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Log-periodic oscillations for a uniform spin model on a fractal
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The model of Blume-Capel on the Sierpinski gasket is investigated within the method of transfer matrices,
where the thermodynamic functions are obtained after the numerical iteration of a set of discrete maps. The
analysis of theT50 transition shows that, for antiferromagnetic coupling and a finite interval of self-energy
coefficient, the correlation length diverges as exp(Jef f /T), with superimposed log-periodic oscillations in terms
of the reduced temperaturet5exp(2uJef fu/T). Both the period of oscillations and the effective interactionJe f f

depend on the strength of the actual coupling constants. In the antiferromagnetic regime, residual entropy is
found for three different values of the self-energy parameter. The variation of this parameter leads, in the case
of ferromagnetic coupling, to a more complex behavior for the correlation length than the already known
exp@exp(Jef f /T)# dependence observed for the Ising and Potts models.

PACS number~s!: 05.50.1q, 64.60.Ak, 61.44.Br, 75.10.Hk
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I. INTRODUCTION

Several analyses of uniform magnetic spin models
fractals with finite order of ramification have shown that,
to a few exceptions, their behavior has only slight departu
from the corresponding model on linear lattices@1,2#. Long-
range order occurs only atT50 and the critical exponent
are essentially the same as those of the linear chain, prov
the Euclidean dimensiond is substituted by the fractal di
mensiondf . Frustration is found for antiferromagnetic co
plings on lattices where the basic geometric unit is a trian
or any polygon with an odd number of sides. In some ca
the residual entropy can be larger than the correspon
value on the triangular lattices@3–5#. Most of the quoted
results have been obtained for the Ising model, but they
be extended to other models that belong to the same un
sality class@6,7#. One major exception to this overall pictur
refers to models on the Sierpinski gasket~SG! ~Fig. 1 shows
the first three stages of construction of the gasket!, as some
of their properties are distinct from those for linear cha
For instance, for the Ising model with ferromagneticJ.0
interactions, the correlation lengthj diverges as
exp@exp(4J/T)# for T→0, instead of the usual behavio
exp(J/T) @8–11#.

The possible emergence of log-periodic oscillations, w
respect to the reduced temperature, for the thermodynam
behavior of spin models is a consequence of a discrete s
invariance embedded into the model and/or the lattice@12#.
They follow from general properties of the renormalizati
group recurrence equations, and can also be found in cha
discrete maps@13,14#. In more recent times, similar behavio
has been reported in geophysical and other complex sys
@15#. The actual observation of such oscillations has b
reported in models subject to relevant fluctuations@16–18#
~according to the Luck criterion@19#! in the coupling con-
stants, which change from site to site, mostly according t
deterministic aperiodic sequence. As the relevant fluctuat
PRE 621063-651X/2000/62~3!/3083~7!/$15.00
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alter the corresponding criticality of the uniform model, th
lead to a new universality class characterized by a weake
transition with different exponents and possibly log-period
oscillations@20#. Of course, the new universality class is i
sensitive to the actual values assumed by the coupling c
stants of the aperiodic model.

In this work we investigate the properties of the unifor
zero-field Blume-Capel~BC! model on the SG. It is well
known that, depending on the values of its two parame
~the nearest neighbor interactionJ and the self-energyD),
this model can escape from the universality class of the Is
model. We discuss how the properties of theT50 transition
of the SG are affected when the system moves into a n
universality class. We show that, for antiferromagneticJ
,0 coupling, the exp(uJef fu/kBT) divergence ofj may be-
come modulated by 1/T oscillations, which can be consid
ered as log-periodic oscillations in terms of the usual redu
temperaturet5exp(2uJef fu/kBT). As we are considering a
uniform model, this result does not fall into the report
class of oscillations that are accounted for by Luck’s relev
fluctuation criterion. We discuss these unusual oscillation
detail, indicating that their features are indeed quite disti

FIG. 1. First three generations of the construction of the S
pinski gasket. The site labels in~a! and~b! correspond, respectively
to the notation used in the text for the derivation of Eqs.~2.2!,~2.3!
and Eqs.~2.4!,~2.5!.
3083 ©2000 The American Physical Society
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from those observed for aperiodic models. In addition,
investigate other aspects of the model, such as the possib
of three distinct values for the residual entropy, which can
related to the degenerate ground states of the triangle u
that form the lattice. ForJ.0, we have found thatj behaves
in a more complex way than the now typical behavior of t
Ising and Potts models on the same lattice@7–11#: the usual
exp@exp(Jef f /T)# behavior splits into two regimes, with th
same functional dependence and two distinct values ofJe f f .

Our analysis is based on use of the transfer matr
method~TMM !, which leads to a set of coupled nonline
maps for the pertinent intensive thermodynamic functio
@11#. No approximations are carried out in the process. T
maps are numerically iterated until convergence is achiev
which leads to exact numeric values for the proper functio

The rest of the work is organized as follows. In Sec. II w
define the model and present the main steps within the tr
fer matrix method for the derivation of the proper map
Section III discusses the ferromagnetic case, while Sec
presents the results for the antiferromagnetic situation, w
special emphasis on the log-periodic oscillations. Fina
Sec. V closes the work with concluding remarks.

II. MODEL AND RECURRENCE MAPS

The zero-field BC model consists of three state spin v
abless i511,0,21, which are subject to nearest neighb
interactions and a quadratic self-energy term. The form
system Hamiltonian reads

H52J(
( i , j )

s is j1D(
i

s i
2 , ~2.1!

where (i , j ) indicates that the sum is restricted to the pairs
first neighbor spins andD5uJuD.

The BC model ond>2 Euclidean lattices has been inte
sively investigated within many different approximate a
proaches@21–31#, since the exact solution is available on
for d51. More recently, generalizations of this model
larger spins (s53/2,2, . . . ) have been analyzed@32–34#.
The most characteristic features of thes51 model include,
at low values ofD, a second-order transition line between t
ferro- and paramagnetic phases in theT versusD diagram.
On increasingD, the line first changes from a second- to
first-order transition at a tricritical point, and finally disa
pears when the system exhibits only the paramagnetic ph
For the linear chain,j diverges as exp(J/T) when D<1,
which is a signature of aT50 second-order transition. Whe
D51, theT50 transition recalls the tricritical point of th
mean-field solution, since the eigenvalues of the transfer
trix become threefold degenerate at theT→0 limit. For D
.1, j remains bounded in this limit, indicating the absen
of ferromagnetic ordering.

Within the TMM, the interaction between the two ou
most spins of the Sierpinski gasket (i andk in Fig. 1!, in any
generationn, is expressed by a single matrixAn , of order
q3q, whereq indicates the number of different states th
each spin variable may assume. In the first generation, w
the gasket is reduced to a single triangle, the matrixA1 has
its elements defined by
e
ity
e
its
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~A1! i ,k5Ri ,kRi ,k
2 , ~2.2!

where the matrixR describes the interaction between tw
neighbor spins. The matricesAn , n>2, can be defined with
the help ofq3q2 auxiliary matricesUn , n>1. Forn51,

~U1! i , jk5Ri , jRi ,kRj ,k , ~2.3!

where column labels for the matricesUn follow the lexico-
graphic order. As shown in Fig. 1, higher order generatio
of the SG may be constructed by joining together three g
kets of the former generation. In the case of the second g
eration@Fig. 1~b!#, the matrixA2 ~linking the sitei to k) may
be expressed with the help ofU1, describing the interactions
among sitesi, p andq, andU1

t ~where the superscriptt indi-
cates the transpose! doing the same for sitesr, q, andk. The
interaction between sitesp andr is taken into account by the
matrix A1 @Eq. ~2.2!#. So, as the siteq is shared by both
matricesU1 andU1

t , we introduce theq23q2 matrix A1* I
@where I denotes theq3q identity matrix and * the direct
~Kronecker! product# to describe the interaction between th
pair of sites (p,q) with (r ,q). We come to the conclusion
that @11#

An115Un~An* I !Un
t , n51. ~2.4!

Due to the scale invariance of the fractal, it is easy to sh
that the same relation holds for anyn>2. A recurrence re-
lation for Un11 follows from the observation of the geome
ric operations required to construct the second- and th
order generations of the fractal. We have found that@11#

~Un11! i , jk5 (
p,q,r

~Un! i ,pq~Un! j ,pr~Un!k,rq . ~2.5!

Equations~2.2!–~2.5! completely define any spin mode
with nearest neighbor interactions on the SG. For the
model, the matrixR includes the nearest neighbor interacti
and 1/4 of the self-energy of each spin. Its elements
expressed by

Ri , j5exp
J

kBT S s is j2D
s i

21s j
2

4 D , s i ,s j511,0,21.

~2.6!

The symmetries of the model are reflected in the element
An andUn , which have the following structures:

An5S an cn bn

cn dn cn

bn cn an

D ; ~2.7!

Un5S un vn wn vn mn yn wn yn wn

vn mn yn mn zn mn yn mn vn

wn yn wn yn mn vn wn vn un

D .

~2.8!

The maps for the matrix elements ofAn andUn that fol-
low from Eqs. ~2.4! and ~2.5! form a set of ten difference
equations. However, only six of them are independent, as
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elements ofAn can be expressed in terms of those ofUn .
The six variables used herein are

an[un2wn , bn[vn2yn , gn[vn1yn ,
~2.9!

dn[un13wn ,

besidesmn and zn . The elements ofAn are expressed in
terms of these variables as

2an5dn1gn1an1bn ;

2bn5dn1gn2an2bn ;
~2.10!

cn5gn1mn ;

dn52mn1zn .

Since this is valid for any value ofn, the problem is
completely formulated in terms of the six following maps

an115 1
2 ~an

31an
2dn14bn

2wn12anbn
214anbngn!;

bn115 1
2 ~an

2bn1an
2gn12bn

312bn
2zn14anbnmn!;

gn115 1
2 ~an

2bn1dn
2gn12gn

312gn
2zn18gnmn

2

14mn
2zn14dngnmn!; ~2.11!

dn115 1
2 ~an

31dn
318mn

316dn
2gn112gn

2mn!;

zn115bn
31gn

31zn
316mn

2gn16mn
2zn ;

mn115 1
2 ~anbn

212dnmn
21dngn

214mn
318gn

2mn

14gnmnzn12zn
2mn!.

These variables represent Boltzmann weights that are m
plied when each new generation of the fractal is taken i
account. So they rapidly lead to numerical overflows, wh
can be sidestepped if Eqs.~2.11! are rewritten in a more
suitable form. We define, for any generationn, the corre-
sponding partition function,

Zn5Tr~An!52an1dn5dn1gn1an1bn1zn12mn .
~2.12!

The free energy per spin is expressed by

f n52
kBT

Nn
ln~dn1gn1an1bn1zn12mn!, ~2.13!

whereNn5(3n13)/2 is the number of sites in thenth gen-
eration of the gasket. Thus one of the maps can be rewr
in terms of f n , which expresses the thermodynamic prop
ti-
o
h

en
-

ties of the model at generationn. The entropy and specific
heat for the model are obtained by the numerical derivati
of

f 5 lim
n→`

f n . ~2.14!

The other five maps are written in terms of the ratios of
variablesgn , an , bn , zn , andmn to dn , which is the largest
of them. So we define

Vn5Mn / ln~dn /an!,

xn5Mn / ln~dn /bn!,

Jn5Mn / ln~dn /gn!, ~2.15!

Gn5Mn / ln~dn /mn!,

zn5Mn / ln~dn /zn!,

where Mn52n is the shortest distance between the sp
placed in the outermost corners in thenth generation. The
definition ~2.15! is based on that of the correlation functio
jn ,

jn5
Mn

ln~ln
(1)/ln

(3)!
, ~2.16!

where ln
(1) and ln

(3) are, respectively, the largest and th
second largest eigenvalues ofAn , expressed by

ln
(1)5 1

2 $dn1gn1zn12mn1@~dn1gn2zn22mn!2

18~mn1gn!2#1/2%; ~2.17!

ln
(3)5en5an1bn .

The recurrence maps for the quantitiesf n , Vn , xn , Jn ,
Gn , and zn that follow from definitions~2.11!, ~2.13!, and
~2.15! are listed in the Appendix. To obtain results in th
thermodynamic limits, this set of maps must be iterated u
convergence is achieved, when all variables in Eqs.~2.15!
and~2.16! become independent ofn, in the same sense as th
free energyf defined in Eq.~2.14!.

III. FERROMAGNETIC COUPLING

A. Correlation length

For D,2, the energy of the uniform statess561 is
smaller than that of the uniforms50 state. Thus the system
becomes equivalent to thes51/2 Ising model in theT→0
limit, wherej is characterized by the typical exp@exp(Jef f /T)#
behavior. We find thatJe f f depends very weakly onD,0.
As D→2`, it converges to a constant valueJe f f54.1, very
close toJe f f54.0, the value found for both thes51/2 and
s51 (D50) Ising models. The same kind of dependen
persists whenD increases, but the value ofJe f f decreases.
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When D'1.75 we observe the development of a twofo
exp@exp(Jef f /T)# regime, with a crossover from a relative
small value ofJe f f,1 to a second valueJe f f,2.Je f f,1 as T
→0. The value ofJe f f,2 increases again to a limiting valu
;4 as D→2. This is illustrated by several curves fo
ln@ln(j)# vs 1/T in Fig. 2.

The D52 case corresponds to a tricritical point, as w
find that the three eigenvalues of the matrixAn (n→`) be-
come degenerate in theT→0 limit. Similar behavior is ob-
served forD51 on the linear chain. However, Fig. 3 show
that the behavior ofj changes discontinuously toj

FIG. 2. Curves of ln@ln(j)# versus 1/T for several values ofD
,2 whenJ511. For D521 ~dash!, D50 ~short dash!, and D
511 ~dot!, there is a single regime, withJe f f54.05, 4.0, and 3.5,
respectively. WhenD>1.75 we note a twofold dependence: forD
51.8 ~solid!, Je f f,152.4 andJe f f,252.82; the crossover is observe
for 1/T51.7; for D51.99 ~dot-dash!, Je f f,151.2, Je f f,253.4; the
crossover temperature is at 1/T52.2.

FIG. 3. Curve of ln(j) versus 1/T for D52 andJ511 ~dash!;
the slope indicatesJe f f51.13. Other curves correspond to the an
ferromagnetic caseJ521, 0,D,1, where the oscillation pattern
consists of cycloidlike wiggles. WhenD50.15 ~dot-dash! the pe-
riod is large and the pattern is composed of two subsequent wig
with different sizes. Note the presence of a transient region, w
four distinct wiggles prior to the onset of the periodic pattern. T
is also observed forD50.5 ~solid!, when the pattern remains almo
the same, butP decreases significantly. ForD50.85 ~short dash!
the smaller wiggles disappear and both period and amplit
increase.
;exp(1.13/T). ForD52 the ground state is threefold dege
erate, as all three homogeneous statess i50,61 ; i are
equally probable. Finally, whenD.2, the ground state is
characterized bys i50, andj remains finite for all values
of T.

B. Specific heat

For almost all values ofD the specific heat is characte
ized by one single smooth Schottky peak. The exception
fers only to the small interval 1.995<D,2, when a double
peak structure can be observed~see Fig. 4!. This behavior
often occurs for antiferromagnetic interactions when, in
parameter space, we come close to a situation with resi
entropy. This is not the case ass050 for all values ofD.

IV. ANTIFERROMAGNETIC COUPLING

A. Correlation length

WhenD,0, the system is frustrated and its behavior b
comes similar to that ofs51/2 Ising model. In this range,j
is limited for all values ofT. The same is observed whe
D>1 but, in this region, this behavior is due to the fact th
the system becomes paramagnetic even in theT→0 limit.

For 0,D,1 we have observed the richest behavior
the correlation lengthj: on increasingD we note thatj
diverges asT→0. Figure 3 shows that the divergence fo
lows an exp(Jef f /T) law, but on it are superimposed period
modulations in 1/T;u ln tu. At first sight, these oscillations
look rather similar to those observed recently in the therm
dynamic properties of some aperiodic spin models@16,17#,
but we soon realize that they differ in many aspects. As
our knowledge, a similar phenomenon has not been obse
within the scope of a uniform model on a fractal, we a
forced to discuss the modulations in terms of the obser
behavior for aperiodic models.

First of all, oscillations have been observed only forj.
They are absent in the free energy or any of its derivativ
which, in the limitn→`, depend only on the largest eigen
value ln

(1) . We are forced to conclude that they are eith
nonexistent or so minute that they could not be perceived

es
h

e

FIG. 4. Illustration of situations where the specific heat prese
a double peak. The cases shown areJ511, D51.998 ~solid!; J
521, D50.05 ~dash!, 0.95~short dash!, and 1.05~dot-dash!. The
last three situations correspond to the neighborhood of a point
residual entropy. In the first case there is no noticeable increas
the ground state entropy.
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PRE 62 3087LOG-PERIODIC OSCILLATIONS FOR A UNIFORM . . .
our evaluation. If the first possibility holds, then the oscil
tions in j are directly related to a similar behavior of th
eigenvalueln

(3) . If this is not true, oscillations inln
(1) may be

present, but they can only be made explicit when the ra
ln

(1)/ln
(3) is taken. As our evaluation was performed at ze

magnetic field, nothing can be inferred about the magn
properties of the model.

Then we observe that the periodP of the oscillations var-
ies continuously withD. This is clear from Fig. 3 and show
explicitly in Fig. 5, where we show howP depends onD.
The period first decreases with increasingD, goes through a
minimum for D;0.67, and starts increasing again. T
graph suggests thatP→` for bothD→01 andD→12 , but
divergences of the Boltzmann weights forT→0 make the
analysis difficult in the very small neighborhood ofT50 that
is necessary to measure the larger and larger periods.
dependence ofP on D is not observed for aperiodic system
where a constant period characterizes the universality c
controlled by the sequence. From Fig. 3 we note that
dependence ofJe f f on D is inverse to that ofP: Je f f in-
creases withD.0, goes through a maximum, and decrea
as D→1. In fact, the independent evaluation of the tw
quantities strongly suggests that they are closely related
shown in Fig. 5. When we draw bothP andJe f f as functions
of D we clearly see thatJe f f5C/P, while the data lead to
C.0.7.

Finally, Fig. 3 also shows that the form of the oscillatio
is quite distinct from the almost sinusoidal pattern obser
for aperiodic systems@20#. Its basic form is that of a cycloid
wiggle, with a soft maximum and a sharp minimum, whe
the derivative changes sign in a discontinuous way.
small values ofD, we observe several wiggles of sma
length prior to the periodic pattern consisting of two sub
quent wiggles, the larger of which is roughly 3–4 times b
ger than the small one. This pattern continues untilD;0.6,
when the relative size of the small wiggle begins to decre
faster. WhenP starts to increase again, the oscillating patte
consists of just one large wiggle, with very large amplitud

B. Residual entropy

Changes of the spin arrangement of the ground state
observed forD50 andD51. WhenD,0 we find, for the

FIG. 5. Dependence of the measured periodP on D ~open
circles!. We also draw 1/Je f f ~solid!, whereJe f f is the mean slope
of the curves shown in Fig. 2. We obtainPJe f f.0.7.
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residual entropy, the values050.493 006 1. . . , which has
been reported by many authors@3,4,8,11#. It results from the
many possibilities of putting ones511 and twos521
spin states~or the symmetric configuration! in each triangle
that forms the lattice. In the limitD→02, the specific heat
presents a double peak structure, which vanishes wheD
50.

The s51 Ising model (D50) presents a higher residua
entropy than the preceding case. This is due to the fact
new spin configurations are available in the ground state
addition to those typical for thes51/2 Ising model, local
configurations for individual triangles can be formed whe
each spin is found in a distinct state. These local configu
tions are nonfrustrated and have the same energy (2J) as
that described before. We have measured the values0
50.641 869 1. . . .

For 0,D,1 the system has no residual entropy. This c
be explained by the analysis of the ground state of a trian
when we observe that the second configuration~one s5
11, ones521 and ones50) has a lower energy than th
first one. If we start to populate the SG with spins, we eas
see that there are only three possible different configuratio
independent of the generation of the fractal.

As shown in Fig. 4, the specific heat displays doub
peaks whenD→01 andD→12, while in the central part of
the interval we have just one single peak. The double p
observed asD→12 is linked to a residual entropys0
50.205 382 . . . , observed forD51. This third value fors0
is caused by the energy degeneracy~at D51) between the
second triangle configuration and a third one, where all th
spins are in the states50, and by the fact that triangles wit
these two configurations coexist within the gasket. WhenD
.1, there is no residual entropy. The specific heat ha
single peak whenD51 and a double peak forD→11.

V. CONCLUSIONS

In this work we have discussed the behavior of the B
model on the SG, for different choices of the coupling e
change and crystalline field parameter. Once again we h
found evidence that the SG displays the richest set of
usual features~nontypical for one-dimensional system!
among the finite ramified planar fractal lattices. For ferr
magnetic coupling, the correlation lengthj strongly depends
on D and four different regimes have been identified: t
single exp@exp(Jef f /T)# divergence, the same divergence b
with two different values ofJe f f , the more usual exp(Jef f /T)
divergence, and nondivergent behavior when the system
paramagnetic. We have also found a tricritical point atD
52, where the behavior ofj changes discontinuously. Fo
the antiferromagnetic case, we have found three differ
values for a residual entropy, which can be qualitatively e
plained in terms of the possible configurations in a unit
angle, although the exact counting problem for the SG
mains open. When we get close, in the parameter spac
values ofD characterized by new values of the residual e
tropies, we observe three situations with double peaks in
specific heat. One exception refers to the case of ferrom
netic coupling in theD→2 limit, when no residual entropy
emerges but a double peak has been identified. Finally,
have observed that, for a large interval of values ofD, j is
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characterized by the presence of log-periodic cycloidlike
cillations superimposed on the exp(Jef f /T) divergence. The
period of the oscillations depends continuously on the va
of D, but the free energy and its derivatives seem not
-

e
o

display the same kind of oscillatory behavior. Thus we m
conclude that the phenomenon is of a different nature
comparison to those that have been reported for models
aperiodic coupling.
APPENDIX

Vn115VnS 11
Vn

Mn11
ln

11pn
318tn

316r n
2112r n

2tn

11pn1qn
2~2pn

2114pn
22tn!14qnr npn

21D 21

; ~A1!

xn1152JnS 11
2Jn

Vn
1

Jn

Mn
ln

11pn
318tn

316r n
2112r n

2tn

11@qn~114pn
21tn!12qn

2~qn1sn!pn
22#r n

21D 21

; ~A2!

Jn1152JnS 11
Jn

Mn
ln

11pn
318tn

316r n
2112r n

2tn

11~pn
2qn14sntn

2!r n
2112r n~r n1sn!14tn~112tn!

D 21

; ~A3!

Gn115JnS 11
Jn

2Mn
ln

11pn
318tn

316r n
2112r n

2tn

11@2tn~sn
21tn12tn

2!1pnqn
2#14tn~11r n

21sn!
D 21

; ~A4!

zn115
2

3
JnS 11

Jn

3Mn
ln

11pn
318tn

316r n
2112r n

2tn

212~qn
31sn

316sntn
2!r n

23112tn
2r n

22D 21

; ~A5!

jn115VnS 11
Vn

Mn11
ln

X11@X2
218X3

2#1/2

2X4
D 21

; ~A6!

f n115
3Nn

Nn11
f n2

KBT

Nn11
ln

X5

X6
; ~A7!

where

pn5expS 2
Mn

Vn
D , ~A8!

qn5expS 2
Mn

xn
D , ~A9!

r n5expS 2
Mn

Jn
D , ~A10!

sn5expS 2
Mn

zn
D , ~A11!

tn5expS 2
Mn

Gn
D , ~A12!

and

X1511pn
312qn

314r n
312sn

3116tn
31pn

2qn12pnqn
212r n

2~41sn110tn!14sn
2tn14tn

2~115r n14sn!1r n~114tn18sntn!,
~A13!

X2511pn
322sn

31r n
2~412sn14tn!2tn

2~414r n18sn!24sn
2tn1pn~snqn22qn

2!1r n~114tn28sntn!, ~A14!

X352r n
2~11r n14sntn!14tn

2~112tn!1pn~pnqn12qn
2!1r n~114tn18sntn18tn

2!14sn~sntn1tn
2!, ~A15!

X4511pn1pn
21qn~2qn14r n14tn!14pn

22qn~2qn12sn14tn!1qn1r n , ~A16!
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X551/21pn
312qn

312r n
31sn

318tn
31pn

2~1/21qn1r n/2!1qn
2~2pn1sn12tn!1r n

2~41sn112tn!

12pnqn~r n1tn!12tnr n~112sn!, ~A17!

X65~11pn1qn1r n1sn1tn!3. ~A18!
ys

n

ys
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