(n-2)}{n-1} \left[1 + \frac{n}{2(n-1)} H^2 + \frac{1}{2(n-1)} \sqrt{n^2 H^4 + 4(n-1) H^2} \right], \quad \text{if } r^2 < \frac{n-1}{n}.$$

When H = 0 we have $r^2 = \frac{n-1}{n}$ and the supremum is $\frac{n(n-2)}{n-1}$.

^{*}Partially supported by Universidade Federal do Ceará and IM-AGIMB (Instituto do Milênio-Avanço Global e Integrado da Matemática Brasileira).

Let k_i , i = 1, ..., n, denote the principal curvatures of an immersion $\varphi: M^n \to \mathbb{S}^{n+1}$. If there exist smooth functions $\lambda, \mu: M \to \mathbb{R}$ such that

$$\lambda = k_1, \ldots, k_m$$
 $\mu = k_{m+1}, \ldots, k_n$

and $\lambda(p) \neq \mu(p)$, for all $p \in M$, we say that φ has two distinct principal curvatures of multiplicity m and n - m. Clifford tori $S^{n-m}(r) \times S^m(\sqrt{1-r^2}) \hookrightarrow S^{n+1}$ are examples of these kind of immersions.

We will prove the following result.

THEOREM 1. Let M^n , $n \ge 3$, be a n-dimensional complete, oriented Riemannian manifold, and $\varphi: M^n \to \mathbb{S}^{n+1}$ be an isometric immersion whose mean curvature H is bounded. Suppose that φ has two distinct principal curvatures with multiplicity 1 and n-1. Then

$$\sup \operatorname{Ric}_{M} \ge f(\sup |H|),\tag{1}$$

where

$$f(x) = \frac{n(n-2)}{n-1} \left[1 + \frac{n}{2(n-1)} x^2 - \frac{1}{2(n-1)} \sqrt{n^2 x^4 + 4(n-1)x^2} \right].$$

Moreover, if M^n is compact, the equality in (1) occurs if and only if H is constant and

$$\varphi(M^n) = S^{n-1}(r) \times S^1(\sqrt{1-r^2}), \quad r^2 \ge \frac{n-1}{n}.$$

In order to prove the Theorem 1 we will make use of the following result obtained by the author et al. [1].

THEOREM 2. Let $\varphi: M^n \to \mathbb{S}^{n+1}$, $n \geq 3$, be a closed and orientable hypersurface. If the Ricci curvature of M^n is nonnegative and the fundamental group $\pi_1(M^n)$ of M is infinite, then $\varphi(M^n)$ is isometric to a Clifford torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$.

2. Preliminaries. Let M^n be a n-dimensional and oriented Riemannian manifold. We consider an isometric immersion $\varphi: M^n \to \mathbb{S}^{n+1}$ of M^n into the unit Euclidean sphere \mathbb{S}^{n+1} . We denote by N the unit normal field to φ . The Gauss mapping $\eta: M^n \to \mathbb{S}^{n+1}$ of φ is defined as follows: for each $p \in M^n$, $\eta(p)$ is the end point of the vector obtained by translating N(p) parallel in R^{n+2} so as its initial point is the origin of R^{n+2} . Identifying M^n and $\varphi(M^n)$ locally, we have, for tangent vectors X to M^n , that $(\nabla_X N)^\top = -AX$, where ∇ is the connection of \mathbb{S}^{n+1} , A is the Weingarten operator of φ and v^\top denote the tangent component to M^n of a vector v tangent to \mathbb{S}^{n+1} . We can see easily that $d\eta(X) = -AX$. If A is nonsingular, then the map $\eta: M^n \to \mathbb{S}^{n+1}$ is an isometric immersion when we endow M^n with the metric $\langle \cdot, \cdot \rangle_*$ given by

$$\langle X, Y \rangle_* = \langle AX, AY \rangle,$$

where \langle , \rangle denote the induced metric of M^n by φ . Moreover, the Weingarten operator of the immersion η is A^{-1} and the equalities

$$\langle A^{-1}X, Y \rangle_* = \langle X, AY \rangle = \langle AX, Y \rangle$$

imply that φ and η have the same principal directions. More precisely, if $\{e_1,\ldots,e_n\}$ is an orthonormal basis which diagonalizes A, then $\{\frac{e_1}{\lambda_1},\ldots,\frac{e_n}{\lambda_n}\}$ is an orthonormal basis with respect to metric $\langle \; , \; \rangle_*$ that also diagonalizes A^{-1} , where $\lambda_1,\ldots,\lambda_n$ are the principal curvatures of φ . Hence the principal curvatures of η are $\frac{1}{\lambda_1},\ldots,\frac{1}{\lambda_n}$ and the sectional curvatures k_* of $(M^n,\langle \; , \; \rangle_*)$ with respect to the 2-planes spanned by principal directions are given by

$$k_*(e_i, e_j) = 1 + \frac{1}{\lambda_i \lambda_j}, \quad i, j = 1, \dots, n, \quad i \neq j.$$

LEMMA 1. Let $\varphi: M^n \to \mathbb{S}^{n+1}$ be an oriented hypersurface of \mathbb{S}^{n+1} with bounded mean curvature. Suppose there exists a constant α , with $\alpha < n-1$, so that the Ricci curvature of M^n satisfies everywhere $\mathrm{Ric}_M \leq \alpha \langle \ , \ \rangle$. Then, the principal curvatures of M^n satisfy $|\lambda_i| \geq \beta$, for some positive constant β . It follows that the Gauss mapping η of the immersion φ is an isometric immersion and that if M^n is complete in the induced metric by φ , then $\langle X, Y \rangle_* = \langle AX, AY \rangle$ is also a complete metric on M^n .

The proof of the Lemma 1 can be found in the paper of T. Hasanis and D. Koutroufiotis [5].

3. Proof of Theorem 1. Let us put sup $Ric_M = \alpha$ and suppose, by contradiction, that $\alpha < f(\sup |H|)$. Then, since f(x) is decreasing for $x \ge 0$, we have

$$\alpha < f(\sup |H|) \le \frac{n(n-2)}{n-1} < n-1.$$
 (2)

Consequently, we can apply the Lemma 1 to conclude that the principal curvatures λ and μ of φ are non-zero and that $(M^n, \langle , \rangle_*)$ is complete. We will denote by e_1, \ldots, e_n the principal directions with respect the principal curvatures $\lambda_1 = \lambda$ and $\lambda_2, \ldots, \lambda_n = \mu$, respectively. Since

$$Ric_M(e_i) = n - 1 + nH\lambda_i - \lambda_i^2$$

and $Ric_M \leq \alpha$, it follows that

$$\lambda_i \geq \frac{n}{2}H + \sqrt{\frac{n^2}{4}H^2 + n - 1 - \alpha}$$

or

$$\lambda_i \leq \frac{n}{2}H - \sqrt{\frac{n^2}{4}H^2 + n - 1 - \alpha}.$$

Since $\lambda + (n-1)\mu = nH$, by changing the orientation of M, if necessary, we may assume that

$$\lambda \ge \frac{n}{2}H + \sqrt{\frac{n^2}{4}H^2 + n - 1 - \alpha} \tag{3}$$

and

$$\mu \le \frac{n}{2}H - \sqrt{\frac{n^2}{4}H^2 + n - 1 - \alpha}.$$
 (4)

On the other hand, we have

$$\lambda = nH - (n-1)\mu$$

$$\geq nH - \frac{n(n-1)}{2}H + (n-1)\sqrt{\frac{n^2}{4}H^2 + n - 1 - \alpha}$$

$$= -\frac{n(n-3)}{2}H + (n-1)\sqrt{\frac{n^2}{4}H^2 + n - 1 - \alpha}.$$
(5)

Then, (4) and (5) yield

$$\lambda \mu \le \left(-\frac{n(n-3)}{2} H + (n-1) \sqrt{\frac{n^2}{4} H^2 + n - 1 - \alpha} \right) \\
\times \left(\frac{n}{2} H - \sqrt{\frac{n^2}{4} H^2 + n - 1 - \alpha} \right) \\
= -g(H), \tag{6}$$

where

$$g(x) = (n-1)^2 - (n-1)\alpha + \frac{n^2(n-2)}{2}x^2 - n(n-2)x\sqrt{\frac{n^2}{4}x^2 + n - 1 - \alpha}.$$

It is obvious that g(x) is decreasing everywhere. Moreover, it satisfies

$$g(\sup |H|) > 1. \tag{7}$$

In fact, this inequality is equivalent to

$$(n-1)^2\alpha^2 - n(n-2)[2(n-1) + n(\sup |H|)^2]\alpha + n^2(n-2)^2[1 + (\sup |H|)^2] > 0.$$

This is true, since the minor root is $f(\sup |H|)$ and $\alpha < f(\sup |H|)$.

The sectional curvature k_* of the Gauss mapping η of the immersion φ , with respect to the plane generated by e_1 and e_j (j > 1), taking into account of (7), satisfies

$$k_*(e_1, e_j) = 1 + \frac{1}{\lambda \mu} \ge 1 - \frac{1}{g(H)} \ge \frac{g(\sup |H|) - 1}{g(\sup |H|)} = \delta > 0,$$

where δ is a positive constant. On the other hand, for i > j > 1 we have

$$k_*(e_i, e_j) = 1 + \frac{1}{\mu^2} > 1.$$

Since the sectional curvature of hypersurface of a space form attains its absolute extrema at planes spanned by principal directions, the sectional curvatures of $(M^n, \langle , \rangle_*)$ are bounded from below by a positive constant. Hence we may apply Bonnet-Myers Theorem to conclude that M^n is compact and its fundamental group $\pi_1(M^n)$ is finite.

For $n \ge 4$, since η has only two principal curvatures of multiplicity 1 and n-1, we conclude that $(M^n, \langle , \rangle_*)$ is conformally flat (see [3, Theorem 7.11]) and without umbilical points. Since M^n is compact, we may apply Theorem 1.4 of M. do Carmo et al. [2], to derive that M^n is homeomorphic to a product $S^{n-1}(r_1) \times S^1(r_2)$. Therefore, $\pi_1(M^n)$ is infinite, which implies a contradiction. For n=3, we obtain the same conclusion since η is conformally flat ([1]) without umbilical points. This proves the first part of the theorem.

Now, we will suppose that M^n is compact and sup $Ric_M = f(\sup |H|)$, i.e.,

$$\operatorname{Ric}_{M}(X) < \alpha < f(\sup |H|), \quad \forall X \in TM, \quad |X| = 1.$$

Hence, we have $\alpha < n-1$ and in an analogous way to the first part of proof, we conclude

$$k_*(e_1, e_j) = 1 + \frac{1}{\lambda \mu} \ge \frac{g(\sup |H|) - 1}{g(\sup |H|)} \ge 0, \quad j > 1.$$

However, we note that it can happen that $g(\sup |H|) - 1 = 0$ since now $\alpha \le f(\sup |H|)$. On the other hand we have

$$k_*(e_i, e_j) = 1 + \frac{1}{\mu^2} > 1, \quad j > i > 1.$$
 (8)

It follows that the Ricci curvature of η is nonnegative. Since M is compact and η has two distinct principal curvatures of multiplicity 1 and n-1, we can show by the same argument as the first part of the proof that $\pi_1(M)$ is infinite. Then we can apply Theorem 2 for η to conclude that $\eta(M^n)$ is a Clifford torus $S^{n-1}(r_0) \times S^1(\sqrt{1-r_0^2})$ with constant mean curvature. In particular, we have that the principal curvatures $1/\lambda$ and $1/\mu$ of η are constants. Hence, λ , μ and H are constants. Consequently, $\varphi(M^n)$ is a Clifford torus $S^{n-1}(r) \times S^1(\sqrt{1-r^2})$. Since $\sup \operatorname{Ric}_M = f(H)$, it follows that $r^2 \ge (n-1)/n$, which completes the proof of the theorem.

REFERENCES

- 1. J. N. Barbosa, A. Brasil Jr, E. Costa and I. Lázaro, Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature, *Arch. Math. (Basel)* 81 (2003), 335–341.
- **2.** M. do Carmo, M. Dajczer and F. Mercuri, Compact conformally flat hypersurfaces, *Trans. Amer. Math. Soc.* **288** (1985), 189–203.
 - 3. M. Dajczer et al., Submanifolds and isometric immersions (Houston, 1990).
- **4.** T. Hasanis and T. Vlachos, Ricci curvature and minimal submanifolds, *Pacific J. Math.* **197** (2001), 13–24.
- **5.** T. Hasanis and D. Koutroufiotis, Applications of the Gauss mapping for hypersurfaces of the sphere, in *Global differential geometry and global analysis 1984*, Lecture Notes in Mathematics No. 1156 (Springer-Verlag, 1985), 180–193.
- **6.** L. Haizhong, A characterization of Clifford minimal hypersurfaces in S^4 , *Proc. Amer. Math. Soc.* **123** (1995), 3183–3187.