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Abstract. We discuss the scattering of relativistic spin zero particles by an infinitely long and
arbitrarily thin solenoid. The exact solution of the first-quantized problem can be obtained as
a mimic of the nonrelativistic case, either in the original Aharonov–Bohm way or by using the
Berry magnetization scheme. The perturbative treatment is developed in the Feshbach–Villars
two-component formalism for the Klein–Gordon equation and it is shown that it also requires
renormalization as in the Schrödinger counterpart. The results are compared with those of the field
theoretical approach, which corresponds to the two-body sector of the scalar Chern–Simons theory.

1. Introduction

The Aharonov–Bohm (AB) effect [1], the scattering of a charged particle by an infinitely
long and arbitrarily thin solenoid, presents a very peculiar situation of nonrelativistic (NR)
quantum dynamics, with charged particles feeling the vector potential in regions where the
electromagnetic field is null. It is an exactly solvable quantum mechanical problem [1, 2],
which, due to the singular nature of the potential, requires the use of renormalization procedures
to make its perturbative treatment meaningful. In fact, as noticed by Corinaldesi and Rafeli [3],
the bare perturbation theory leads to an incomplete result in the Born approximation and to
a divergent one in second order. For spinless particles in quantum mechanics, the necessary
renormalization is accomplished by adding a delta function potential [4], while in the second
quantized version it is implemented by introducing a φ4 self-interaction, with an appropriate
strength, in a scalar Chern–Simons Lagrangian [5–7].

In this paper, we discuss the relativistic scalar AB scattering, that is the scattering of
a relativistic charged spin zero particle by a thin fixed solenoid from the viewpoint of the
first quantization, comparing with the analysis in the framework of the field theory [8–10].
In section 2, it is shown that the problem can be solved exactly through a mimic of either
the original AB solution or the Berry magnetization scheme. We then develop (section 3)
a perturbative analysis of the Klein–Gordon equation in the presence of the solenoid using
the Feshbach–Villars two-component formalism and show that the bare perturbation treatment
presents problems similar to those of the NR case and possesses an analogous renormalization.
In section 4, the results of the field theoretical perturbative approach, corresponding to the
two-body sector of the Chern–Simons theory, are presented and compared with the scattering
amplitude obtained in the relativistic quantum mechanics. Finally, some conclusions are
outlined.
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2. Exact solution in the framework of the first quantization

The Klein–Gordon equation in the presence of an external electromagnetic field, fixing the
Coulomb gauge (∇ · A = 0), can be written (in natural units, h̄ = c = 1) as

(∂2
t −∇2 + m2 + U)φ = 0 (1)

where

U = eA0 − i2eA · ∇ + e2A2. (2)

For an ideal AB solenoid (a line carrying magnetic flux �) at the origin, the magnetic field

B = �δ(r)ẑ (3)

with r = (x1, x2, 0), and one may choose

A0 = A3 = 0 Ai = − �

2π

εij xj

r2
i = 1, 2 (4)

where εij is the anti-symmetric symbol (ε12 = 1). The potential (2) then becomes

USol = −i

(
e�

π

)
r ×∇
r2

+

(
e�

π

)2 1

r2
(5)

showing that the problem, owing to the symmetry, is actually a two-dimensional one.
Considering a particle with (positive) energy wp (p in the x1 negative direction), the

wavefunction can be separated as φ(r, t) = exp(−iwpt)φ(r) and (1) reduces (in cylindrical
coordinates) to[

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

(
∂

∂θ
+ iα

)2

+ p2

]
φ(r, θ) = 0 (6)

where α = e�/2π is the magnetic flux parameter and p2 = w2
p−m2. This equation coincides

with the one solved by Aharonov and Bohm for the NR particle if one replaces the dispersion
relation by p2 = 2mE, E being the NR energy. Thus, the exact solution of (6), vanishing
when r → 0 as required by the ‘impenetrability’ condition, is given by [1]

φ(r, θ) =
+∞∑

l=−∞
(−i)|l−α|J|l−α|(pr) exp(ilθ) (7)

where J|l−α| denotes a Bessel function of the first kind.
This exact solution of the Klein–Gordon equation in the presence of the solenoid can also

be obtained, in a rather distinct way, by applying the Berry magnetization scheme [2] to its
solution in the absence of the flux line, corresponding to the incident plane wave. Using the
Fourier expansion of a plane wave,

φ0(r, θ) = exp[−ipr cos(θ)] =
+∞∑

l=−∞
(−i)|l|J|l|(pr) exp(ilθ) (8)

and the Poisson summation formula
+∞∑

l=−∞
f (l) =

+∞∑
m=−∞

∫ +∞

−∞
dη f (η) exp(2π imη) (9)

one obtains the whirling-wave expansion of the free solution

φ0(r, θ) =
+∞∑

m=−∞
wm(r, θ) (10)

wm(r, θ) =
∫ +∞

−∞
dη exp(− 1

2 iπ |η|)J|η|(pr) exp[iη(θ + 2πm)]. (11)
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Notice that wm is not single valued but satisfies wm(r, θ + 2π) = wm+1(θ), therefore
guaranteeing that φ0(r, θ) has a unique value.

The ingenious idea of Berry [2] to rescue the Dirac magnetization prescription, by
which incorporating the phase factor exp(iq

∫ r

r0
A(r′) · dr′) into the free wavefunction would

lead to the solution in the presence of the magnetic field, and to produce a single-valued
wavefunction, was to apply the Dirac procedure to each whirling wave separately and to resum
the ‘magnetized’ expansion. Doing so, one finds

φD
0 (r, θ) =

+∞∑
m=−∞

wD
m(r, θ) (12)

wD
m(r, θ) =

∫ +∞

−∞
dη exp(− 1

2 iπ |η|)J|η|(pr) exp[i(η + α)(θ + 2πm)] (13)

and, making the change of variables η′ = η + α, the inverse Poisson transform leads to the
exact solution (7). Notice that the Berry procedure relies on the fact that the free solution is
a plane wave and so it can be applied equally well to both relativistic and NR AB scattering.
An extension of the whirling-wave formulation of Berry to the case of the Dirac equation has
been presented recently [11].

The AB scattering amplitude can be obtained by analysing the asymptotic behaviour of
the exact solution (7). It can be shown that [1, 3]

φ(r, θ)
r	1−→ e−ipr cos θ + eiπ/4AAB(|p|, θ)eipr

√
r

(14)

where the scattering amplitude is given by

AAB(|p|, θ) = − i√
2πp

sin(πα)

[
tan

(
θ

2

)
− i sgn(α)

]
(15)

with sgn(α) = |α|/α. It should be remarked that the exact solution, and consequently the
AB scattering amplitude, can be also obtained within the two-component formalism, which is
employed to construct the perturbative expansion of the S matrix in the next section.

3. Perturbative analysis of the relativistic AB scattering

In order to be able to use the standard perturbation theory one has to cast the Klein–Gordon
equation as a differential equation of first order in time, that is in a form similar to the
Schrödinger equation. This can be done following the prescription below.

3.1. Two-component formalism of the Klein–Gordon equation

In the Feshbach–Villars representation [12], the Klein–Gordon wavefunction in the presence
of an external field Aµ is written in the form

$ =
(
χ

ζ

)
←→



χ = 1√

2m
[i∂tφ − (eA0 −m)φ]

ζ = 1√
2m

[−i∂tφ + (eA0 + m)φ].
(16)

This two-component wavefunction satisfies a Schrödinger-like equation,

i∂t$ = H$ (17)

with the ‘Hamiltonian’ given by

H =
(
m− (∇− ieA)2

2m

)
τ3 − (∇− ieA)2

2m
iτ2 + eA0 (18)
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where τi are the Pauli matrices. Although H is not Hermitian, τ3H
†τ3 = H and the norm∫

dx$†τ3$ is conserved, i.e. τ3 plays the role of a metric tensor.
This formalism allows the use of perturbation theory in the standard way and we make

the partition H = H0 + Hint = H0 + V + H1[τ3 + iτ2] where V = eA0 and

H0 =
(
m− ∇2

2m

)
τ3 − ∇2

2m
iτ2 (19)

H1 =
(

ie

2m
[∇ · A + A · ∇] +

e2

2m
A2

)
. (20)

The free positive- and negative-energy solutions are given by

$(+)
p (x, t) = e−iwpt$(+)

p (x) = 1

2π

wp + m√
4mwp

(
1

m−wp

m+wp

)
eip·x−iwpt (21)

$(−)
p (x, t) = e+iwpt$(−)

p (x) = 1

2π

wp + m√
4mwp

( m−wp

m+wp

1

)
e−ip·x+iwpt (22)

which satisfy the normalization conditions∫
dx$

(±)
p′ τ3$

(±)
p = ±δ(p′ − p). (23)

Notice that the Berry magnetization procedure can be applied to the positive-energy
solution (21), leading to the exact solution described in the last section and thus to the AB
scattering amplitude (15).

In fact, the two-component formalism is the appropriate scenario to implement the
perturbative treatment of the scalar AB scattering in the framework of the relativistic quantum
mechanics. The S matrix elements can be calculated through the formula

Sf i = 〈f |T exp

[
− i

∫
dt HI (t)

]
|i〉 (24)

where T represents the time ordering operator and HI(t) is the interaction picture of the
interaction Hamiltonian Hint, from which we can define the scattering amplitude Af i as

Sf i = −2π iδ(wf − wi)Af i . (25)

3.2. The bare scattering amplitude

The S matrix, expressing the scattering of a positive-energy particle, in the first Born
approximation, becomes

S
(1)
f i = −i

∫
dt dx$

†
p′(x)τ3Hint(x, t)$p(x) = −i2πδ(wp′ − wp)A(1)

f i (26)

with the reduced amplitude given by

A(1)
f i =

∫
dxe−ip′·x

[
m

wp

H1(x,∇) + V (x)

]
eip·x. (27)

Considering the Coulomb gauge, ∇ · A = 0, and for the moment neglecting the higher-order
term e2A2, one obtains

Af i =
∫

dx

[
− e

wp

A(x) · p + V (x)

]
e−i(p′−p)·x = − e

wp

Ã(q) · p + Ṽ (q) (28)

where q = p′ − p.
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For the AB potential, V = 0 and

Ãi(q) = i�

2π
εij lim

λ→0
∂qj

∫
dr

eiq·r

r2 + λ2
= i�εij lim

λ→0
∂qjK0(λ|q|) = −i�

εijqj

q2
(29)

K0 denoting the modified Bessel function, and therefore the reduced amplitude is given by

A(1)
f i = −

ie�

wp

p× q

q2
= − ie�

2wp

cot

(
θS

2

)
(30)

where θS is the scattering angle. Notice that, since θS is the angle between the incoming (p) and
the outgoing (p′) momenta, it is related to the AB polar angle by θS = π−θ . One immediately
notices the absence of the nonanalytic term occurring in the first order of the expansion of the
exact result (15).

To calculate higher-order contributions one should be aware of the fact that, since the
interaction with the external field contains terms of order e and e2, the perturbative expansion
in the coupling constant does not correspond ‘order by order’ to the Born expansion. Thus, to
find the second-order contribution to the amplitude, besides the contribution from the second
term of the expansion (24), one has to account for the A2 term present in the first Born
approximation; one obtains

A(2)
f i(A2)

=
∫

dre−ip′·r
[
m

wp

e2

2m
A2(r)

]
eip·r = m

wp

e2

2m
C̃(q) (31)

where the Fourier transform of A2,

C̃(q) =
(
�

2π

)2 ∫
dr

e−iq·r

r2
=

(
�

2π

)2

lim
λ→0

∫
dr

e−iq·r

r2 + λ2
=

(
�

2π

)2

lim
λ→0

K0(λ|q|) (32)

leads to a divergent contribution. Notice that it is precisely due to the absence of the A2 term
in the interaction of the spin-half particles with the field that no divergence occurs in that
case; furthermore the Pauli magnetic interaction naturally makes the first Born approximation
correct [13]. Wishing to be able to suppress the divergence of the scalar case, we keep the
regularized contribution

A(2)Reg
f i(A2)

= e2�2

4(2π)3

1

wp

{− ln(λ2)− ln(p2)− ln[2(1− cos θS)] + 2(ln 2− γ )} (33)

where γ is the Euler constant.
The other second-order contribution originates from the second Born approximation,

S
(2)
f i = −

∫ ∫
dt1 dt2 θ(t2 − t1)

∫
dr2 $

(+)†
p′ (r2)τ3Hint(r2, t2)Hint(r2, t1)$

(+)
p (r2) (34)

considering only the part of the interaction Hamiltonian which is first order in e. Using the
completeness relation∫

dk [$(+)
k (r1)$

(+)†
k (r2)τ3 −$

(−)
k (r1)$

(−)†
k (r2)τ3] = Iδ(r1 − r2) (35)

and the identity

θ(t)Ene−iEt = 1

2π i

∫
dω

ωne−iωt

E − ω − iε
(36)

one obtains

S
(2)
f i(A·p) = −2π iδ(wf − wi)A(2)

f i(A·p) (37)
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with

A(2)
f i(A·p) = −

e2

(2π)4

1

wp

∫
dk

ωk

{
[k · Ã(p′ − k)][p · Ã(k − p)]

ωp − ωk + iε

− [k · Ã(p′ + k)][p · Ã(k + p)]

ωp + ωk + iε

}
(38)

where wk =
√

k2 + m2. From (29), it follows that k · Ã(p) = i�(k × p)/p2, so the
contribution (38) to the second-order amplitude is given by

A(2)
f i(A·p) =

e2�2

(2π)4

1

wp

∫
dk

(k × p′)(k × p)

(k − p′)2(k − p)2

2

p2 − k2 + iε

= e2�2

4(2π)3

1

wp

{ln[2(1− cos θS)] + iπ} (39)

where the integral was performed as presented in [10]. The θS dependent part of this finite
contribution is cancelled out with one of the terms of A(2)

f i(A2)
. One thus obtains, adding up both

contributions, a divergent second-order term for the bare scattering amplitude. To recover a
finite result, coinciding with the expansion of the exact amplitude, one has to implement some
renormalization procedure.

3.3. Perturbative renormalization

To regain the correct perturbative expansion we have to search for an appropriate counterterm,
an additional interaction, which should suppress the divergence of the second order and
contributes in the lowest order, recovering the exact result. At first sight, one can try to
follow the case of spin-half particles and look for a magnetic type of interaction to do the job.
However, in the scalar case the magnetic interaction, given by Hmag = gεµνρFνρjµ, where
Fνρ is the field strength and jµ the particle’s current, can only furnish the correct result in the
leading NR order [14], and thus cannot describe the full relativistic case. One of the reasons
for this is the fact that such interaction does not have the same matrix structure in the two-
component formalism as the A2 term, which is responsible for the divergence one wishes to
eliminate.

The simplest additional interaction having the same matrix structure as the magnetic
potential term that one can consider, leading to the same logarithmic divergence in second
order, is a pure delta function external potential. In fact, by adding to (2) the term

U(delta) = gδ(r) (40)

one obtains, in first order, the contribution

A(1)
f i(delta) =

mg

2

1

wp

(41)

while the cutoff regularized ‘delta–delta’ contribution to the second order becomes

A(2)Reg
f i(delta) =

m2g2

(2π)4

1

wp

∫ 52

dk
1

wp − wk + iε

= m2g2

4(2π)3

1

wp

{− ln(52) + ln(p2)− iπ}. (42)

The crossing terms involving the delta and A · p interactions need not be considered; the sum
of their contributions vanishes, a fact which can be inferred from symmetry arguments.
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Including these contributions from the delta potential, the first- and the regularized second-
order parts of the scattering amplitude become

A(1)
f i = −i

e�

2wp

cot

(
θS

2

)
+

mg

2wp

(43)

A(2)
f i =

1

4(2π)3

1

wp
(m2g2 − e2�2)[ln(p2)− iπ ]

+
1

4(2π)3

1

wp
[−m2g2 ln(52)− e2�2(ln(λ2)− 2 ln 2 + 2γ )]. (44)

One sees then that the agreement with the expansion of the exact result can be reached if the
strength of the delta interaction is fixed, satisfying

m2g2 = e2�2 = 4π2α2 (45)

and the cutoffs are adjusted so that

5λ = 2 exp(−γ ). (46)

In doing so, the first-order term, multiplied by the appropriate kinematical factor, reproduces
the correct result and the second-order term, proportional to α2, vanishes as it should.

4. The field theoretical approach

The scalar NR AB scattering corresponds, in the field theoretical approach, to the two-body
sector of the theory of a Chern–Simons field coupled with a self-interacting scalar field for
which the Lagrangian density is given by [7]

LNR = ψ∗
(

iDt +
D2

2m

)
ψ − v0

4
(ψ∗ψ)2 +

8

2
∂tA×A−8A0∇ ×A (47)

where Dt = ∂t + ieA0 and D = ∇ − ieA are covariant derivatives, 8 is the Chern–Simons
parameter and v0 is the bare self-coupling. The renormalized NR two-particle scattering
amplitude, in the centre of mass (CM) frame, is given, up to one loop, by

ANR = −v − i
2e2

m8
cot θ +

m

8π

(
v2 − 4e4

m282

) [
ln

(
µ2

p2

)
+ iπ

]
(48)

whereµ is an arbitrary mass scale that breaks the scale invariance of the amplitude. By choosing
the critical value v+

c = +2e2/m|8|, which corresponds to a repulsive quartic interaction, this
amplitude reduces to the first-order (e2) AB amplitude for identical particles, which is given
by [7]

FAB(|p|, θ) = −i
4πβ

m

[
cot θS − i sgn(β)

]
(49)

where β = e2/2π8 coincides with the flux parameter α if the identification8 = e/� is made;
this symmetrized amplitude is the same, adjusting the kinematical factor, as the one obtained
from the first-order expansion of the exact NR result (15).

It has been shown that the relativistic Chern–Simons theory,

L = (Dµφ)
∗(Dµφ)−m2φ∗φ − λ

4
(φ∗φ)2 +

8

2
εσµνA

σ ∂µAν (50)

reduces to the NR case in the leading approximation [8]. We have calculated in this theory the
|p|/m expansion of the two-particle amplitude, up to one-loop order, using an intermediate
cutoff procedure introduced in [15]. The renormalized CM amplitude, including the factor
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1/4w2
p (where wp =

√
m2 + p2) which makes the states have the same normalization as in the

NR case, can be written as A = A(0) + A(1) [9], where

A(0) = − λ

4w2
p

− ie2

8wp

cot

(
θS

2

)
+ [θS → θS − π ] (51)

is the exact tree level contribution and the one-loop term, up to order p2/m2, is given by

A(1) � m

8π

(
λ2

16m4
− 4e4

m282

) [
ln

(
4m2

p2

)
+ iπ

]

− m

8π

(
3λ2

32m4
− 2e4

m282

)
p2

m2

[
ln

(
4m2

p2

)
+ iπ

]

+
m

8π

(
λ2

4m4
− 14e4

3m282

)
− m

8π

(
25λ2

96m4
+

74e4

15m282

)
p2

m2
. (52)

One sees that the leading term of the |p|/m expansion of A coincides with ANR if one identifies
v = λ/4m2 and chooses µ2 = 4m2. Independently of the fixing of µ, by taking λ+

c = 4m2v+
c

the one-loop contribution for the leading order (in |p|/m) vanishes and the tree level one
reproduces the AB scattering. However, the subdominant terms do not vanish for λ = λ+

c and
constitute additional relativistic corrections to the AB effect [9], which originate from field
theoretical effects such as vacuum polarization and vertex radiative corrections. Notice, in this
respect, that the vectorial interaction vertex expressing the bare coupling between the matter
and the Chern–Simon fields possesses, in the relativistic case, an energy factor in the zeroth
component which is not present in the NR Lagrangian.

5. Conclusions

Using a two-component formalism, in this work we have studied perturbatively the first
quantized AB scattering of relativistic scalar particles. We proved that, to eliminate divergences
due to the A2 coupling, it is necessary to add a contact delta interaction, which, in a field
theoretical language, corresponds to a (φ†φ)2 self-interaction. Now, it is known that in the
fermionic case Pauli’s magnetic interaction∼B ·ψ†sψ , with s representing the spin operator,
provides the necessary ingredient to make the final result well defined. This immediately
suggests that in the scalar case the linearized form σ(φ†φ), where in lowest order the external
field σ = gδ(x), should be added to the original Lagrangian, as we did. In the NR case the
purely magnetic coupling gεµνρFνρjµ, where Fνρ is the field strength and jµ the particle’s
current, equally provides the cancellation of the divergence, but in the relativistic domain it
has to be disregarded since it does not have the appropriate momentum dependence and, in the
field theory context, it is nonrenormalizable. Comparison between the first-quantized and the
field theoretical perturbative expansions shows that the latter has additional contributions from
vacuum polarization and vertex radiative corrections. These terms, absent from a direct NR
approach, show that the original AB problem is an idealized situation since vacuum polarization
makes the magnetic field necessarily nonvanishing outside the solenoid.
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