# HYPERSURFACES OF $\mathbb{S}^{n+1}$ WITH TWO DISTINCT PRINCIPAL CURVATURES 

JOSÉ N. BARBOSA*<br>Universidade Federal da Bahia, Instituto de Matemática, Departamento de Matemática, Av. Ademar de Barros, s/n, Campus de Ondina - Ondina, Salvador, BA, 40.170-110, Brazil e-mail: jnelson@ufba.br

(Received 16 March, 2004; accepted 26 July, 2004)


#### Abstract

The aim of this paper is to prove that the Ricci curvature $\operatorname{Ric}_{M}$ of a complete hypersurface $M^{n}, n \geq 3$, of the Euclidean sphere $\mathbb{S}^{n+1}$, with two distinct principal curvatures of multiplicity 1 and $n-1$, satisfies $\sup \operatorname{Ric}_{M} \geq \inf f(H)$, for a function $f$ depending only on $n$ and the mean curvature $H$. Supposing in addition that $M^{n}$ is compact, we will show that the equality occurs if and only if $H$ is constant and $M^{n}$ is isometric to a Clifford torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$.

2000 Mathematics Subject Classification. Primary 53C42. Secondary 53B30, 53C50.


1. Introduction. Let $M^{n}$ be a $n$-dimensional complete, oriented Riemannian manifold and $\varphi: M \rightarrow \mathbb{S}^{n+1}$ a minimal isometric immersion of $M$ into the unit Euclidean sphere $\mathbb{S}^{n+1}$. When $n=3$, T. Hasanis and D. Koutrofiotis [5] proved that $\sup \operatorname{Ric}_{M} \geq \frac{3}{2}$ and, that if $M^{3}$ is compact, the equality occurs if and only if $\varphi\left(M^{3}\right)$ is isometric to the Clifford torus $S^{1}\left(\sqrt{\frac{1}{3}}\right) \times S^{2}\left(\sqrt{\frac{2}{3}}\right)$. Later, L. Haizhong [6] showed that if $M^{3}$ is compact and $0 \leq \operatorname{Ric}_{M} \leq \frac{3}{2}$ then $\varphi\left(M^{3}\right)$ is isometric to the Clifford torus $S^{1}\left(\sqrt{\frac{1}{3}}\right) \times S^{2}\left(\sqrt{\frac{2}{3}}\right)$. On the other hand, T. Hasanis and T. Vlachos [4] proved that sup $\operatorname{Ric}_{M} \geq n-2$, for any dimension $n$. Moreover, for even dimension $n=2 m$ they proved that the equality occurs if and only if $\varphi\left(M^{n}\right)$ is isometric to the Clifford torus $S^{m}\left(\frac{1}{\sqrt{2}}\right) \times S^{m}\left(\frac{1}{\sqrt{2}}\right)$. In the odd case $n=2 m+1$, the authors obtained a topological result. More precisely, they showed that the universal covering of $M^{n}$ is homeomorphic to totally geodesic sphere $S^{n}$.

It is known that the supremum of Ricci curvature of a Clifford torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$ with nonnull mean curvature $H$ (constant) is given by

$$
\frac{n(n-2)}{n-1}\left[1+\frac{n}{2(n-1)} H^{2}-\frac{1}{2(n-1)} \sqrt{n^{2} H^{4}+4(n-1) H^{2}}\right], \quad \text { if } r^{2}>\frac{n-1}{n},
$$

or

$$
\frac{n(n-2)}{n-1}\left[1+\frac{n}{2(n-1)} H^{2}+\frac{1}{2(n-1)} \sqrt{n^{2} H^{4}+4(n-1) H^{2}}\right], \quad \text { if } r^{2}<\frac{n-1}{n} .
$$

When $H=0$ we have $r^{2}=\frac{n-1}{n}$ and the supremum is $\frac{n(n-2)}{n-1}$.

[^0]Let $k_{i}, \quad i=1, \ldots, n$, denote the principal curvatures of an immersion $\varphi: M^{n} \rightarrow \mathbb{S}^{n+1}$. If there exist smooth functions $\lambda, \mu: M \rightarrow \mathbb{R}$ such that

$$
\lambda=k_{1}, \ldots, k_{m} \quad \mu=k_{m+1}, \ldots, k_{n},
$$

and $\lambda(p) \neq \mu(p)$, for all $p \in M$, we say that $\varphi$ has two distinct principal curvatures of multiplicity $m$ and $n-m$. Clifford tori $S^{n-m}(r) \times S^{m}\left(\sqrt{1-r^{2}}\right) \hookrightarrow S^{n+1}$ are examples of these kind of immersions.

We will prove the following result.
Theorem 1. Let $M^{n}, n \geq 3$, be a $n$-dimensional complete, oriented Riemannian manifold, and $\varphi: M^{n} \rightarrow \mathbb{S}^{n+1}$ be an isometric immersion whose mean curvature $H$ is bounded. Suppose that $\varphi$ has two distinct principal curvatures with multiplicity 1 and $n-1$. Then

$$
\begin{equation*}
\sup \operatorname{Ric}_{M} \geq f(\sup |H|), \tag{1}
\end{equation*}
$$

where

$$
f(x)=\frac{n(n-2)}{n-1}\left[1+\frac{n}{2(n-1)} x^{2}-\frac{1}{2(n-1)} \sqrt{n^{2} x^{4}+4(n-1) x^{2}}\right] .
$$

Moreover, if $M^{n}$ is compact, the equality in (1) occurs if and only if $H$ is constant and

$$
\varphi\left(M^{n}\right)=S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right), \quad r^{2} \geq \frac{n-1}{n}
$$

In order to prove the Theorem 1 we will make use of the following result obtained by the author et al. [1].

Theorem 2. Let $\varphi: M^{n} \rightarrow \mathbb{S}^{n+1}, n \geq 3$, be a closed and orientable hypersurface. If the Ricci curvature of $M^{n}$ is nonnegative and the fundamental group $\pi_{1}\left(M^{n}\right)$ of $M$ is infinite, then $\varphi\left(M^{n}\right)$ is isometric to a Clifford torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$.
2. Preliminaries. Let $M^{n}$ be a $n$-dimensional and oriented Riemannian manifold. We consider an isometric immersion $\varphi: M^{n} \rightarrow \mathbb{S}^{n+1}$ of $M^{n}$ into the unit Euclidean sphere $\mathbb{S}^{n+1}$. We denote by $N$ the unit normal field to $\varphi$. The Gauss mapping $\eta: M^{n} \rightarrow \mathbb{S}^{n+1}$ of $\varphi$ is defined as follows: for each $p \in M^{n}, \eta(p)$ is the end point of the vector obtained by translating $N(p)$ parallel in $R^{n+2}$ so as its initial point is the origin of $R^{n+2}$. Identifying $M^{n}$ and $\varphi\left(M^{n}\right)$ locally, we have, for tangent vectors $X$ to $M^{n}$, that $\left(\nabla_{X} N\right)^{\top}=-A X$, where $\nabla$ is the connection of $\mathbb{S}^{n+1}, A$ is the Weingarten operator of $\varphi$ and $v^{\top}$ denote the tangent component to $M^{n}$ of a vector $v$ tangent to $\mathbb{S}^{n+1}$. We can see easily that $\mathrm{d} \eta(X)=-A X$. If $A$ is nonsingular, then the map $\eta: M^{n} \rightarrow \mathbb{S}^{n+1}$ is an isometric immersion when we endow $M^{n}$ with the metric $\langle,\rangle_{*}$ given by

$$
\langle X, Y\rangle_{*}=\langle A X, A Y\rangle,
$$

where $\langle$,$\rangle denote the induced metric of M^{n}$ by $\varphi$. Moreover, the Weingarten operator of the immersion $\eta$ is $A^{-1}$ and the equalities

$$
\left\langle A^{-1} X, Y\right\rangle_{*}=\langle X, A Y\rangle=\langle A X, Y\rangle
$$

imply that $\varphi$ and $\eta$ have the same principal directions. More precisely, if $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis which diagonalizes $A$, then $\left\{\frac{e_{1}}{\lambda_{1}}, \ldots, \frac{e_{n}}{\lambda_{n}}\right\}$ is an orthonormal basis with respect to metric $\langle,\rangle_{*}$ that also diagonalizes $A^{-1}$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the principal curvatures of $\varphi$. Hence the principal curvatures of $\eta$ are $\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{n}}$ and the sectional curvatures $k_{*}$ of $\left(M^{n},\langle,\rangle_{*}\right)$ with respect to the 2-planes spanned by principal directions are given by

$$
k_{*}\left(e_{i}, e_{j}\right)=1+\frac{1}{\lambda_{i} \lambda_{j}}, \quad i, j=1, \ldots, n, \quad i \neq j
$$

Lemma 1. Let $\varphi: M^{n} \rightarrow \mathbb{S}^{n+1}$ be an oriented hypersurface of $\mathbb{S}^{n+1}$ with bounded mean curvature. Suppose there exists a constant $\alpha$, with $\alpha<n-1$, so that the Ricci curvature of $M^{n}$ satisfies everywhere $\operatorname{Ric}_{M} \leq \alpha\langle$, $\rangle$. Then, the principal curvatures of $M^{n}$ satisfy $\left|\lambda_{i}\right| \geq \beta$, for some positive constant $\beta$. It follows that the Gauss mapping $\eta$ of the immersion $\varphi$ is an isometric immersion and that if $M^{n}$ is complete in the induced metric by $\varphi$, then $\langle X, Y\rangle_{*}=\langle A X, A Y\rangle$ is also a complete metric on $M^{n}$.

The proof of the Lemma 1 can be found in the paper of T. Hasanis and D. Koutroufiotis [5].
3. Proof of Theorem 1. Let us put $\sup \operatorname{Ric}_{M}=\alpha$ and suppose, by contradiction, that $\alpha<f(\sup |H|)$. Then, since $f(x)$ is decreasing for $x \geq 0$, we have

$$
\begin{equation*}
\alpha<f(\sup |H|) \leq \frac{n(n-2)}{n-1}<n-1 . \tag{2}
\end{equation*}
$$

Consequently, we can apply the Lemma 1 to conclude that the principal curvatures $\lambda$ and $\mu$ of $\varphi$ are non-zero and that ( $M^{n},\langle,\rangle_{*}$ ) is complete. We will denote by $e_{1}, \ldots, e_{n}$ the principal directions with respect the principal curvatures $\lambda_{1}=\lambda$ and $\lambda_{2}, \ldots, \lambda_{n}=\mu$, respectively. Since

$$
\operatorname{Ric}_{M}\left(e_{i}\right)=n-1+n H \lambda_{i}-\lambda_{i}^{2}
$$

and $\operatorname{Ric}_{M} \leq \alpha$, it follows that

$$
\lambda_{i} \geq \frac{n}{2} H+\sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha}
$$

or

$$
\lambda_{i} \leq \frac{n}{2} H-\sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha} .
$$

Since $\lambda+(n-1) \mu=n H$, by changing the orientation of $M$, if necessary, we may assume that

$$
\begin{equation*}
\lambda \geq \frac{n}{2} H+\sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu \leq \frac{n}{2} H-\sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha} \tag{4}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
\lambda & =n H-(n-1) \mu \\
& \geq n H-\frac{n(n-1)}{2} H+(n-1) \sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha} \\
& =-\frac{n(n-3)}{2} H+(n-1) \sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha} . \tag{5}
\end{align*}
$$

Then, (4) and (5) yield

$$
\begin{align*}
\lambda \mu \leq & \left(-\frac{n(n-3)}{2} H+(n-1) \sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha}\right) \\
& \times\left(\frac{n}{2} H-\sqrt{\frac{n^{2}}{4} H^{2}+n-1-\alpha}\right) \\
= & -g(H), \tag{6}
\end{align*}
$$

where

$$
g(x)=(n-1)^{2}-(n-1) \alpha+\frac{n^{2}(n-2)}{2} x^{2}-n(n-2) x \sqrt{\frac{n^{2}}{4} x^{2}+n-1-\alpha} .
$$

It is obvious that $g(x)$ is decreasing everywhere. Moreover, it satisfies

$$
\begin{equation*}
g(\sup |H|)>1 . \tag{7}
\end{equation*}
$$

In fact, this inequality is equivalent to

$$
(n-1)^{2} \alpha^{2}-n(n-2)\left[2(n-1)+n(\sup |H|)^{2}\right] \alpha+n^{2}(n-2)^{2}\left[1+(\sup |H|)^{2}\right]>0 .
$$

This is true, since the minor root is $f(\sup |H|)$ and $\alpha<f(\sup |H|)$.
The sectional curvature $k_{*}$ of the Gauss mapping $\eta$ of the immersion $\varphi$, with respect to the plane generated by $e_{1}$ and $e_{j}(j>1)$, taking into account of (7), satisfies

$$
k_{*}\left(e_{1}, e_{j}\right)=1+\frac{1}{\lambda \mu} \geq 1-\frac{1}{g(H)} \geq \frac{g(\sup |H|)-1}{g(\sup |H|)}=\delta>0
$$

where $\delta$ is a positive constant. On the other hand, for $i>j>1$ we have

$$
k_{*}\left(e_{i}, e_{j}\right)=1+\frac{1}{\mu^{2}}>1 .
$$

Since the sectional curvature of hypersurface of a space form attains its absolute extrema at planes spanned by principal directions, the sectional curvatures of $\left(M^{n},\langle,\rangle_{*}\right)$ are bounded from below by a positive constant. Hence we may apply Bonnet-Myers Theorem to conclude that $M^{n}$ is compact and its fundamental group $\pi_{1}\left(M^{n}\right)$ is finite.

For $n \geq 4$, since $\eta$ has only two principal curvatures of multiplicity 1 and $n-1$, we conclude that ( $M^{n},\langle,\rangle_{*}$ ) is conformally flat (see [3, Theorem 7.11]) and without umbilical points. Since $M^{n}$ is compact, we may apply Theorem 1.4 of M. do Carmo et al. [2], to derive that $M^{n}$ is homeomorphic to a product $S^{n-1}\left(r_{1}\right) \times S^{1}\left(r_{2}\right)$. Therefore, $\pi_{1}\left(M^{n}\right)$ is infinite, which implies a contradiction. For $n=3$, we obtain the same conclusion since $\eta$ is conformally flat ([1]) without umbilical points. This proves the first part of the theorem.

Now, we will suppose that $M^{n}$ is compact and $\sup \operatorname{Ric}_{M}=f(\sup |H|)$, i.e.,

$$
\operatorname{Ric}_{M}(X) \leq \alpha \leq f(\sup |H|), \quad \forall X \in T M, \quad|X|=1
$$

Hence, we have $\alpha<n-1$ and in an analogous way to the first part of proof, we conclude

$$
k_{*}\left(e_{1}, e_{j}\right)=1+\frac{1}{\lambda \mu} \geq \frac{g(\sup |H|)-1}{g(\sup |H|)} \geq 0, \quad j>1 .
$$

However, we note that it can happen that $g(\sup |H|)-1=0$ since now $\alpha \leq f(\sup |H|)$. On the other hand we have

$$
\begin{equation*}
k_{*}\left(e_{i}, e_{j}\right)=1+\frac{1}{\mu^{2}}>1, \quad j>i>1 . \tag{8}
\end{equation*}
$$

It follows that the Ricci curvature of $\eta$ is nonnegative. Since $M$ is compact and $\eta$ has two distinct principal curvatures of multiplicity 1 and $n-1$, we can show by the same argument as the first part of the proof that $\pi_{1}(M)$ is infinite. Then we can apply Theorem 2 for $\eta$ to conclude that $\eta\left(M^{n}\right)$ is a Clifford torus $S^{n-1}\left(r_{0}\right) \times S^{1}\left(\sqrt{1-r_{0}{ }^{2}}\right)$ with constant mean curvature. In particular, we have that the principal curvatures $1 / \lambda$ and $1 / \mu$ of $\eta$ are constants. Hence, $\lambda, \mu$ and $H$ are constants. Consequently, $\varphi\left(M^{n}\right)$ is a Clifford torus $S^{n-1}(r) \times S^{1}\left(\sqrt{1-r^{2}}\right)$. Since $\sup \operatorname{Ric}_{M}=f(H)$, it follows that $r^{2} \geq(n-1) / n$, which completes the proof of the theorem.

## REFERENCES

1. J. N. Barbosa, A. Brasil Jr, E. Costa and I. Lázaro, Hypersurfaces of the Euclidean sphere with nonnegative Ricci curvature, Arch. Math. (Basel) 81 (2003), 335-341.
2. M. do Carmo, M. Dajczer and F. Mercuri, Compact conformally flat hypersurfaces, Trans. Amer. Math. Soc. 288 (1985), 189-203.
3. M. Dajczer et al., Submanifolds and isometric immersions (Houston, 1990).
4. T. Hasanis and T. Vlachos, Ricci curvature and minimal submanifolds, Pacific J. Math. 197 (2001), 13-24.
5. T. Hasanis and D. Koutroufiotis, Applications of the Gauss mapping for hypersurfaces of the sphere, in Global differential geometry and global analysis 1984, Lecture Notes in Mathematics No. 1156 (Springer-Verlag, 1985), 180-193.
6. L. Haizhong, A characterization of Clifford minimal hypersurfaces in $S^{4}$, Proc. Amer. Math. Soc. 123 (1995), 3183-3187.

[^0]:    *Partially supported by Universidade Federal do Ceará and IM-AGIMB (Instituto do Milênio-Avanço Global e Integrado da Matemática Brasileira).

